Articles | Volume 19, issue 3
https://doi.org/10.5194/bg-19-585-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-585-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Distribution of coccoliths in surface sediments across the Drake Passage and calcification of Emiliania huxleyi morphotypes
Nele Manon Vollmar
CORRESPONDING AUTHOR
Department of Geosciences, University of Bremen, P.O. Box 33 04 40, 28334 Bremen, Germany
Karl-Heinz Baumann
Department of Geosciences, University of Bremen, P.O. Box 33 04 40, 28334 Bremen, Germany
Mariem Saavedra-Pellitero
School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
Iván Hernández-Almeida
Geological Institute, Department of Earth Science, ETH Zurich, Sonneggstrasse 5, 8092, Zurich, Switzerland
Related authors
Mariem Saavedra-Pellitero, Karl-Heinz Baumann, Nuria Bachiller-Jareno, Harold Lovell, Nele Manon Vollmar, and Elisa Malinverno
Biogeosciences, 22, 3143–3164, https://doi.org/10.5194/bg-22-3143-2025, https://doi.org/10.5194/bg-22-3143-2025, 2025
Short summary
Short summary
This study combines micropaleontology and satellite remote sensing to investigate particulate inorganic carbon in the Pacific sector of the Southern Ocean. We compare estimates of calcium carbonate produced by coccolithophores (tiny marine algae) to satellite measurements of particulate inorganic carbon. Both datasets show good agreement north of the Polar Front, but large differences are observed to the south of it, likely because of highly reflective small opal particles in this zone.
Madeleine Santos, Lisa Bröder, Matt O'Regan, Iván Hernández-Almeida, Tommaso Tesi, Lukas Bigler, Negar Haghipour, Daniel B. Nelson, Michael Fritz, and Julie Lattaud
EGUsphere, https://doi.org/10.5194/egusphere-2025-3953, https://doi.org/10.5194/egusphere-2025-3953, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Our study examined how sea ice in the Beaufort Sea has changed over the past 13,000 years to better understand today’s rapid losses. By analyzing chemical tracers preserved in seafloor sediments, we found that the Early Holocene was largely ice-free, with warmer waters and lower salinity. Seasonal ice began forming about 7,000 years ago and expanded as the climate cooled. These long-term patterns show that continued warming could return the region to mostly ice-free conditions.
Mariem Saavedra-Pellitero, Karl-Heinz Baumann, Nuria Bachiller-Jareno, Harold Lovell, Nele Manon Vollmar, and Elisa Malinverno
Biogeosciences, 22, 3143–3164, https://doi.org/10.5194/bg-22-3143-2025, https://doi.org/10.5194/bg-22-3143-2025, 2025
Short summary
Short summary
This study combines micropaleontology and satellite remote sensing to investigate particulate inorganic carbon in the Pacific sector of the Southern Ocean. We compare estimates of calcium carbonate produced by coccolithophores (tiny marine algae) to satellite measurements of particulate inorganic carbon. Both datasets show good agreement north of the Polar Front, but large differences are observed to the south of it, likely because of highly reflective small opal particles in this zone.
Lukas Jonkers, Tonke Strack, Montserrat Alonso-Garcia, Simon D'haenens, Robert Huber, Michal Kucera, Iván Hernández-Almeida, Chloe L. C. Jones, Brett Metcalfe, Rajeev Saraswat, Lóránd Silye, Sanjay K. Verma, Muhamad Naim Abd Malek, Gerald Auer, Cátia F. Barbosa, Maria A. Barcena, Karl-Heinz Baumann, Flavia Boscolo-Galazzo, Joeven Austine S. Calvelo, Lucilla Capotondi, Martina Caratelli, Jorge Cardich, Humberto Carvajal-Chitty, Markéta Chroustová, Helen K. Coxall, Renata M. de Mello, Anne de Vernal, Paula Diz, Kirsty M. Edgar, Helena L. Filipsson, Ángela Fraguas, Heather L. Furlong, Giacomo Galli, Natalia L. García Chapori, Robyn Granger, Jeroen Groeneveld, Adil Imam, Rebecca Jackson, David Lazarus, Julie Meilland, Marína Molčan Matejová, Raphael Morard, Caterina Morigi, Sven N. Nielsen, Diana Ochoa, Maria Rose Petrizzo, Andrés S. Rigual-Hernández, Marina C. Rillo, Matthew L. Staitis, Gamze Tanık, Raúl Tapia, Nishant Vats, Bridget S. Wade, and Anna E. Weinmann
J. Micropalaeontol., 44, 145–168, https://doi.org/10.5194/jm-44-145-2025, https://doi.org/10.5194/jm-44-145-2025, 2025
Short summary
Short summary
Our study provides guidelines improving the reuse of marine microfossil assemblage data, which are valuable for understanding past ecosystems and environmental change. Based on a survey of 113 researchers, we identified key data attributes required for effective reuse. Analysis of a selection of datasets available online reveals a gap between the attributes scientists consider essential and the data currently available, highlighting the need for clearer data documentation and sharing practices.
Pauline Cornuault, Luc Beaufort, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
EGUsphere, https://doi.org/10.5194/egusphere-2025-198, https://doi.org/10.5194/egusphere-2025-198, 2025
Short summary
Short summary
We present new high-resolution data of the relative contribution of the two main pelagic carbonate producers (coccoliths and foraminifera) to the total pelagic carbonate production from the tropical Atlantic in past warm periods since the Miocene. Our findings suggests that the two groups responded differently to orbital forcing and oceanic changes in tropical ocean, but their proportion changes did not drive the changes in overall pelagic carbonate deposition.
Yuji Kato, Iván Hernández-Almeida, and Lara F. Pérez
J. Micropalaeontol., 43, 93–119, https://doi.org/10.5194/jm-43-93-2024, https://doi.org/10.5194/jm-43-93-2024, 2024
Short summary
Short summary
In this study, we propose an age framework for an interval of 4.8–3.1 million years ago, using fossil records of marine plankton such as diatoms and radiolarians derived from a sediment core collected in the Southern Ocean. Specifically, a total of 19 bioevents (i.e., extinction/appearance events of selected age marker species) were detected, and their precise ages were calculated. The updated biostratigraphy will contribute to future paleoceanographic work in the Southern Ocean.
Heather M. Stoll, Leopoldo D. Pena, Ivan Hernandez-Almeida, José Guitián, Thomas Tanner, and Heiko Pälike
Clim. Past, 20, 25–36, https://doi.org/10.5194/cp-20-25-2024, https://doi.org/10.5194/cp-20-25-2024, 2024
Short summary
Short summary
The Oligocene and early Miocene periods featured dynamic glacial cycles on Antarctica. In this paper, we use Sr isotopes in marine carbonate sediments to document a change in the location and intensity of continental weathering during short periods of very intense Antarctic glaciation. Potentially, the weathering intensity of old continental rocks on Antarctica was reduced during glaciation. We also show improved age models for correlation of Southern Ocean and North Atlantic sediments.
Amanda Gerotto, Hongrui Zhang, Renata Hanae Nagai, Heather M. Stoll, Rubens César Lopes Figueira, Chuanlian Liu, and Iván Hernández-Almeida
Biogeosciences, 20, 1725–1739, https://doi.org/10.5194/bg-20-1725-2023, https://doi.org/10.5194/bg-20-1725-2023, 2023
Short summary
Short summary
Based on the analysis of the response of coccolithophores’ morphological attributes in a laboratory dissolution experiment and surface sediment samples from the South China Sea, we proposed that the thickness shape (ks) factor of fossil coccoliths together with the normalized ks variation, which is the ratio of the standard deviation of ks (σ) over the mean ks (σ/ks), is a robust and novel proxy to reconstruct past changes in deep ocean carbon chemistry.
