Articles | Volume 19, issue 23
https://doi.org/10.5194/bg-19-5483-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-5483-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Greenhouse gas fluxes in mangrove forest soil in an Amazon estuary
Saúl Edgardo Martínez Castellón
Graduate Program in Environmental Sciences, Federal University of
Pará, Belém, Brazil
Biogeochemical Cycles Laboratory, Federal University of Pará,
Belém, Brazil
Graduate Program in Environmental Sciences, Federal University of
Pará, Belém, Brazil
Biogeochemical Cycles Laboratory, Federal University of Pará,
Belém, Brazil
José Francisco Berrêdo
Graduate Program in Environmental Sciences, Federal University of
Pará, Belém, Brazil
Department of Earth Sciences and Ecology, Paraense Emílio Goeldi
Museum, Belém, Brazil
Marcelo Rollnic
Marine Environmental Monitoring Research Laboratory, Federal
University of Pará, Belém, Brazil
Maria de Lourdes Ruivo
Graduate Program in Environmental Sciences, Federal University of
Pará, Belém, Brazil
Department of Earth Sciences and Ecology, Paraense Emílio Goeldi
Museum, Belém, Brazil
Carlos Noriega
Marine Environmental Monitoring Research Laboratory, Federal
University of Pará, Belém, Brazil
Related authors
No articles found.
Fabius Kouogang, Ariane Koch-Larrouy, Jorge Magalhaes, Alex Costa da Silva, Daphne Kerhervé, Arnaud Bertrand, Evan Cervelli, Fernand Assene, Jean-François Ternon, Pierre Rousselot, James Lee, Marcelo Rollnic, and Moacyr Araujo
Ocean Sci., 21, 1589–1608, https://doi.org/10.5194/os-21-1589-2025, https://doi.org/10.5194/os-21-1589-2025, 2025
Short summary
Short summary
New research reveals that ocean mixing off the Amazon coast peaks not only near wave origins but also 230 km offshore, where different wave paths may intersect. This overlap likely forms strong solitary waves that intensify turbulence. Based on the AMAZOMIX-2021 cruise, which collected direct turbulence measurements alongside hydrographic data, the study quantifies dissipation and the relative contributions of tidal shear and large-scale shear. This mixing helps redistribute heat and nutrients, playing a key role in climate regulation and marine ecosystems.
Amine M'hamdi, Ariane Koch-Larrouy, Alex Costa da Silva, Isabelle Dadou, Carina Regina De Macedo, Anthony Bosse, Vincent Vantrepotte, Habib Micaël Aguedjou, Trung-Kien Tran, Pierre Testor, Laurent Mortier, Arnaud Bertrand, Pedro Augusto Mendes de Castro Melo, James Lee, Marcelo Rollnic, and Moacyr Araujo
EGUsphere, https://doi.org/10.5194/egusphere-2025-2141, https://doi.org/10.5194/egusphere-2025-2141, 2025
Short summary
Short summary
In the ocean off the Amazon shelf, internal waves caused by tides shift water layers through advection and mix them through turbulence, altering the deep chlorophyll maximum, a proxy for phytoplankton. Using an autonomous underwater glider and satellite data, we found these waves redistribute chlorophyll vertically, enhancing its supply at the surface and at depth. This redistribution supports ocean productivity and may impact the entire marine food web.
Guilherme F. Camarinha-Neto, Julia C. P. Cohen, Cléo Q. Dias-Júnior, Matthias Sörgel, José Henrique Cattanio, Alessandro Araújo, Stefan Wolff, Paulo A. F. Kuhn, Rodrigo A. F. Souza, Luciana V. Rizzo, and Paulo Artaxo
Atmos. Chem. Phys., 21, 339–356, https://doi.org/10.5194/acp-21-339-2021, https://doi.org/10.5194/acp-21-339-2021, 2021
Short summary
Short summary
It was observed that friagem phenomena (incursion of cold waves from the high latitudes of the Southern Hemisphere to the Amazon region), very common in the dry season of the Amazon region, produced significant changes in microclimate and atmospheric chemistry. Moreover, the effects of the friagem change the surface O3 and CO2 mixing ratios and therefore interfere deeply in the microclimatic conditions and the chemical composition of the atmosphere above the rainforest.
Cited articles
Abram, J. W. and Nedwell, D. B.: Inhibition of methanogenesis by sulphate
reducing bacteria competing for transferred hydrogen, Arch. Microbiol.,
117, 89–92, https://doi.org/10.1007/BF00689356, 1978.
