Articles | Volume 19, issue 21
https://doi.org/10.5194/bg-19-5059-2022
https://doi.org/10.5194/bg-19-5059-2022
Research article
 | Highlight paper
 | 
04 Nov 2022
Research article | Highlight paper |  | 04 Nov 2022

Highest methane concentrations in an Arctic river linked to local terrestrial inputs

Karel Castro-Morales, Anna Canning, Sophie Arzberger, Will A. Overholt, Kirsten Küsel, Olaf Kolle, Mathias Göckede, Nikita Zimov, and Arne Körtzinger

Related authors

Small-scale hydrological patterns in a Siberian permafrost ecosystem affected by drainage
Sandra Raab, Karel Castro-Morales, Anke Hildebrandt, Martin Heimann, Jorien Elisabeth Vonk, Nikita Zimov, and Mathias Goeckede
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-156,https://doi.org/10.5194/bg-2023-156, 2023
Revised manuscript accepted for BG
Short summary
Three decades of simulated global terrestrial carbon fluxes from a data assimilation system confronted with different periods of observations
Karel Castro-Morales, Gregor Schürmann, Christoph Köstler, Christian Rödenbeck, Martin Heimann, and Sönke Zaehle
Biogeosciences, 16, 3009–3032, https://doi.org/10.5194/bg-16-3009-2019,https://doi.org/10.5194/bg-16-3009-2019, 2019
Short summary
Year-round simulated methane emissions from a permafrost ecosystem in Northeast Siberia
Karel Castro-Morales, Thomas Kleinen, Sonja Kaiser, Sönke Zaehle, Fanny Kittler, Min Jung Kwon, Christian Beer, and Mathias Göckede
Biogeosciences, 15, 2691–2722, https://doi.org/10.5194/bg-15-2691-2018,https://doi.org/10.5194/bg-15-2691-2018, 2018
Short summary
Process-based modelling of the methane balance in periglacial landscapes (JSBACH-methane)
Sonja Kaiser, Mathias Göckede, Karel Castro-Morales, Christian Knoblauch, Altug Ekici, Thomas Kleinen, Sebastian Zubrzycki, Torsten Sachs, Christian Wille, and Christian Beer
Geosci. Model Dev., 10, 333–358, https://doi.org/10.5194/gmd-10-333-2017,https://doi.org/10.5194/gmd-10-333-2017, 2017
Short summary
Snow on Arctic sea ice: model representation and last decade changes
K. Castro-Morales, R. Ricker, and R. Gerdes
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-5681-2015,https://doi.org/10.5194/tcd-9-5681-2015, 2015
Revised manuscript not accepted
Short summary

Related subject area

Biogeochemistry: Greenhouse Gases
Diurnal versus spatial variability of greenhouse gas emissions from an anthropogenically modified lowland river in Germany
Matthias Koschorreck, Norbert Kamjunke, Uta Koedel, Michael Rode, Claudia Schuetze, and Ingeborg Bussmann
Biogeosciences, 21, 1613–1628, https://doi.org/10.5194/bg-21-1613-2024,https://doi.org/10.5194/bg-21-1613-2024, 2024
Short summary
Regional assessment and uncertainty analysis of carbon and nitrogen balances at cropland scale using the ecosystem model LandscapeDNDC
Odysseas Sifounakis, Edwin Haas, Klaus Butterbach-Bahl, and Maria P. Papadopoulou
Biogeosciences, 21, 1563–1581, https://doi.org/10.5194/bg-21-1563-2024,https://doi.org/10.5194/bg-21-1563-2024, 2024
Short summary
Resolving heterogeneous fluxes from tundra halves the growing season carbon budget
Sarah M. Ludwig, Luke Schiferl, Jacqueline Hung, Susan M. Natali, and Roisin Commane
Biogeosciences, 21, 1301–1321, https://doi.org/10.5194/bg-21-1301-2024,https://doi.org/10.5194/bg-21-1301-2024, 2024
Short summary
Lawns and meadows in urban green space – a comparison from perspectives of greenhouse gases, drought resilience and plant functional types
Justine Trémeau, Beñat Olascoaga, Leif Backman, Esko Karvinen, Henriikka Vekuri, and Liisa Kulmala
Biogeosciences, 21, 949–972, https://doi.org/10.5194/bg-21-949-2024,https://doi.org/10.5194/bg-21-949-2024, 2024
Short summary
Large contribution of soil N2O emission to the global warming potential of a large-scale oil palm plantation despite changing from conventional to reduced management practices
Guantao Chen, Edzo Veldkamp, Muhammad Damris, Bambang Irawan, Aiyen Tjoa, and Marife D. Corre
Biogeosciences, 21, 513–529, https://doi.org/10.5194/bg-21-513-2024,https://doi.org/10.5194/bg-21-513-2024, 2024
Short summary

Cited articles

AMAP (Eds.): Snow, Water, Ice and Permafrost in the Arctic (SWIPA), Oslo, Norway, ISBN 978-82-7971-101-8, 2017. 
Amorocho, J. and Devries, J. J.: A new evaluation of the wind stress coefficient over water surfaces, J. Geophys. Res., 85, 433–442, https://doi.org/10.1029/JC085iC01p00433, 1980. 
Bogard, J. M., del Giorgio, P. A., Boutet, L., Garcia Chavez, M. C., Prairie, Y. T., Merante, A., and Derry, A. M.: Oxic water column methanogenesis as major component of aquatic CH4 fluxes, Nat. Commun., 5, 5250, https://doi.org/10.1038/ncomms6350, 2014. 
Bring, A., Fedorova, I., Dibike, Y., Hinzman, L., Mård, J., Mernild, S. H., Prowse, T. D., Semenova, O., Stuefer, S. L., and Woo, M.-K.: Arctic terrestrial hydrology: a synthesis of processes, regional effects, and research challenges, J. Geophys. Res.-Biogeo., 121, 621–649, https://doi.org/10.1002/2015JG003131, 2016. 
Bussmann, I.: Distribution of methane in the Lena Delta and Buor-Khaya Bay, Russia, Biogeosciences, 10, 4641–4652, https://doi.org/10.5194/bg-10-4641-2013, 2013. 
Download
Co-editor-in-chief
The Arctic is a hot spot of warming triggering methane releases from thawing permafrost. This study by Castro-Morales and Co-Workers provides new insights into the transport of methane from soil to rivers. This work makes an essential contribution to comprehending the magnitude of methane emissions in Arctic rivers and potential contribution to the global methane budget under climate change.
Short summary
Permafrost thaw releases methane that can be emitted into the atmosphere or transported by Arctic rivers. Methane measurements are lacking in large Arctic river regions. In the Kolyma River (northeast Siberia), we measured dissolved methane to map its distribution with great spatial detail. The river’s edge and river junctions had the highest methane concentrations compared to other river areas. Microbial communities in the river showed that the river’s methane likely is from the adjacent land.
Altmetrics
Final-revised paper
Preprint