Paula Diz, Víctor González-Guitián, Rita González-Villanueva, Aida Ovejero, and Iván Hernández-Almeida
Earth Syst. Sci. Data, 15, 697–722, https://doi.org/10.5194/essd-15-697-2023, https://doi.org/10.5194/essd-15-697-2023, 2023
Short summary
Short summary
Benthic foraminifera are key components of the ocean benthos and marine sediments. Determining their geographic distribution is highly relevant for improving our understanding of the recent and past ocean benthic ecosystem and establishing adequate conservation strategies. Here, we contribute to this knowledge by generating an open-access database of previously documented quantitative data of benthic foraminifera species from surface sediments of the eastern Pacific (BENFEP).
Pauline Cornuault, Thomas Westerhold, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
Biogeosciences, 20, 597–618, https://doi.org/10.5194/bg-20-597-2023, https://doi.org/10.5194/bg-20-597-2023, 2023
Short summary
Short summary
We generated high-resolution records of carbonate accumulation rate from the Miocene to the Quaternary in the tropical Atlantic Ocean to characterize the variability in pelagic carbonate production during warm climates. It follows orbital cycles, responding to local changes in tropical conditions, as well as to long-term shifts in climate and ocean chemistry. These changes were sufficiently large to play a role in the carbon cycle and global climate evolution.
Jessica G. M. Crumpton-Banks, Thomas Tanner, Ivan Hernández Almeida, James W. B. Rae, and Heather Stoll
Biogeosciences, 19, 5633–5644, https://doi.org/10.5194/bg-19-5633-2022, https://doi.org/10.5194/bg-19-5633-2022, 2022
Short summary
Short summary
Past ocean carbon is reconstructed using proxies, but it is unknown whether preparing ocean sediment for one proxy might damage the data given by another. We have tested whether the extraction of an organic proxy archive from sediment samples impacts the geochemistry of tiny shells also within the sediment. We find no difference in shell geochemistry between samples which come from treated and untreated sediment. This will help us to maximize scientific return from valuable sediment samples.
José Guitián, Miguel Ángel Fuertes, José-Abel Flores, Iván Hernández-Almeida, and Heather Stoll
Biogeosciences, 19, 5007–5019, https://doi.org/10.5194/bg-19-5007-2022, https://doi.org/10.5194/bg-19-5007-2022, 2022
Short summary
Short summary
The effect of environmental conditions on the degree of calcification of marine phytoplankton remains unclear. This study implements a new microscopic approach to quantify the calcification of ancient coccolithophores, using North Atlantic sediments. Results show significant differences in the thickness and shape factor of coccoliths for samples with minimum dissolution, providing the first evaluation of phytoplankton physiology adaptation to million-year-scale variable environmental conditions.
Gerhard Fischer, Oscar E. Romero, Johannes Karstensen, Karl-Heinz Baumann, Nasrollah Moradi, Morten Iversen, Götz Ruhland, Marco Klann, and Arne Körtzinger
Biogeosciences, 18, 6479–6500, https://doi.org/10.5194/bg-18-6479-2021, https://doi.org/10.5194/bg-18-6479-2021, 2021
Short summary
Short summary
Low-oxygen eddies in the eastern subtropical North Atlantic can form an oasis for phytoplankton growth. Here we report on particle flux dynamics at the oligotrophic Cape Verde Ocean Observatory. We observed consistent flux patterns during the passages of low-oxygen eddies. We found distinct flux peaks in late winter, clearly exceeding background fluxes. Our findings suggest that the low-oxygen eddies sequester higher organic carbon than expected for oligotrophic settings.
Catarina Cavaleiro, Antje H. L. Voelker, Heather Stoll, Karl-Heinz Baumann, and Michal Kucera
Clim. Past, 16, 2017–2037, https://doi.org/10.5194/cp-16-2017-2020, https://doi.org/10.5194/cp-16-2017-2020, 2020
Cited articles
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA [data set], https://doi.org/10.7289/V5C8276M, 2009. a
Andruleit, H.: A Filtration Technique for Quantitative Studies of
Coccoliths, Micropaleontology, 42, 403–406, https://doi.org/10.2307/1485964, 1996. a, b
Balch, W. M., Drapeau, D. T., Bowler, B. C., Lyczskowski, E., Booth, E. S., and
Alley, D.: The Contribution of Coccolithophores to the Optical and Inorganic
Carbon Budgets during the Southern Ocean Gas Exchange Experiment: New
Evidence in Support of the “Great Calcite Belt” Hypothesis, J.
Geophys. Res.-Oceans, 116, C00F06, https://doi.org/10.1029/2011JC006941, 2011. a, b
Balch, W. M., Drapeau, D. T., Bowler, B. C., Lyczkowski, E. R., Lubelczyk,
L. C., Painter, S. C., and Poulton, A. J.: Surface Biological, Chemical, and
Optical Properties of the Patagonian Shelf Coccolithophore Bloom, the
Brightest Waters of the Great Calcite Belt, Limnol. Oceanogr.,
59, 1715–1732, https://doi.org/10.4319/lo.2014.59.5.1715, 2014. a
Balch, W. M., Bates, N. R., Lam, P. J., Twining, B. S., Rosengard, S. Z.,
Bowler, B. C., Drapeau, D. T., Garley, R., Lubelczyk, L. C., Mitchell, C.,
and Rauschenberg, S.: Factors Regulating the Great Calcite Belt in the
Southern Ocean and Its Biogeochemical Significance, Global Biogeochem.
Cy., 30, 1124–1144, https://doi.org/10.1002/2016GB005414, 2016. a, b, c
Balestra, B., Ziveri, P., Monechi, S., and Troelstra, S.: Coccolithophorids
from the Southeast Greenland Margin (Northern North Atlantic):
Production, Ecology and the Surface Sediment Record, Micropaleontology, 50,
23–34, https://doi.org/10.2113/50.Suppl_1.23, 2004. a
Baumann, K.-H., Andruleit, H., and Samtleben, C.: Coccolithophores in the
Nordic Seas: Comparison of Living Communities with Surface Sediment
Assemblages, Deep-Sea Res. Pt. II, 47,
1743–1772, https://doi.org/10.1016/S0967-0645(00)00005-9, 2000. a, b
Baumann, K.-H., Saavedra-Pellitero, M., Böckel, B., and Ott, C.:
Morphometry, Biogeography and Ecology of Calcidiscus and
Umbilicosphaera in the South Atlantic, Revue de Micropaléontologie,
59, 239–251, https://doi.org/10.1016/j.revmic.2016.03.001, 2016. a, b
Beaufort, L.: Weight Estimates of Coccoliths Using the Optical
Properties (Birefringence) of Calcite, Micropaleontology, 51,
289–297, 2005. a
Beaufort, L., Couapel, M., Buchet, N., Claustre, H., and Goyet, C.: Calcite production by coccolithophores in the south east Pacific Ocean, Biogeosciences, 5, 1101–1117, https://doi.org/10.5194/bg-5-1101-2008, 2008. a
Beaufort, L., Probert, I., de Garidel-Thoron, T., Bendif, E. M., Ruiz-Pino,
D., Metzl, N., Goyet, C., Buchet, N., Coupel, P., Grelaud, M., Rost, B.,
Rickaby, R. E. M., and de Vargas, C.: Sensitivity of Coccolithophores to
Carbonate Chemistry and Ocean Acidification, Nature, 476, 80–83,
https://doi.org/10.1038/nature10295, 2011. a, b
Bednaršek, N., Tarling, G. A., Bakker, D. C. E., Fielding, S., Jones,
E. M., Venables, H. J., Ward, P., Kuzirian, A., Lézé, B., Feely,
R. A., and Murphy, E. J.: Extensive Dissolution of Live Pteropods in the
Southern Ocean, Nat. Geosci., 5, 881–885, https://doi.org/10.1038/ngeo1635,
2012. a
Beuvier, T., Probert, I., Beaufort, L., Suchéras-Marx, B., Chushkin, Y.,
Zontone, F., and Gibaud, A.: X-Ray Nanotomography of Coccolithophores Reveals
That Coccolith Mass and Segment Number Correlate with Grid Size, Nat.