Adame, M. F., Connolly, R. M., Turschwell, M. P., Lovelock, C. E.,
Fatoyinbo, T., Lagomasino, D., Goldberg, L. A., Holdorf, J., Friess, D. A.,
Sasmito, S. D., Sanderman, J., Sievers, M., Buelow, C., Kauffman, J. B.,
Bryan-Brown, D., and Brown, C. J.: Future carbon emissions from global
mangrove forest loss, Glob. Change Biol., 27, 2856–2866,
https://doi.org/10.1111/gcb.15571, 2021.
Allen, D., Dalal, R. C., Rennenberg, H., and Schmidt, S.: Seasonal variation
in nitrous oxide and methane emissions from subtropical estuary and coastal
mangrove sediments, Australia, Plant Biol., 13, 126–133,
https://doi.org/10.1111/j.1438-8677.2010.00331.x, 2011.
Almeida, R. F. de, Mikhael, J. E. R., Franco, F. O., Santana, L. M. F., and
Wendling, B.: Measuring the labile and recalcitrant pools of carbon and
nitrogen in forested and agricultural soils: A study under tropical
conditions, Forests, 10, 544, https://doi.org/10.3390/f10070544, 2019.
Alongi, D. M.: The contribution of mangrove ecosystems to global carbon
cycling and greenhouse gas emissions, in: Greenhouse gas and carbon balances
in mangrove coastal ecosystems, edited by: Tateda, Y., Upstill-Goddard, R.,
Goreau, T., Alongi, D. M., Nose, A., Kristensen, E., and Wattayakorn, G., 1–10,
Gendai Tosho, Kanagawa, Japan, ISBN: 978-4-906666-94-2, 2007.
Alongi, D. M.: The Energetics of Mangrove Forests, Springer Netherlands,
Dordrecht, ISBN: 978-1-4020-4271-3, https://doi.org/10.1007/978-1-4020-4271-3, 2009.
Alongi, D. M. and Christoffersen, P.: Benthic infauna and organism-sediment
relations in a shallow, tropical coastal area: influence of outwelled
mangrove detritus and physical disturbance, Mar. Ecol. Prog. Ser., 81,
229–245, https://doi.org/10.3354/meps081229, 1992.
Alongi, D. M. and Mukhopadhyay, S. K.: Contribution of mangroves to coastal
carbon cycling in low latitude seas, Agr. Forest Meteorol., 213, 266–272,
https://doi.org/10.1016/j.agrformet.2014.10.005, 2015.
Angelov, M. N., Sung, S. J. S., Doong, R. Lou, Harms, W. R., Kormanik, P. P.,
and Black, C. C.: Long-and short-term flooding effects on survival and
sink-source relationships of swamp-adapted tree species, Tree Physiol.,
16, 477–484, https://doi.org/10.1093/treephys/16.5.477, 1996.
Banerjee, S., Helgason, B., Wang, L., Winsley, T., Ferrari, B. C., and
Siciliano, S. D.: Legacy effects of soil moisture on microbial community
structure and N2O emissions, Soil Biol. Biochem., 95, 40–50,
https://doi.org/10.1016/j.soilbio.2015.12.004, 2016.
Barichivich, J., Gloor, E., Peylin, P., Brienen, R. J. W., Schöngart,
J., Espinoza, J. C., and Pattnayak, K. C.: Recent intensification of Amazon
flooding extremes driven by strengthened Walker circulation, Sci. Adv.,
4, https://doi.org/10.1126/sciadv.aat8785, 2018.
Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., and
Enrich-Prast, A.: Freshwater Methane Emissions Offset the Continental Carbon
Sink, Science, 331, 50–50, https://doi.org/10.1126/science.1196808,
2011.
Bauza, J. F., Morell, J. M., and Corredor, J. E.: Biogeochemistry of Nitrous
Oxide Production in the Red Mangrove (Rhizophora mangle) Forest Sediments,
Estuar. Coast. Shelf Sci., 55, 697–704, https://doi.org/10.1006/ECSS.2001.0913,
2002.
Bertics, V. J., Sohm, J. A., Treude, T., Chow, C. E. T., Capone, D. G.,
Fuhrman, J. A., and Ziebis, W.: Burrowing deeper into benthic nitrogen
cycling: The impact of Bioturbation on nitrogen fixation coupled to sulfate
reduction, Mar. Ecol. Prog. Ser., 409, 1–15, https://doi.org/10.3354/meps08639, 2010.
Biswas, H., Mukhopadhyay, S. K., Sen, S., and Jana, T. K.: Spatial and
temporal patterns of methane dynamics in the tropical mangrove dominated
estuary, NE coast of Bay of Bengal, India, J. Mar. Syst., 68, 55–64,
https://doi.org/10.1016/j.jmarsys.2006.11.001, 2007.