Commun., 10, 1–8, https://doi.org/10.1038/s41467-019-08635-x, 2019. a, b, c, d, e, f, g, h, i
Blanco-Ameijeiras, S., Lebrato, M., M. Stoll, H., Iglesias-Rodriguez, D.,
Müller, M., Méndez Vicente, A., and Oschlies, A.: Phenotypic
Variability in the Coccolithophore Emiliania Huxleyi, PLOS ONE, 11,
e0157697, https://doi.org/10.1371/journal.pone.0157697, 2016. a
Bostock, H. C., Mikaloff Fletcher, S. E., and Williams, M. J. M.: Estimating carbonate parameters from hydrographic data for the intermediate and deep waters of the Southern Hemisphere oceans, Biogeosciences, 10, 6199–6213, https://doi.org/10.5194/bg-10-6199-2013, 2013. a, b
Buiteveld, H.: A Model for Calculation of Diffuse Light Attenuation (PAR)
and Secchi Depth, Netherlands Journal of Aquatic Ecology, 29, 55–65,
https://doi.org/10.1007/BF02061789, 1995. a
Buttigieg, P. L. and Ramette, A.: A Guide to Statistical Analysis in Microbial
Ecology: A Community-Focused, Living Review of Multivariate Data Analyses,
FEMS Microbiol. Ecol., 90, 543–550, https://doi.org/10.1111/1574-6941.12437, 2014. a
Caniupán, A. M., Lamy, F., Lange, C. B., Kaiser, J., Arz, H. W., Kilian,
R., Urrea, O. B., Aracena, C., Hebbeln, D., Kissel, C., Laj, C., Mollenhauer,
G., and Tiedemann, R.: Figure 2. Sedimentation Rate and Calculated Sea
Surface Temperature of Sediment Core MD07-3128, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.771859, 2011a. a
Caniupán, M., Lamy, F., Lange, C. B., Kaiser, J., Arz, H., Kilian, R.,
Urrea, O. B., Aracena, C., Hebbeln, D., Kissel, C., Laj, C., Mollenhauer, G.,
and Tiedemann, R.: Millennial-Scale Sea Surface Temperature and Patagonian
Ice Sheet Changes off Southernmost Chile (53∘ S) over the
Past ∼ 60 Kyr, Paleoceanography, 26, PA3221, https://doi.org/10.1029/2010PA002049,
2011b. a, b
Cárdenas, P., Lange, C. B., Vernet, M., Esper, O., Srain, B., Vorrath,
M.-E., Ehrhardt, S., Müller, J., Kuhn, G., Arz, H. W., Lembke-Jene, L.,
and Lamy, F.: Biogeochemical Proxies and Diatoms in Surface Sediments across
the Drake Passage Reflect Oceanic Domains and Frontal Systems in the
Region, Prog. Oceanogr., 174, 72–88,
https://doi.org/10.1016/j.pocean.2018.10.004, 2019. a, b, c, d, e, f, g
Chaigneau, A.: Surface Circulation and Fronts of the South Pacific Ocean,
East of 120∘ W, Geophys. Res. Lett., 32, L08605,
https://doi.org/10.1029/2004GL022070, 2005. a
Chapman, C. C., Lea, M.-A., Meyer, A., Sallée, J.-B., and Hindell, M.:
Defining Southern Ocean Fronts and Their Influence on Biological and
Physical Processes in a Changing Climate, Nat. Clim. Change, 10,
209–219, https://doi.org/10.1038/s41558-020-0705-4, 2020. a, b, c, d
Charalampopoulou, A.: Coccolithophores in High Latitude and Polar Regions:
Relationships between Community Composition, Calcification and Environmental
Factors, PhD thesis, University of Southampton, Southampton,
2011. a
Charalampopoulou, A., Poulton, A. J., Bakker, D. C. E., Lucas, M. I., Stinchcombe, M. C., and Tyrrell, T.: Environmental drivers of coccolithophore abundance and calcification across Drake Passage (Southern Ocean), Biogeosciences, 13, 5917–5935, https://doi.org/10.5194/bg-13-5917-2016, 2016. a, b, c, d, e, f, g, h, i, j, k, l, m
Charrad, M., Ghazzali, N., Boiteau, V., and Niknafs, A.: NbClust: An R
Package for Determining the Relevant Number of Clusters in a
Data Set, J. Stat. Softw., 61, 1–36,
https://doi.org/10.18637/jss.v061.i06, 2014. a
Cubillos, J., Wright, S., Nash, G., de Salas, M., Griffiths, B., Tilbrook,
B., Poisson, A., and Hallegraeff, G.: Calcification Morphotypes of the
Coccolithophorid Emiliania Huxleyi in the Southern Ocean: Changes in
2001 to 2006 Compared to Historical Data, Mar. Ecol.-Prog. Ser.,
348, 47–54, https://doi.org/10.3354/meps07058, 2007. a, b, c, d, e, f, g
Dávila, P. M., Figueroa, D., and Müller, E.: Freshwater Input into the
Coastal Ocean and Its Relation with the Salinity Distribution off Austral
Chile (35–55∘ S), Cont. Shelf Res., 22,
521–534, https://doi.org/10.1016/S0278-4343(01)00072-3, 2002. a
Dawson, H. R. S., Strutton, P. G., and Gaube, P.: The Unusual Surface
Chlorophyll Signatures of Southern Ocean Eddies, J. Geophys.