Blagodatsky, S. and Smith, P.: Soil physics meets soil biology: Towards
better mechanistic prediction of greenhouse gas emissions from soil, Soil
Biol. Biochem., 47, 78–92, https://doi.org/10.1016/J.SOILBIO.2011.12.015, 2012.
Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F.,
Gleseke, A., Amann, R., Jørgensen, B. B., Witte, U., and Pfannkuche, O.: A
marine microbial consortium apparently mediating anaerobic oxidation
methane, Nature, 407, 623–626, https://doi.org/10.1038/35036572, 2000.
Borges, A. V., Abril, G., Darchambeau, F., Teodoru, C. R., Deborde, J.,
Vidal, L. O., Lambert, T., and Bouillon, S.: Divergent biophysical controls
of aquatic CO2 and CH4 in the World's two largest rivers, Sci. Rep., 5, 1–10,
https://doi.org/10.1038/srep15614, 2015.
Borges, A. V., Abril, G., and Bouillon, S.: Carbon dynamics and CO2 and CH4
outgassing in the Mekong delta, Biogeosciences, 15, 1093–1114,
https://doi.org/10.5194/bg-15-1093-2018, 2018.
Bouillon, S., Borges, A. V., Castañeda-Moya, E., Diele, K., Dittmar, T.,
Duke, N. C., Kristensen, E., Lee, S. Y., Marchand, C., Middelburg, J. J.,
Rivera-Monroy, V. H., Smith, T. J., and Twilley, R. R.: Mangrove production
and carbon sinks: A revision of global budget estimates, Global Biogeochem.
Cy., 22, 1–12, https://doi.org/10.1029/2007GB003052, 2008.
Brookes, P. C., Landman, A., Pruden, G., and Jenkinson, D. S.: Chloroform
fumigation and the release of soil nitrogen: A rapid direct extraction
method to measure microbial biomass nitrogen in soil, Soil Biol. Biochem.,
17, 837–842, https://doi.org/10.1016/0038-0717(85)90144-0, 1985.
Cameron, C., Hutley, L. B., Munksgaard, N. C., Phan, S., Aung, T., Thinn,
T., Aye, W. M., and Lovelock, C. E.: Impact of an extreme monsoon on CO2 and
CH4 fluxes from mangrove soils of the Ayeyarwady Delta, Myanmar, Sci. Total
Environ., 760, 143422, https://doi.org/10.1016/j.scitotenv.2020.143422, 2021.
Castillo, J. A. A., Apan, A. A., Maraseni, T. N., and Salmo, S. G.: Soil
greenhouse gas fluxes in tropical mangrove forests and in land uses on
deforested mangrove lands, Catena, 159, 60–69,
https://doi.org/10.1016/j.catena.2017.08.005, 2017.
Chanda, A., Akhand, A., Manna, S., Dutta, S., Das, I., Hazra, S., Rao, K. H.,
and Dadhwal, V. K.: Measuring daytime CO2 fluxes from the inter-tidal
mangrove soils of Indian Sundarbans, Environ. Earth Sci., 72, 417–427,
https://doi.org/10.1007/s12665-013-2962-2, 2014.
Chauhan, R., Datta, A., Ramanathan, A., and Adhya, T. K.: Factors influencing
spatio-temporal variation of methane and nitrous oxide emission from a
tropical mangrove of eastern coast of India, Atmos. Environ., 107, 95–106,
https://doi.org/10.1016/j.atmosenv.2015.02.006, 2015.
Chen, G. C., Tam, N. F. Y., and Ye, Y.: Spatial and seasonal variations of
atmospheric N2O and CO2 fluxes from a subtropical mangrove swamp and their
relationships with soil characteristics, Soil Biol. Biochem., 48, 175–181,
https://doi.org/10.1016/j.soilbio.2012.01.029, 2012.
Chen, G. C., Ulumuddin, Y. I., Pramudji, S., Chen, S. Y., Chen, B., Ye, Y.,
Ou, D. Y., Ma, Z. Y., Huang, H., and Wang, J. K.: Rich soil carbon and
nitrogen but low atmospheric greenhouse gas fluxes from North Sulawesi
mangrove swamps in Indonesia, Sci. Total Environ., 487, 91–96,
https://doi.org/10.1016/j.scitotenv.2014.03.140, 2014.
Chen, G. C. C., Tam, N. F. Y. F. Y., and Ye, Y.: Summer fluxes of atmospheric
greenhouse gases N2O, CH4 and CO2 from mangrove soil in South China, Sci.
Total Environ., 408, 2761–2767, https://doi.org/10.1016/j.scitotenv.2010.03.007,
2010.
Chowdhury, T. R., Bramer, L., Hoyt, D. W., Kim, Y. M., Metz, T. O., McCue,
L. A., Diefenderfer, H. L., Jansson, J. K., and Bailey, V.: Temporal dynamics
of CO2 and CH4 loss potentials in response to rapid hydrological shifts in
tidal freshwater wetland soils, Ecol. Eng., 114, 104–114,
https://doi.org/10.1016/j.ecoleng.2017.06.041, 2018.
Chuang, P.-C., Young, M. B., Dale, A. W., Miller, L. G., Herrera-Silveira, J. A., and Paytan, A.: Methane and sulfate dynamics in sediments from mangrove-dominated tropical coastal lagoons, Yucatán, Mexico, Biogeosciences, 13, 2981–3001, https://doi.org/10.5194/bg-13-2981-2016, 2016.
Coyne, M.: Soil Microbiology: An Exploratory Approach, Delmar Publishers,
New York, NY, USA, ISBN: 978-0-8273-8434-7, 1999.
Craig, H., Antwis, R. E., Cordero, I., Ashworth, D., Robinson, C. H.,
Osborne, T. Z., Bardgett, R. D., Rowntree, J. K., and Simpson, L. T.:
Nitrogen addition alters composition, diversity, and functioning of
microbial communities in mangrove soils: An incubation experiment, Soil
Biol. Biochem., 153, 108076, https://doi.org/10.1016/j.soilbio.2020.108076, 2021.
Dai, Z., Trettin, C. C., Li, C., Li, H., Sun, G., and Amatya, D. M.: Effect
of Assessment Scale on Spatial and Temporal Variations in CH4, CO2, and N2O
Fluxes in a Forested Wetland, Water Air Soil Pollut., 223, 253–265,
https://doi.org/10.1007/s11270-011-0855-0, 2012.
Davidson, E. A., Verchot, L. V., Cattanio, J. H., Ackerman, I. L., and
Carvalho, J. E. M.: Effects of soil water content on soil respiration in
forests and cattle pastures of eastern Amazonia, Biogeochemistry, 48,
53–69, https://doi.org/10.1023/a:1006204113917, 2000.
de Araujo, A. S. F. : Is the microwave irradiation a suitable method for
measuring soil microbial biomass?, Rev. Environ. Sci. Biotechnol., 9,
317–321, https://doi.org/10.1007/s11157-010-9210-y, 2010.
Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M.,
and Kanninen, M.: Mangroves among the most carbon-rich forests in the
tropics, Nat. Geosci., 4, 293–297, https://doi.org/10.1038/ngeo1123, 2011.
Dutta, M. K., Chowdhury, C., Jana, T. K., and Mukhopadhyay, S. K.: Dynamics
and exchange fluxes of methane in the estuarine mangrove environment of the
Sundarbans, NE coast of India, Atmos. Environ., 77, 631–639,
https://doi.org/10.1016/j.atmosenv.2013.05.050, 2013.
Ehrenfeld, J. G.: Microsite differences in surface substrate characteristics
in Chamaecyparis swamps of the New Jersey Pinelands, Wetlands, 15,
183–189, https://doi.org/10.1007/BF03160672, 1995.
El-Robrini, M., Alves, M. A. M. S., Souza Filho, P. W. M., El-Robrini M. H.
S., Silva Júnior, O. G., and França, C. F.: Atlas de Erosão e
Progradação da zona costeira do Estado do Pará – Região
Amazônica: Áreas oceânica e estuarina, in: Atlas de Erosão e
Progradação da Zona Costeira Brasileira, edited by: Muehe, D.,
11–41, São Paulo, https://www.mma.gov.br/estruturas/ (last access: 25 February 2021), 2006.
EMBRAPA (EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA): Manual de métodos de análise de solo, 2ºed., Rio de Janeiro, Centro Nacional de Pesquisa de Solos, 212 pp., 1997.
EPA (U.S. Environmental Protection Agency): Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2015, https://www.epa.gov/sites/default/files/ (last access: 11 June 2021), 2017.
Fernandes, W. A. A. and Pimentel, M. A. da S.: Dinâmica da paisagem no
entorno da RESEX marinha de São João da Ponta/PA: utilização
de métricas e geoprocessamento, Caminhos Geogr., 20, 326–344,
https://doi.org/10.14393/RCG207247140, 2019.
Ferreira, A. S., Camargo, F. A. O., and Vidor, C.: Utilização de
microondas na avaliação da biomassa microbiana do solo, Rev. Bras.
Ciência do Solo, 23, 991–996, https://doi.org/10.1590/S0100-06831999000400026,
1999.