Res.-Oceans, 123, 6053–6069, https://doi.org/10.1029/2017JC013628, 2018. a
Deppeler, S. L. and Davidson, A. T.: Southern Ocean Phytoplankton in a
Changing Climate, Front. Mar. Sci., 4, 40,
https://doi.org/10.3389/fmars.2017.00040, 2017. a
de Salas, M. F., Eriksen, R., Davidson, A. T., and Wright, S. W.: Protistan
Communities in the Australian Sector of the Sub-Antarctic Zone
during SAZ-Sense, Deep-Sea Res. Pt. II, 58, 2135–2149, https://doi.org/10.1016/j.dsr2.2011.05.032, 2011. a
Deuser, W. G., Muller-Karger, F. E., Evans, R. H., Brown, O. B., Esaias,
W. E., and Feldman, G. C.: Surface-Ocean Color and Deep-Ocean Carbon Flux:
How Close a Connection?, Deep-Sea Res. Pt. A, 37, 1331–1343, https://doi.org/10.1016/0198-0149(90)90046-X, 1990. a
Díaz-Rosas, F., Alves-de-Souza, C., Alarcón, E., Menschel, E., González, H. E., Torres, R., and von Dassow, P.: Abundances and morphotypes of the coccolithophore Emiliania huxleyi in southern Patagonia compared to neighbouring oceans and Northern Hemisphere fjords, Biogeosciences, 18, 5465–5489, https://doi.org/10.5194/bg-18-5465-2021, 2021. a, b, c
Dittert, N., Baumann, K.-H., Bickert, T., Henrich, R., Huber, R., Kinkel, H.,
and Meggers, H.: Carbonate Dissolution in the Deep-Sea: Methods,
Quantification and Paleoceanographic Application, in: Use of
Proxies in Paleoceanography: Examples from the South Atlantic,
edited by: Fischer, G. and Wefer, G., 255–284, Springer, Berlin,
Heidelberg, https://doi.org/10.1007/978-3-642-58646-0_10, 1999. a, b, c, d
Donohue, K. A., Tracey, K. L., Watts, D. R., Chidichimo, M. P., and Chereskin,
T. K.: Mean Antarctic Circumpolar Current Transport Measured in Drake
Passage, Geophys. Res. Lett., 43, 11760–11767,
https://doi.org/10.1002/2016GL070319, 2016. a
Dray, S., Bauman, D., Blanchet, G., Borcard, D., Clappe, S., Guenard, G.,
Jombart, T., Larocque, G., Legendre, P., Madi, N., and Wagner, H. H.:
Adespatial: Multivariate Multiscale Spatial Analysis, R package version 0.3-8, [code], available at: https://CRAN.R-project.org/package=adespatial (last access: 18 January 2022), 2020. a
Dylmer, C. V., Giraudeau, J., Hanquiez, V., and Husum, K.: The Coccolithophores
Emiliania Huxleyi and Coccolithus Pelagicus: Extant Populations from
the Norwegian–Iceland Seas and Fram Strait, Deep-Sea
Res. Pt. I, 98, 1–9,
https://doi.org/10.1016/j.dsr.2014.11.012, 2015. a
Feng, Y., Roleda, M. Y., Armstrong, E., Law, C. S., Boyd, P. W., and Hurd, C. L.: Environmental controls on the elemental composition of a Southern Hemisphere strain of the coccolithophore Emiliania huxleyi, Biogeosciences, 15, 581–595, https://doi.org/10.5194/bg-15-581-2018, 2018. a
Fetterer, F., Knowles, K., Meier, W. N., Savoie, M., and Windnagel, A. K.:
Sea Ice Index, Version 3, Median_extent_S_03_1981-2010_polyline, updated daily, NSIDC: National Snow and Ice Data Center [data set], Boulder, Colorado USA, https://doi.org/10.7265/N5K072F8, 2017. a
Findlay, C. S. and Giraudeau, J.: Extant Calcareous Nannoplankton in the
Australian Sector of the Southern Ocean (Austral Summers 1994 and
1995), Mar. Micropaleontol., 40, 417–439,
https://doi.org/10.1016/S0377-8398(00)00046-3, 2000. a, b, c, d
Findlay, C. S. and Giraudeau, J.: Movement of Oceanic Fronts South of
Australia during the Last 10 Ka: Interpretation of Calcareous
Nannoplankton in Surface Sediments from the Southern Ocean, Mar.
Micropaleontol., 46, 431–444, https://doi.org/10.1016/S0377-8398(02)00084-1, 2002. a, b, c
Findlay, H. S., Calosi, P., and Crawfurd, K.: Determinants of the PIC:
POC Response in the Coccolithophore Emiliania Huxleyi under Future
Ocean Acidification Scenarios, Limnol. Oceanogr., 56, 1168–1178,
https://doi.org/10.4319/lo.2011.56.3.1168, 2011. a
Flores, J.-A., Marino, M., Sierro, F. J., Hodell, D. A., and Charles, C. D.:
Calcareous Plankton Dissolution Pattern and Coccolithophore Assemblages
during the Last 600 Kyr at ODP Site 1089 (Cape Basin, South
Atlantic): Paleoceanographic Implications, Palaeogeogr.
Palaeocl., 196, 409–426,
https://doi.org/10.1016/S0031-0182(03)00467-X, 2003. a
Flores, J. A., Filippelli, G. M., Sierro, F. J., and Latimer, J. C.: The
“White Ocean” Hypothesis: A Late Pleistocene Southern Ocean
Governed by Coccolithophores and Driven by Phosphorus,
Front. Microbiol., 3, 233, https://doi.org/10.3389/fmicb.2012.00233, 2012. a
Frölicher, T. L., Sarmiento, J. L., Paynter, D. J., Dunne, J. P., Krasting,
J. P., and Winton, M.: Dominance of the Southern Ocean in Anthropogenic
Carbon and Heat Uptake in CMIP5 Models, J. Climate, 28,
862–886, https://doi.org/10.1175/JCLI-D-14-00117.1, 2014. a
Fuertes, M.-Á., Flores, J.-A., and Sierro, F. J.: The Use of Circularly
Polarized Light for Biometry, Identification and Estimation of Mass of
Coccoliths, Mar. Micropaleontol., 113, 44–55,
https://doi.org/10.1016/j.marmicro.2014.08.007, 2014. a
Gard, G.: Late Quaternary Coccoliths at the North Pole: Evidence of
Ice-Free Conditions and Rapid Sedimentation in the Central Arctic Ocean,
Geology, 21, 227–230, https://doi.org/10.1130/0091-7613(1993)021<0227:LQCATN>2.3.CO;2,
1993. a
Gardner, J., Manno, C., Bakker, D. C. E., Peck, V. L., and Tarling, G. A.:
Southern Ocean Pteropods at Risk from Ocean Warming and Acidification,
Mar. Biol., 165, 8, https://doi.org/10.1007/s00227-017-3261-3, 2018. a
Giglio, D. and Johnson, G. C.: Subantarctic and Polar Fronts of the
Antarctic Circumpolar Current and Southern Ocean Heat and
Freshwater Content Variability: A View from Argo, J.
Phys. Oceanogr., 46, 749–768, https://doi.org/10.1175/JPO-D-15-0131.1, 2016. a
Gravalosa, J. M., Flores, J.-A., Sierro, F. J., and Gersonde, R.: Sea Surface
Distribution of Coccolithophores in the Eastern Pacific Sector of the
Southern Ocean (Bellingshausen and Amundsen Seas) during the Late
Austral Summer of 2001, Mar. Micropaleontol., 69, 16–25,
https://doi.org/10.1016/j.marmicro.2007.11.006, 2008. a
Hagino, K., Bendif, E. M., Young, J. R., Kogame, K., Probert, I., Takano, Y.,
Horiguchi, T., de Vargas, C., and Okada, H.: New Evidence for Morphological
and Genetic Variation in the Cosmopolitan Coccolithophore Emiliania
Huxleyi (Prymnesiophyceae) from the Cox1b-Atp4 Genes, J.
Phycol., 47, 1164–1176, https://doi.org/10.1111/j.1529-8817.2011.01053.x, 2011. a, b, c
Hernández-Almeida, I., Ausín, B., Saavedra-Pellitero, M., Baumann,
K.-H., and Stoll, H.: Quantitative Reconstruction of Primary Productivity in
Low Latitudes during the Last Glacial Maximum and the Mid-to-Late
Holocene from a Global Florisphaera Profunda Calibration Dataset,
Quaternary Sci. Rev., 205, 166–181,
https://doi.org/10.1016/j.quascirev.2018.12.016, 2019. a
Ho, S. L., Mollenhauer, G., Lamy, F., Martínez-García, A., Mohtadi, M.,
Gersonde, R., Hebbeln, D., Nunez-Ricardo, S., Rosell-Melé, A., and
Tiedemann, R.: Depth-Age Pointers and Linear Sedimentation Rates of Sediment
Core PS75/034-2, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.792636, 2012. a
Hofmann, E. E.: The Large-Scale Horizontal Structure of the Antarctic
Circumpolar Current from FGGE Drifters, J. Geophys.
Res.-Oceans, 90, 7087–7097, https://doi.org/10.1029/JC090iC04p07087, 1985. a
Holligan, P. M., Charalampopoulou, A., and Hutson, R.: Seasonal Distributions
of the Coccolithophore, Emiliania Huxleyi, and of Particulate Inorganic
Carbon in Surface Waters of the Scotia Sea, J. Marine Syst.,
82, 195–205, https://doi.org/10.1016/j.jmarsys.2010.05.007, 2010. a
Holte, J., Talley, L. D., Gilson, J., and Roemmich, D.: An Argo Mixed Layer
Climatology and Database: ARGO MLD CLIMATOLOGY, Geophys. Res.
Lett., 44, 5618–5626, https://doi.org/10.1002/2017GL073426, 2017. a
Honjo, S.: Coccoliths: Production, Transportation and Sedimentation, Mar.
Micropaleontol., 1, 65–79, https://doi.org/10.1016/0377-8398(76)90005-0, 1976. a
Horigome, M. T., Ziveri, P., Grelaud, M., Baumann, K.-H., Marino, G., and Mortyn, P. G.: Environmental controls on the Emiliania huxleyi calcite mass, Biogeosciences, 11, 2295–2308, https://doi.org/10.5194/bg-11-2295-2014, 2014. a
Inkscape: Open Source Scalable Vector Graphics Editor, available at: https://inkscape.org (last access: 10 January 2022), 2021. a
Kaiser, J., Lamy, F., and Hebbeln, D.: A 70-Kyr Sea Surface Temperature Record
off Southern Chile (Ocean Drilling Program Site 1233),
Paleoceanography, 20, PA4009, https://doi.org/10.1029/2005PA001146, 2005. a
Karstensen, J. and Ulloa, O.: Peru–Chile Current System, in:
Encyclopedia of Ocean Sciences, 2nd Edn., edited by: Steele,
J. H., 385–392, Academic Press, Oxford,
https://doi.org/10.1016/B978-012374473-9.00599-3, 2009. a
Key, R., Olsen, A., Van Heuven, S., Lauvset, S., Velo, A., Lin, X., Schirnick,
C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterstrom, S., Steinfeldt, R.,
Jeansson, E., Ishi, M., Perez, F., and Suzuki, T.: Global Ocean Data
Analysis Project, Version 2 (GLODAPv2), ORNL/CDIAC-162,
ND-P093, National Centers for Envronmental Information [data set], available at: https://www.ncei.noaa.gov/access/ocean-carbon-data-system/oceans/GLODAPv2/ (last access: 24 February 2021), 2015. a
Kim, Y. S. and Orsi, A. H.: On the Variability of Antarctic Circumpolar
Current Fronts Inferred from 1992–2011 Altimetry, J.
Phys. Oceanogr., 44, 3054–3071, https://doi.org/10.1175/JPO-D-13-0217.1, 2014. a
Kohfeld, K. E. and Ridgwell, A.: Glacial-Interglacial Variability in
Atmospheric CO2, in: Surface Ocean–Lower Atmosphere
Processes, 251–286, American Geophysical Union (AGU), Washington, DC,
https://doi.org/10.1029/2008GM000845, 2009. a
Krumhardt, K. M., Lovenduski, N. S., Long, M. C., Levy, M., Lindsay, K., Moore,
J. K., and Nissen, C.: Coccolithophore Growth and Calcification in an
Acidified Ocean: Insights From Community Earth System Model
Simulations, J. Adv. Model. Earth Sy., 11, 1418–1437,
https://doi.org/10.1029/2018MS001483, 2019. a, b
Krumhardt, K. M., Long, M. C., Lindsay, K., and Levy, M. N.: Southern Ocean
Calcification Controls the Global Distribution of Alkalinity,
Global Biogeochem. Cy., 34, e2020GB006727,
https://doi.org/10.1029/2020GB006727, 2020. a
Lamy, F.: The Expedition PS97 of the Research Vessel POLARSTERN to the
Drake Passage in 2016, Tech. rep., Alfred-Wegener-Institut,
Helmholtz-Zentrum für Polar- und Meeresforschung,
https://doi.org/10.2312/BZPM_0701_2016, 2016. a, b, c, d
Lamy, F., Arz, H. W., Kilian, R., Lange, C. B., Lembke-Jene, L., Wengler, M.,
Kaiser, J., Baeza-Urrea, O., Hall, I. R., Harada, N., and Tiedemann, R.:
Glacial Reduction and Millennial-Scale Variations in Drake Passage
Throughflow, P. Natl. Acad. Sci. USA, 112,
13496–13501, https://doi.org/10.1073/pnas.1509203112, 2015. a
Lauvset, S. K., Key, R. M., Olsen, A., van Heuven, S., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F. F., Suzuki, T., and Watelet, S.: A new global interior ocean mapped climatology: the 1∘ × 1∘ GLODAP version 2, Earth Syst. Sci. Data, 8, 325–340, https://doi.org/10.5194/essd-8-325-2016, 2016. a, b
Legendre, P. and Gallagher, E. D.: Ecologically Meaningful Transformations
for Ordination of Species Data, Oecologia, 129, 271–280, 2001. a
Lin, J., Lee, Z., Ondrusek, M., and Du, K.: Remote Sensing of Normalized
Diffuse Attenuation Coefficient of Downwelling Irradiance: REMOTE SENSING
OF NKD, J. Geophys. Res.-Oceans, 121, 6717–6730,
https://doi.org/10.1002/2016JC011895, 2016. a
Malinverno, E., Maffioli, P., and Gariboldi, K.: Latitudinal Distribution of
Extant Fossilizable Phytoplankton in the Southern Ocean: Planktonic
Provinces, Hydrographic Fronts and Palaeoecological Perspectives, Mar.
Micropaleontol., 123, 41–58, https://doi.org/10.1016/j.marmicro.2016.01.001, 2016. a, b, c, d
Menschel, E., González, H. E., and Giesecke, R.: Coastal-Oceanic
Distribution Gradient of Coccolithophores and Their Role in the Carbonate
Flux of the Upwelling System off Concepción, Chile
(36∘ S), J. Plankton Res., 38, 798–817,
https://doi.org/10.1093/plankt/fbw037, 2016. a, b, c
Meyer, J. and Riebesell, U.: Reviews and Syntheses: Responses of coccolithophores to ocean acidification: a meta-analysis, Biogeosciences, 12, 1671–1682, https://doi.org/10.5194/bg-12-1671-2015, 2015. a
Mohan, R., Mergulhao, L. P., Guptha, M., Rajakumar, A., Thamban, M., AnilKumar,
N., Sudhakar, M., and Ravindra, R.: Ecology of Coccolithophores in the
Indian Sector of the Southern Ocean, Mar. Micropaleontol., 67,
30–45, https://doi.org/10.1016/j.marmicro.2007.08.005, 2008. a, b, c
Morrison, A. K., Frölicher, T. L., and Sarmiento, J. L.: Upwelling in the
Southern Ocean, Phys. Today, 68, 27–32, https://doi.org/10.1063/PT.3.2654, 2014. a
Müller, M. N., Trull, T. W., and Hallegraeff, G. M.: Differing Responses of
Three Southern Ocean Emiliania Huxleyi Ecotypes to Changing Seawater
Carbonate Chemistry, Mar. Ecol.-Prog. Ser., 531, 81–90,
https://doi.org/10.3354/meps11309, 2015. a
Murtugudde, R., Beauchamp, J., McClain, C. R., Lewis, M., and Busalacchi,
A. J.: Effects of Penetrative Radiation on the Upper Tropical Ocean
Circulation, J. Climate, 15, 470–486,
https://doi.org/10.1175/1520-0442(2002)015<0470:EOPROT>2.0.CO;2, 2002. a
NASA/JPL: GHRSST Level 2P Global Sea Surface Skin Temperature from the
Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA
Aqua Satellite (GDS2), https://doi.org/10.5067/GHMDA-2PJ19, 2020. a
Neukermans, G., Oziel, L., and Babin, M.: Increased Intrusion of Warming
Atlantic Water Leads to Rapid Expansion of Temperate Phytoplankton in the
Arctic, Glob. Change Biol., 24, 2545–2553, https://doi.org/10.1111/gcb.14075,
2018. a
Nghiem, S. V., Rigor, I. G., Clemente-Colón, P., Neumann, G., and Li,
P. P.: Geophysical Constraints on the Antarctic Sea Ice Cover, Remote
Sens. Environ., 181, 281–292, https://doi.org/10.1016/j.rse.2016.04.005, 2016. a
Nissen, C., Vogt, M., Münnich, M., Gruber, N., and Haumann, F. A.: Factors controlling coccolithophore biogeography in the Southern Ocean, Biogeosciences, 15, 6997–7024, https://doi.org/10.5194/bg-15-6997-2018, 2018. a, b, c, d
Nooteboom, P. D., Bijl, P. K., van Sebille, E., von der Heydt, A. S., and
Dijkstra, H. A.: Transport Bias by Ocean Currents in Sedimentary
Microplankton Assemblages: Implications for Paleoceanographic
Reconstructions, Paleoceanogr. Paleocl., 34, 1178–1194,
https://doi.org/10.1029/2019PA003606, 2019. a, b, c
Nooteboom, P. D., Delandmeter, P., van Sebille, E., Bijl, P. K., Dijkstra,
H. A., and von der Heydt, A. S.: Resolution Dependency of Sinking
Lagrangian Particles in Ocean General Circulation Models, PLOS ONE, 15,
e0238650, https://doi.org/10.1371/journal.pone.0238650, 2020. a
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn,
D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M.