Ferreira, S. da S.: Entre marés e mangues: paisagens territorializadas
por pescadores da resex marinha de São João da Ponta (PA), Federal
University of Pará, Ph.D. thesis, Federal University of Pará, Brazil, 132 pp., 2017.
França, C. F. de, Pimentel, M. A. D. S., and Neves, S. C. R.: Estrutura
Paisagística De São João Da Ponta, Nordeste Do Pará, Geogr.
Ensino Pesqui., 20, 130–142, https://doi.org/10.5902/2236499418331, 2016.
Frankignoulle, M.: Field measurements of air-sea CO2 exchange, Limnol.
Oceanogr., 33, 313–322, 1988.
Friesen, S. D., Dunn, C., and Freeman, C.: Decomposition as a regulator of
carbon accretion in mangroves: a review, Ecol. Eng., 114, 173–178,
https://doi.org/10.1016/j.ecoleng.2017.06.069, 2018.
Fromard, F., Puig, H., Cadamuro, L., Marty, G., Betoulle, J. L., and Mougin,
E.: Structure, above-ground biomass and dynamics of mangrove ecosystems: new
data from French Guiana, Oecologia, 115, 39–53,
https://doi.org/10.1007/s004420050489, 1998.
Gao, G. F., Zhang, X. M., Li, P. F., Simon, M., Shen, Z. J., Chen, J., Gao,
C. H., and Zheng, H. L.: Examining Soil Carbon Gas (CO2, CH4) Emissions and
the Effect on Functional Microbial Abundances in the Zhangjiang Estuary
Mangrove Reserve, J. Coast. Res., 36, 54–62,
https://doi.org/10.2112/JCOASTRES-D-18-00107.1, 2020.
Gardunho, D. C. L.: Estimativas de biomassa acima do solo da floresta de
mangue na península de Ajuruteua, Bragança – PA, Ph.D. thesis, Federal
University of Pará, Belém, Brazil, 130 pp., 2017.
Hamilton, S. E. and Friess, D. A.: Global carbon stocks and potential
emissions due to mangrove deforestation from 2000 to 2012, Nat. Clim.
Chang., 8, 240–244, https://doi.org/10.1038/s41558-018-0090-4, 2018.
He, Y., Guan, W., Xue, D., Liu, L., Peng, C., Liao, B., Hu, J., Zhu, Q.,
Yang, Y., Wang, X., Zhou, G., Wu, Z., and Chen, H.: Comparison of methane
emissions among invasive and native mangrove species in Dongzhaigang, Hainan
Island, Sci. Total Environ., 697, 133945,
https://doi.org/10.1016/j.scitotenv.2019.133945, 2019.
Hegde, U., Chang, T.-C., and Yang, S.-S.: Methane and carbon dioxide
emissions from Shan-Chu-Ku landfill site in northern Taiwan, Chemosphere,
52, 1275–1285, https://doi.org/10.1016/S0045-6535(03)00352-7, 2003.
Howard, J., Hoyt, S., Isensee, K., Telszewski, M., and Pidgeon, E.: Coastal
Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in
Mangroves, Tidal Salt Marshes, and Seagrasses, edited by: Howard, J., Hoyt, S.,
Isensee, K., Telszewski, M., and Pidgeon, E., International Union for
Conservation of Nature, Arlington, Virginia, USA,
http://www.cifor.org/publications/pdf_files/Books/BMurdiyarso1401.pdf (last access: 11 September 2019), 2014.
IPCC: Impacts, Adaptation and Vulnerability, Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by: McCarthy, J. J., Canziani, O. F., Leary, N. A., Dokken, D. J. and White, K. S., University Press, Cambridge, UK, and New York, USA, p. 1032, ISBN 0-521-01500-6, 2001.
Islam, K. R. and Weil, R. R.: Microwave irradiation of soil for routine
measurement of microbial biomass carbon, Biol. Fertil. Soils, 27,
408–416, https://doi.org/10.1007/s003740050451, 1998.
Kalembasa, S. J. and Jenkinson, D. S.: A comparative study of titrimetric
and gavimetric methods for determination of organic carbon in soil, J. Sci.
Food Agric., 24, 1085–1090, 1973.
Kauffman, B. J., Donato, D., and Adame, M. F.: Protocolo para la
medición, monitoreo y reporte de la estructura, biomasa y reservas de
carbono de los manglares, Bogor, Indonesia, https://doi.org/10.17528/cifor/004386, 2013.
Kauffman, J. B., Bernardino, A. F., Ferreira, T. O., Giovannoni, L. R., de
O. Gomes, L. E., Romero, D. J., Jimenez, L. C. Z., and Ruiz, F.: Carbon
stocks of mangroves and salt marshes of the Amazon region, Brazil, Biol.