H. H., Szoecs, E., and Wagner, H.: Vegan: Community Ecology Package, R package version 2.5-6 [code], available at: https://CRAN.R-project.org/package=vegan (last access: 16 February 2021),
2019. a
O'Regan, M., Backman, J., Fornaciari, E., Jakobsson, M., and West, G.:
Calcareous Nannofossils Anchor Chronologies for Arctic Ocean Sediments
Back to 500 Ka, Geology, 48, 1115–1119, https://doi.org/10.1130/G47479.1, 2020. a
Orsi, A. H., Whitworth, T., and Nowlin, W. D.: On the Meridional Extent and
Fronts of the Antarctic Circumpolar Current, Deep-Sea Res. Pt. I, 42, 641–673,
https://doi.org/10.1016/0967-0637(95)00021-W, 1995. a, b
Oziel, L., Baudena, A., Ardyna, M., Massicotte, P., Randelhoff, A., Sallée,
J.-B., Ingvaldsen, R. B., Devred, E., and Babin, M.: Faster Atlantic
Currents Drive Poleward Expansion of Temperate Phytoplankton in the Arctic
Ocean, Nat. Commun., 11, 1705, https://doi.org/10.1038/s41467-020-15485-5,
2020. a
Palter, J. B., Sarmiento, J. L., Gnanadesikan, A., Simeon, J., and Slater, R. D.: Fueling export production: nutrient return pathways from the deep ocean and their dependence on the Meridional Overturning Circulation, Biogeosciences, 7, 3549–3568, https://doi.org/10.5194/bg-7-3549-2010, 2010. a
Palter, J. B., Marinov, I., Sarmiento, J. L., and Gruber, N.: Large-Scale,
Persistent Nutrient Fronts of the World Ocean: Impacts on
Biogeochemistry, Springer Berlin Heidelberg, Berlin, Heidelberg,
https://doi.org/10.1007/698_2013_241, 2013. a
Park, Y.-H. and Durand, I.: Altimetry-Drived Antarctic Circumpolar Current
Fronts, SEANOE [data set], https://doi.org/10.17882/59800, 2019. a
Park, Y.-H., Park, T., Kim, T.-W., Lee, S.-H., Hong, C.-S., Lee, J.-H., Rio,
M.-H., Pujol, M.-I., Ballarotta, M., Durand, I., and Provost, C.:
Observations of the Antarctic Circumpolar Current Over the Udintsev
Fracture Zone, the Narrowest Choke Point in the Southern Ocean,
J. Geophys. Res.-Oceans, 124, 4511–4528,
https://doi.org/10.1029/2019JC015024, 2019. a, b
Patil, S. M., Rahul, M., Suhas, S., and Sahina, G.: Phytoplankton Abundance and
Community Structure in the Antarctic Polar Frontal Region during Austral
Summer of 2009, Chin. J. Oceanol. Limn., 31, 21–30,
https://doi.org/10.1007/s00343-013-1309-x, 2013. a, b
Patil, S. M., Mohan, R., Shetye, S., Gazi, S., and Jafar, S.: Morphological
Variability of Emiliania Huxleyi in the Indian Sector of the
Southern Ocean during the Austral Summer of 2010, Mar.
Micropaleontol., 107, 44–58, https://doi.org/10.1016/j.marmicro.2014.01.005, 2014. a, b
Pierrot, D. E. L. and Wallace, D. W. R.: MS Excel Program Developed for
CO2 System Calculations, ORNL/CDIAC-105a, Carbon Dioxide Information Analysis Center,
Oak Ridge National Laboratory, U.S. Department of Energy [code], Oak Ridge, Tennessee, , available at: https://cdiac.ess-dive.lbl.gov/ftp/co2sys/CO2SYS_calc_XLS_v2.1/ (last acces: 2 February 2021),
2006. a
Poulton, A. J., Young, J. R., Bates, N. R., and Balch, W. M.: Biometry of
Detached Emiliania Huxleyi Coccoliths along the Patagonian Shelf,
Mar. Ecol.-Prog. Ser., 443, 1–17, https://doi.org/10.3354/meps09445, 2011. a, b, c, d
Raymond, B.: Pelagic Regionalisation, in: Biogeographic Atlas of the
Southern Ocean, edited by: De Broyer, C., Koubbi, P., Griffiths, H.,
Raymond, B., d'Udekem d'Acoz, C., Van de Putte, A., Danis, B., David, B.,
Grant, S., Gutt, J., Held, C., Hosie, G., Huettmann, F., Post, A., and
Ropert-Coudert, Y., 418–421, Scientific Committee on Antarctic
Research, Cambridge, UK, 2014. a, b, c
R Core Team: R: A Language and Environment for Statistical Computing, R version 3.6.3 (2020-02-29), R Foundation for Statistical Computing [code], Vienna, Austria, available at: https://www.R-project.org/ (last access: 29 February 2020), 2020. a
Rembauville, M., Meilland, J., Ziveri, P., Schiebel, R., Blain, S., and Salter,
I.: Planktic Foraminifer and Coccolith Contribution to Carbonate Export
Fluxes over the Central Kerguelen Plateau, Deep-Sea Res. Pt. I, 111, 91–101, https://doi.org/10.1016/j.dsr.2016.02.017,
2016. a, b
Renault, A., Provost, C., Sennéchael, N., Barré, N., and Kartavtseff,
A.: Two Full-Depth Velocity Sections in the Drake Passage in
2006 – Transport Estimates, Deep-Sea Res. Pt. II, 58, 2572–2591, https://doi.org/10.1016/j.dsr2.2011.01.004,
2011. a
Riaux-Gobin, C., Fontugne, M., Jensen, K. G., Bentaleb, I., Cauwet, G.,
Chrétiennot-Dinet, M. J., and Poisson, A.: Surficial Deep-Sea Sediments
across the Polar Frontal System (Southern Ocean, Indian Sector):
Particulate Carbon Content and Microphyte Signatures, Mar. Geol., 230,
147–159, https://doi.org/10.1016/j.margeo.2006.04.005, 2006. a
Rigual Hernández, A. S., Flores, J. A., Sierro, F. J., Fuertes, M. A., Cros, L., and Trull, T. W.: Coccolithophore populations and their contribution to carbonate export during an annual cycle in the Australian sector of the Antarctic zone, Biogeosciences, 15, 1843–1862, https://doi.org/10.5194/bg-15-1843-2018, 2018. a, b, c, d
Rigual-Hernández, A. S., Sánchez-Santos, J. M., Eriksen, R., Moy,
A. D., Sierro, F. J., Flores, J. A., Abrantes, F., Bostock, H., Nodder,
S. D., González-Lanchas, A., and Trull, T. W.: Limited Variability in
the Phytoplankton Emiliania Huxleyi since the Pre-Industrial Era in the
Subantarctic Southern Ocean, Anthropocene, 31, 100254,
https://doi.org/10.1016/j.ancene.2020.100254, 2020a. a, b
Rigual-Hernández, A. S., Trull, T. W., Flores, J. A., Nodder, S. D.,
Eriksen, R., Davies, D. M., Hallegraeff, G. M., Sierro, F. J., Patil, S. M.,
Cortina, A., Ballegeer, A. M., Northcote, L. C., Abrantes, F., and Rufino,
M. M.: Full Annual Monitoring of Subantarctic Emiliania Huxleyi
Populations Reveals Highly Calcified Morphotypes in High-CO2 Winter
Conditions, Sci. Rep.-UK, 10, 2594, https://doi.org/10.1038/s41598-020-59375-8,
2020b. a
Rigual Hernández, A. S., Trull, T. W., Nodder, S. D., Flores, J. A., Bostock, H., Abrantes, F., Eriksen, R. S., Sierro, F. J., Davies, D. M., Ballegeer, A.-M., Fuertes, M. A., and Northcote, L. C.: Coccolithophore biodiversity controls carbonate export in the Southern Ocean, Biogeosciences, 17, 245–263, https://doi.org/10.5194/bg-17-245-2020, 2020c. a, b, c, d, e, f