Lett., 14, 20180208, https://doi.org/10.1098/rsbl.2018.0208, 2018.
Kreuzwieser, J., Buchholz, J., and Rennenberg, H.: Emission of Methane and
Nitrous Oxide by Australian Mangrove Ecosystems, Plant Biol., 5,
423–431, https://doi.org/10.1055/s-2003-42712, 2003.
Kristensen, E., Bouillon, S., Dittmar, T., and Marchand, C.: Organic carbon
dynamics in mangrove ecosystems: A review, Aquat. Bot., 89, 201–219,
https://doi.org/10.1016/J.AQUABOT.2007.12.005, 2008.
Kristjansson, J. K., Schönheit, P., and Thauer, R. K.: Different Ks
values for hydrogen of methanogenic bacteria and sulfate reducing bacteria:
An explanation for the apparent inhibition of methanogenesis by sulfate,
Arch. Microbiol., 131, 278–282, https://doi.org/10.1007/BF00405893, 1982.
Lekphet, S., Nitisoravut, S., and Adsavakulchai, S.: Estimating methane
emissions from mangrove area in Ranong Province, Thailand, Songklanakarin, J. Sci. Technol., 27, 153–163, 2005.
Maher, D. T., Call, M., Santos, I. R., and Sanders, C. J.: Beyond burial:
Lateral exchange is a significant atmospheric carbon sink in mangrove
forests, Biol. Lett., 14, 1–4, https://doi.org/10.1098/rsbl.2018.0200, 2018.
Mahesh, P., Sreenivas, G., Rao, P. V. N. N., Dadhwal, V. K., Sai Krishna, S.
V. S. S., and Mallikarjun, K.: High-precision surface-level CO2 and CH4 using
off-axis integrated cavity output spectroscopy (OA-ICOS) over Shadnagar,
India, Int. J. Remote Sens., 36, 5754–5765,
https://doi.org/10.1080/01431161.2015.1104744, 2015.
Marchand, C.: Soil carbon stocks and burial rates along a mangrove forest
chronosequence (French Guiana), Forest Ecol. Manage., 384, 92–99,
https://doi.org/10.1016/j.foreco.2016.10.030, 2017.
McEwing, K. R., Fisher, J. P., and Zona, D.: Environmental and vegetation
controls on the spatial variability of CH4 emission from wet-sedge and
tussock tundra ecosystems in the Arctic, Plant Soil, 388, 37–52,
https://doi.org/10.1007/s11104-014-2377-1, 2015.
Megonigal, J. P. and Schlesinger, W. H.: Methane-limited methanotrophy in
tidal freshwater swamps, Global Biogeochem. Cy., 16, 35-1–35-10,
https://doi.org/10.1029/2001GB001594, 2002.
Menezes, M. P. M. de, Berger, U., and Mehlig, U.: Mangrove vegetation in
Amazonia: a review of studies from the coast of Pará and Maranhão
States , north Brazil, Acta Amaz., 38, 403–420,
https://doi.org/10.1590/S0044-59672008000300004, 2008.
Milucka, J., Kirf, M., Lu, L., Krupke, A., Lam, P., Littmann, S., Kuypers,
M. M. M., and Schubert, C. J.: Methane oxidation coupled to oxygenic
photosynthesis in anoxic waters, ISME J., 9, 1991–2002,
https://doi.org/10.1038/ismej.2015.12, 2015.
Monz, C. A., Reuss, D. E., and Elliott, E. T.: Soil microbial biomass carbon
and nitrogen estimates using 2450 MHz microwave irradiation or chloroform
fumigation followed by direct extraction, Agric. Ecosyst. Environ.,
34, 55–63, https://doi.org/10.1016/0167-8809(91)90093-D, 1991.
Neubauer, S. C. and Megonigal, J. P.: Moving Beyond Global Warming
Potentials to Quantify the Climatic Role of Ecosystems, Ecosystems, 18,
1000–1013, 2015.
Nóbrega, G. N., Ferreira, T. O., Siqueira Neto, M., Queiroz, H. M.,
Artur, A. G., Mendonça, E. D. S., Silva, E. D. O., and Otero, X. L.:
Edaphic factors controlling summer (rainy season) greenhouse gas emissions
(CO2 and CH4) from semiarid mangrove soils (NE-Brazil), Sci. Total Environ.,
542, 685–693, https://doi.org/10.1016/j.scitotenv.2015.10.108, 2016.
Norman, J. M., Kucharik, C. J., Gower, S. T., Baldocchi, D. D., Crill, P.
M., Rayment, M., Savage, K., and Striegl, R. G.: A comparison of six methods
for measuring soil-surface carbon dioxide fluxes, J. Geophys. Res.-Atmos.,
102, 28771–28777, https://doi.org/10.1029/97JD01440, 1997.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Poffenbarger, H. J., Needelman, B. A., and Megonigal, J. P.: Salinity
Influence on Methane Emissions from Tidal Marshes, Wetlands, 31,
831–842, https://doi.org/10.1007/s13157-011-0197-0, 2011.
Prost, M. T., Mendes, A. C., Faure, J. F., Berredo, J. F., Sales, M. E. .,
Furtado, L. G., Santana, M. G., Silva, C. A., Nascimento, I., Gorayeb, I.,
Secco, M. F., and Luz, L.: Manguezais e estuários da costa paraense:
exemplo de estudo multidisciplinar integrado (Marapanim e São Caetano de
Odivelas), in: Ecossistemas Costeiros: Impactos e Gestão Ambiental,
edited by: Prost, M. T. and Mendes, A., 25–52, FUNTEC and Paraense Museum
“Emílio Goeldi,” Belém, Brazil, 2001.
Purvaja, R. and Ramesh, R.: Natural and Anthropogenic Methane Emission from
Coastal Wetlands of South India, Environ. Manage., 27, 547–557,
https://doi.org/10.1007/s002670010169, 2001.
Purvaja, R., Ramesh, R., and Frenzel, P.: Plant-mediated methane emission
from an Indian mangrove, Glob. Chang. Biol., 10, 1825–1834,
https://doi.org/10.1111/j.1365-2486.2004.00834.x, 2004.
Reeburgh, W. S.: Oceanic Methane Biogeochemistry, Chem. Rev., 2, 486–513,
https://doi.org/10.1021/cr050362v, 2007.
Robertson, A. I., Alongi, D. M., and Boto, K. G.: Food chains and carbon
fluxes, in Coastal and Estuarine Studies, edited by: Robertson, A. I. and Alongi, D.
M., 293–326, American Geophysical Union, ISBN 0-8790-255-3, 1992.
Rocha, A. S.: Caracterização física do estuário do rio
Mojuim em São Caetano de Odivelas – PA, Federal University of Pará, http://repositorio.ufpa.br/jspui/handle/2011/11390 (last access: 16 January 2019),
2015.
Rollnic, M., Costa, M. S., Medeiros, P. R. L., and Monteiro, S. M.: Tide
Influence on Suspended Matter Transport in an Amazonian Estuary, J. Coast.
Res., 85, 121–125, https://doi.org/10.2112/SI85-025.1, 2018.
Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. H., and Eyre, B.
D.: Methane emissions partially offset “blue carbon” burial in mangroves,
Sci. Adv., 4, 1–11, https://doi.org/10.1126/sciadv.aao4985, 2018a.
Rosentreter, J. A., Maher, D. . T., Erler, D. V. V., Murray, R., and Eyre, B.
D. D.: Seasonal and temporal CO2 dynamics in three tropical mangrove creeks
– A revision of global mangrove CO2 emissions, Geochim. Cosmochim. Acta,
222, 729–745, https://doi.org/10.1016/j.gca.2017.11.026, 2018b.
Roslev, P. and King, G. M.: Regulation of methane oxidation in a freshwater
wetland by water table changes and anoxia, FEMS Microbiol. Ecol., 19,
105–115, https://doi.org/10.1111/j.1574-6941.1996.tb00203.x, 1996.
Sahu, S. K. and Kathiresan, K.: The age and species composition of mangrove
forest directly influence the net primary productivity and carbon
sequestration potential, Biocatal. Agric. Biotechnol., 20, 101235,
https://doi.org/10.1016/j.bcab.2019.101235, 2019.
Salum, R. B., Souza-Filho, P. W. M., Simard, M., Silva, C. A., Fernandes, M.
E. B., Cougo, M. F., do Nascimento, W., and Rogers, K.: Improving mangrove
above-ground biomass estimates using LiDAR, Estuar. Coast. Shelf Sci., 236,
106585, https://doi.org/10.1016/j.ecss.2020.106585, 2020.
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G.,
Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.
A. C., Nannipieri, P., Rasse, D. P., Weiner, S., and Trumbore, S. E.:
Persistence of soil organic matter as an ecosystem property, Nature,
478, 49–56, https://doi.org/10.1038/nature10386, 2011.
Segarra, K. E. A., Schubotz, F., Samarkin, V., Yoshinaga, M. Y., Hinrichs,
K. U., and Joye, S. B.: High rates of anaerobic methane oxidation in
freshwater wetlands reduce potential atmospheric methane emissions, Nat.