Rintoul, S. R.: The Global Influence of Localized Dynamics in the Southern
Ocean, Nature, 558, 209–218, https://doi.org/10.1038/s41586-018-0182-3, 2018. a
Rivas, L., Panera, J. P. P., Alperin, M., and Cusminsky, G.: Calcareous
Nannoplankton Thanatocoenosis Distribution in the Southwestern Atlantic
Ocean: New Evidence in the Western Malvinas Current Gyre, 17th INA
Conference, Santos, Brazil, 15–20 September 2019, p. 90, 2019. a
Rost, B. and Riebesell, U.: Coccolithophores and the Biological Pump: Responses
to Environmental Changes, in: Coccolithophores. From Molecular Processes
to Global Impact, edited by: Thierstein, H. R. and Young, J. R.,
99–125, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-662-06278-4_5,
2004. a
Saavedra-Pellitero, M., Flores, J.-A., Baumann, K.-H., and Sierro, F.-J.:
Coccolith Distribution Patterns in Surface Sediments of Equatorial and
Southeastern Pacific Ocean, Geobios, 43, 131–149,
https://doi.org/10.1016/j.geobios.2009.09.004, 2010. a, b, c
Saavedra-Pellitero, M., Flores, J. A., Lamy, F., Sierro, F. J., and Cortina,
A.: Coccolithophore Estimates of Paleotemperature and Paleoproductivity
Changes in the Southeast Pacific over the Past ∼ 27 Kyr,
Paleoceanography, 26, PA1201, https://doi.org/10.1029/2009PA001824, 2011. a
Saavedra-Pellitero, M., Baumann, K. H., Hernández-Almeida, I., Flores,
J. A., and Sierro, F. J.: Modern Sea Surface Productivity and Temperature
Estimations off Chile as Detected by Coccolith Accumulation Rates,
Palaeogeogr. Palaeocl., 392, 534–545,
https://doi.org/10.1016/j.palaeo.2013.10.010, 2013. a
Saavedra-Pellitero, M., Baumann, K.-H., Lamy, F., and Köhler, P.:
Coccolithophore Variability across Marine Isotope Stage 11 in the
Pacific Sector of the Southern Ocean and Its Potential Impact on the
Carbon Cycle, Paleoceanography, 32, 864–880, https://doi.org/10.1002/2017PA003156,
2017a. a
Saavedra-Pellitero, M., Baumann, K.-H., Ullermann, J., and Lamy, F.: Marine
Isotope Stage 11 in the Pacific Sector of the Southern Ocean; a
Coccolithophore Perspective, Quaternary Sci. Rev., 158, 1–14,
https://doi.org/10.1016/j.quascirev.2016.12.020, 2017b. a
Saavedra-Pellitero, M., Baumann, K.-H., Fuertes, M. Á., Schulz, H., Marcon, Y., Vollmar, N. M., Flores, J.-A., and Lamy, F.: Calcification and latitudinal distribution of extant coccolithophores across the Drake Passage during late austral summer 2016, Biogeosciences, 16, 3679–3702, https://doi.org/10.5194/bg-16-3679-2019, 2019. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa, ab, ac, ad
Saldías, G. S., Sobarzo, M., and Quiñones, R.: Freshwater Structure and
Its Seasonal Variability off Western Patagonia, Prog. Oceanogr.,
174, 143–153, https://doi.org/10.1016/j.pocean.2018.10.014, 2019. a
Sarmiento, J. L., Slater, R., Barber, R., Bopp, L., Doney, S. C., Hirst, A. C.,
Kleypas, J., Matear, R., Mikolajewicz, U., Monfray, P., Soldatov, V., Spall,
S. A., and Stouffer, R.: Response of Ocean Ecosystems to Climate Warming,
Global Biogeochem. Cy., 18, GB3003, https://doi.org/10.1029/2003GB002134, 2004. a
Saruwatari, K., Satoh, M., Harada, N., Suzuki, I., and Shiraiwa, Y.: Change in coccolith size and morphology due to response to temperature and salinity in coccolithophore Emiliania huxleyi (Haptophyta) isolated from the Bering and Chukchi seas, Biogeosciences, 13, 2743–2755, https://doi.org/10.5194/bg-13-2743-2016, 2016. a, b
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M.,
Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez,
J.-Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., and
Cardona, A.: Fiji: An Open-Source Platform for Biological-Image Analysis,
Nat. Methods, 9, 676–682, https://doi.org/10.1038/nmeth.2019, 2012. a
Smith, H. E. K., Poulton, A. J., Garley, R., Hopkins, J., Lubelczyk, L. C., Drapeau, D. T., Rauschenberg, S., Twining, B. S., Bates, N. R., and Balch, W. M.: The influence of environmental variability on the biogeography of coccolithophores and diatoms in the Great Calcite Belt, Biogeosciences, 14, 4905–4925, https://doi.org/10.5194/bg-14-4905-2017, 2017. a, b
Smyth, T. J., Tyrrell, T., and Tarrant, B.: Time Series of Coccolithophore
Activity in the Barents Sea, from Twenty Years of Satellite Imagery,
Geophys. Res. Lett., 31, L11302, https://doi.org/10.1029/2004GL019735, 2004. a
Sokolov, S. and Rintoul, S. R.: Circumpolar Structure and Distribution of the
Antarctic Circumpolar Current Fronts: 1. Mean Circumpolar Paths,
J. Geophys. Res.-Oceans, 114, C11018, https://doi.org/10.1029/2008JC005108,
2009. a
Steinmetz, J.: Sedimentation of Coccolithophores, in: Coccolithophores, edited
by: Winter, A. and Siesser, W., 179–197, Cambridge University Press,
Cambridge, 1994. a
Sulpis, O., Boudreau, B. P., Mucci, A., Jenkins, C., Trossman, D. S., Arbic,
B. K., and Key, R. M.: Current CaCO3 Dissolution at the Seafloor Caused
by Anthropogenic CO2, P. Natl. Acad. Sci. USA,
115, 11700–11705, https://doi.org/10.1073/pnas.1804250115, 2018. a
Suzuki, R., Terada, Y., and Shimodaira, H.: Pvclust: Hierarchical
Clustering with P-Values via Multiscale Bootstrap Resampling, [code], R package version 2.2-0, available at: https://CRAN.R-project.org/package=pvclust (last access: 16 February 2021),
2019. a
Talley, L. D., Pickard, G. L., Emery, W. J., and Swift, J. H.: Southern
Ocean, in: Descriptive Physical Oceanography,
Academic Press, Boston, 437–471, https://doi.org/10.1016/B978-0-7506-4552-2.10013-7, 2011. a, b, c
Toyos, M. H., Lamy, F., Lange, C. B., Lembke-Jene, L., Saavedra-Pellitero, M.,
Esper, O., and Arz, H. W.: Antarctic Circumpolar Current Dynamics at the
Pacific Entrance to the Drake Passage Over the Past 1.3 Million
Years, Paleoceanogr. Paleocl., 35, e2019PA003773,
https://doi.org/10.1029/2019PA003773, 2020. a
United Nations (Ed.): Primary Production, Cycling of Nutrients, Surface Layer and Plankton, in: The First Global Integrated Marine Assessment: World Ocean Assessment I, Cambridge University Press, Cambridge, 119–148, https://doi.org/10.1017/9781108186148.009, 2017. a
van Sebille, E., Scussolini, P., Durgadoo, J. V., Peeters, F. J. C.,
Biastoch, A., Weijer, W., Turney, C., Paris, C. B., and Zahn, R.: Ocean
Currents Generate Large Footprints in Marine Palaeoclimate Proxies, Nat.