Commun., 6, 1–8, https://doi.org/10.1038/ncomms8477, 2015.
Shiau, Y.-J. and Chiu, C.-Y.: Biogeochemical Processes of C and N in the
Soil of Mangrove Forest Ecosystems, Forests, 11, 492,
https://doi.org/10.3390/f11050492, 2020.
Shiau, Y. J., Cai, Y., Lin, Y. Te, Jia, Z., and Chiu, C. Y.: Community
Structure of Active Aerobic Methanotrophs in Red Mangrove (Kandelia obovata)
Soils Under Different Frequency of Tides, Microb. Ecol., 75, 761–770,
https://doi.org/10.1007/s00248-017-1080-1, 2018.
Sihi, D., Davidson, E. A., Chen, M., Savage, K. E., Richardson, A. D.,
Keenan, T. F., and Hollinger, D. Y.: Merging a mechanistic enzymatic model of
soil heterotrophic respiration into an ecosystem model in two AmeriFlux
sites of northeastern USA, Agr. Forest Meteorol., 252, 155–166,
https://doi.org/10.1016/J.AGRFORMET.2018.01.026, 2018.
Souza Filho, P. W. M.: Costa de manguezais de macromaré da Amazônia:
cenários morfológicos, mapeamento e quantificação de
áreas usando dados de sensores remotos, Rev. Bras. Geofísica,
23, 427–435, https://doi.org/10.1590/S0102-261X2005000400006, 2005.
Sparling, G. P. and West, A. W.: A direct extraction method to estimate soil
microbial C: calibration in situ using microbial respiration and 14C
labelled cells, Soil Biol. Biochem., 20, 337–343,
https://doi.org/10.1016/0038-0717(88)90014-4, 1988.
Sundqvist, E., Vestin, P., Crill, P., Persson, T., and Lindroth, A.:
Short-term effects of thinning, clear-cutting and stump harvesting on
methane exchange in a boreal forest, Biogeosciences, 11, 6095–6105,
https://doi.org/10.5194/bg-11-6095-2014, 2014.
Valentim, M., Monteiro, S., and Rollnic, M.: The Influence of Seasonality on
Haline Zones in An Amazonian Estuary, J. Coast. Res., 85, 76–80,
https://doi.org/10.2112/SI85-016.1, 2018.
Valentine, D. L.: Emerging Topics in Marine Methane Biogeochemistry, Ann.
Rev. Mar. Sci., 3, 147–171, https://doi.org/10.1146/annurev-marine-120709-142734,
2011.
Vance, E. D., Brookes, P. C., and Jenkinson, D. S.: An extraction method for
measuring soil microbial biomass C, Soil Biol. Biochem., 19, 703–707,
https://doi.org/10.1016/0038-0717(87)90052-6, 1987.
Verchot, L. V., Davidson, E. A., Cattânio, J. H., and Ackerman, I. L.:
Land-use change and biogeochemical controls of methane fluxes in soils of
eastern Amazonia, Ecosystems, 3, 41–56, https://doi.org/10.1007/s100210000009, 2000.
Wang, X., Zhong, S., Bian, X., and Yu, L.: Impact of 2015–2016 El Niño
and 2017–2018 La Niña on PM2.5 concentrations across China, Atmos.
Environ., 208, 61–73, https://doi.org/10.1016/J.ATMOSENV.2019.03.035, 2019.
Whalen, S. C.: Biogeochemistry of Methane Exchange between Natural Wetlands
and the Atmosphere, Environ. Eng. Sci., 22, 73–94,
https://doi.org/10.1089/ees.2005.22.73, 2005.
Xu, X., Elias, D. A., Graham, D. E., Phelps, T. J., Carroll, S. L.,
Wullschleger, S. D., and Thornton, P. E.: A microbial functional group-based
module for simulating methane production and consumption: Application to an
incubated permafrost soil, J. Geophys. Res.-Biogeo., 120,
1315–1333, https://doi.org/10.1002/2015JG002935, 2015.
Short summary
We seek to understand the influence of climatic seasonality and microtopography on CO2 and CH4 fluxes in an Amazonian mangrove. Topography and seasonality had a contrasting influence when comparing the two gas fluxes: CO2 fluxes were greater in high topography in the dry period, and CH4 fluxes were greater in the rainy season in low topography. Only CO2 fluxes were correlated with soil organic matter, the proportion of carbon and nitrogen, and redox potential.
We seek to understand the influence of climatic seasonality and microtopography on CO2 and CH4...
Altmetrics
Final-revised paper
Preprint