Commun., 6, 6521, https://doi.org/10.1038/ncomms7521, 2015. a, b
Volk, T. and Hoffert, M. I.: Ocean Carbon Pumps: Analysis of Relative
Strengths and Efficiencies in Ocean-Driven Atmospheric CO2
Changes, in: The Carbon Cycle and Atmospheric CO2: Natural
Variations Archean to Present, 99–110, American Geophysical
Union (AGU), Washington, D.C., https://doi.org/10.1029/GM032p0099, 1985. a
Vollmar, N. M., Baumann, K.-H., Saavedra-Pellitero, M., and Hernández-Almeida, I.: Relative abundances of coccolith species in surface sediment samples from Polarstern expedition PS97, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.932831, 2021a. a
Vollmar, N. M., Baumann, K.-H., Saavedra-Pellitero, M., and Hernández-Almeida, I.: Morphotype counts, morphometrical measurements and mass estimations on Emiliania huxleyi coccoliths from surface sediment samples in the Drake Passage based on SEM images, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.938165, 2021b. a
von Dassow, P., Díaz-Rosas, F., Bendif, E. M., Gaitán-Espitia, J.-D., Mella-Flores, D., Rokitta, S., John, U., and Torres, R.: Over-calcified forms of the coccolithophore Emiliania huxleyi in high-CO2 waters are not preadapted to ocean acidification, Biogeosciences, 15, 1515–1534, https://doi.org/10.5194/bg-15-1515-2018, 2018. a, b, c, d, e
Vorrath, M.-E., Müller, J., Esper, O., Mollenhauer, G., Haas, C.,
Schefuß, E., and Fahl, K.: Radiocarbon Ages from Surface Sediments,
Southern Drake Passage and the Bransfield Strait, Antarctic
Peninsula, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.897163, 2019. a, b
Wickham, H.: Ggplot2: Elegant Graphics for Data Analysis, Use R!,
Springer International Publishing, Springer, Cham, 2nd Edn., 2016
Edn., https://doi.org/10.1007/978-3-319-24277-4, 2016. a
Winter, A., Elbrächter, M., and Krause, G.: Subtropical Coccolithophores in
the Weddell Sea, Deep-Sea Res. Pt. I,
46, 439–449, https://doi.org/10.1016/S0967-0637(98)00076-4, 1999. a, b
Winter, A., Henderiks, J., Beaufort, L., Rickaby, R. E. M., and Brown, C. W.:
Poleward Expansion of the Coccolithophore Emiliania Huxleyi, J.
Plankton Res., 36, 316–325, https://doi.org/10.1093/plankt/fbt110, 2013. a
Winter, A., Henderiks, J., Beaufort, L., Rickaby, R. E. M., and Brown, C. W.:
Poleward Expansion of the Coccolithophore Emiliania Huxleyi, J.
Plankton Res., 36, 316–325, https://doi.org/10.1093/plankt/fbt110, 2014. a, b, c
Wu, S., Kuhn, G., Diekmann, B., Lembke-Jene, L., Tiedemann, R., Zheng, X.,
Ehrhardt, S., Arz, H. W., and Lamy, F.: Surface Sediment Characteristics
Related to Provenance and Ocean Circulation in the Drake Passage Sector
of the Southern Ocean, Deep-Sea Res. Pt. I, 154, 103135, https://doi.org/10.1016/j.dsr.2019.103135, 2019. a, b, c, d, e
Wu, S., Lembke-Jene, L., Lamy, F., Arz, H. W., Nowaczyk, N., Xiao, W., Zhang,
X., Hass, H. C., Titschack, J., Zheng, X., Liu, J., Dumm, L., Diekmann, B.,
Nürnberg, D., Tiedemann, R., and Kuhn, G.: Orbital- and Millennial-Scale
Antarctic Circumpolar Current Variability in Drake Passage over the
Past 140,000 Years, Nat. Commun., 12, 3948,
https://doi.org/10.1038/s41467-021-24264-9, 2021. a, b, c
Young, J.: Coccobiom2 Macros, available at:
http://ina.tmsoc.org/nannos/coccobiom/Usernotes.html (last access: 1 March 2020), 2015. a
Young, J., Geisen, M., and Probert, I.: A Review of Selected Aspects of
Coccolithophore Biology with Implications for Paleobiodiversity Estimation,
Micropaleontology, 51, 267–288, https://doi.org/10.2113/gsmicropal.51.4.267, 2005. a
Young, J. R., Bown, P., and Lees, J.: Emiliania Huxleyi B Group, available at: http://archive.is/lBgdd (last access: 15 December 2020), 2021.
a
Zeebe, R. E.: History of Seawater Carbonate Chemistry, Atmospheric CO2, and Ocean Acidification, Annu. Rev. Earth
Planet. Sc., 40, 141–165, https://doi.org/10.1146/annurev-earth-042711-105521,
2012. a
Short summary
We studied recent (sub-)fossil remains of a type of algae (coccolithophores) off southernmost Chile and across the Drake Passage, adding to the scarce knowledge that exists in the Southern Ocean, a rapidly changing environment. We found that those can be used to reconstruct the surface ocean conditions in the north but not in the south. We also found variations in shape in the dominant species Emiliania huxleyi depending on the location, indicating subtle adaptations to environmental conditions.
We studied recent (sub-)fossil remains of a type of algae (coccolithophores) off southernmost...
Altmetrics
Final-revised paper
Preprint