Articles | Volume 19, issue 3
https://doi.org/10.5194/bg-19-979-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-979-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Acidification of the Nordic Seas
Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway
Friederike Fröb
Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway
Max Planck Institute for Meteorology, Hamburg, Germany
Jerry Tjiputra
NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway
Nadine Goris
NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway
Siv K. Lauvset
NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway
Ingunn Skjelvan
NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway
Emil Jeansson
NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway
Abdirahman Omar
NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway
Melissa Chierici
Institute of Marine Research, Fram Centre, Tromsø, Norway
Elizabeth Jones
Institute of Marine Research, Fram Centre, Tromsø, Norway
Agneta Fransson
Norwegian Polar Institute, Tromsø, Norway
Sólveig R. Ólafsdóttir
Marine and Freshwater Research Institute, Reykjavík, Iceland
Truls Johannessen
Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway
Are Olsen
Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway
Related authors
Shunya Koseki, Lander R. Crespo, Jerry Tjiputra, Filippa Fransner, Noel S. Keenlyside, and David Rivas
Biogeosciences, 21, 4149–4168, https://doi.org/10.5194/bg-21-4149-2024, https://doi.org/10.5194/bg-21-4149-2024, 2024
Short summary
Short summary
We investigated how the physical biases of an Earth system model influence the marine biogeochemical processes in the tropical Atlantic. With four different configurations of the model, we have shown that the versions with better SST reproduction tend to better represent the primary production and air–sea CO2 flux in terms of climatology, seasonal cycle, and response to climate variability.
Itzel Ruvalcaba Baroni, Elin Almroth-Rosell, Lars Axell, Sam T. Fredriksson, Jenny Hieronymus, Magnus Hieronymus, Sandra-Esther Brunnabend, Matthias Gröger, Ivan Kuznetsov, Filippa Fransner, Robinson Hordoir, Saeed Falahat, and Lars Arneborg
Biogeosciences, 21, 2087–2132, https://doi.org/10.5194/bg-21-2087-2024, https://doi.org/10.5194/bg-21-2087-2024, 2024
Short summary
Short summary
The health of the Baltic and North seas is threatened due to high anthropogenic pressure; thus, different methods to assess the status of these regions are urgently needed. Here, we validated a novel model simulating the ocean dynamics and biogeochemistry of the Baltic and North seas that can be used to create future climate and nutrient scenarios, contribute to European initiatives on de-eutrophication, and provide water quality advice and support on nutrient load reductions for both seas.
Ingo Bethke, Yiguo Wang, François Counillon, Noel Keenlyside, Madlen Kimmritz, Filippa Fransner, Annette Samuelsen, Helene Langehaug, Lea Svendsen, Ping-Gin Chiu, Leilane Passos, Mats Bentsen, Chuncheng Guo, Alok Gupta, Jerry Tjiputra, Alf Kirkevåg, Dirk Olivié, Øyvind Seland, Julie Solsvik Vågane, Yuanchao Fan, and Tor Eldevik
Geosci. Model Dev., 14, 7073–7116, https://doi.org/10.5194/gmd-14-7073-2021, https://doi.org/10.5194/gmd-14-7073-2021, 2021
Short summary
Short summary
The Norwegian Climate Prediction Model version 1 (NorCPM1) is a new research tool for performing climate reanalyses and seasonal-to-decadal climate predictions. It adds data assimilation capability to the Norwegian Earth System Model version 1 (NorESM1) and has contributed output to the Decadal Climate Prediction Project (DCPP) as part of the sixth Coupled Model Intercomparison Project (CMIP6). We describe the system and evaluate its baseline, reanalysis and prediction performance.
Rachael N. C. Sanders, Elaine L. McDonagh, Siv K. Lauvset, Charles E. Turner, Thomas W. N. Haine, Nadine Goris, and Richard Sanders
EGUsphere, https://doi.org/10.5194/egusphere-2025-3729, https://doi.org/10.5194/egusphere-2025-3729, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Oxygen is essential to marine life, but the amount of oxygen in the ocean has been decreasing in recent decades. Using observations of oxygen concentration interpolated across a section of the subtropical North Atlantic Ocean, we show that deoxygenation in the region is primarily driven by an increase in oxygen being consumed during remineralisation of organic matter. The impact of this is strongest at depths of around 600 m, where the process drives up to 70 % of the total deoxygenation.
Cecilia Äijälä, Yafei Nie, Lucía Gutiérrez-Loza, Chiara De Falco, Siv Kari Lauvset, Bin Cheng, David Anthony Bailey, and Petteri Uotila
Geosci. Model Dev., 18, 4823–4853, https://doi.org/10.5194/gmd-18-4823-2025, https://doi.org/10.5194/gmd-18-4823-2025, 2025
Short summary
Short summary
The sea ice around Antarctica has experienced record lows in recent years. To understand these changes, models are needed. MetROMS-UHel is a new version of an ocean–sea ice model with updated sea ice code and the atmospheric data. We investigate the effect of our updates on different variables with a focus on sea ice and show an improved sea ice representation as compared with observations.
Victor Brovkin, Benjamin M. Sanderson, Noel G. Brizuela, Tomohiro Hajima, Tatiana Ilyina, Chris D. Jones, Charles Koven, David Lawrence, Peter Lawrence, Hongmei Li, Spencer Liddcoat, Anastasia Romanou, Roland Séférian, Lori T. Sentman, Abigail L. S. Swann, Jerry Tjiputra, Tilo Ziehn, and Alexander J. Winkler
EGUsphere, https://doi.org/10.5194/egusphere-2025-3270, https://doi.org/10.5194/egusphere-2025-3270, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Idealized experiments with Earth system models provide a basis for understanding the response of the carbon cycle to emissions. We show that most models exhibit a quasi-linear relationship between cumulative carbon uptake on land and in the ocean and hypothesize that this relationship does not depend on emission pathways. We reduce the coupled system to only one differential equation, which represents a powerful simplification of the Earth system dynamics as a function of fossil fuel emissions.
Forrest M. Hoffman, Birgit Hassler, Ranjini Swaminathan, Jared Lewis, Bouwe Andela, Nathaniel Collier, Dóra Hegedűs, Jiwoo Lee, Charlotte Pascoe, Mika Pflüger, Martina Stockhause, Paul Ullrich, Min Xu, Lisa Bock, Felicity Chun, Bettina K. Gier, Douglas I. Kelley, Axel Lauer, Julien Lenhardt, Manuel Schlund, Mohanan G. Sreeush, Katja Weigel, Ed Blockley, Rebecca Beadling, Romain Beucher, Demiso D. Dugassa, Valerio Lembo, Jianhua Lu, Swen Brands, Jerry Tjiputra, Elizaveta Malinina, Brian Mederios, Enrico Scoccimarro, Jeremy Walton, Philip Kershaw, André L. Marquez, Malcolm J. Roberts, Eleanor O’Rourke, Elisabeth Dingley, Briony Turner, Helene Hewitt, and John P. Dunne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2685, https://doi.org/10.5194/egusphere-2025-2685, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
As Earth system models become more complex, rapid and comprehensive evaluation through comparison with observational data is necessary. The upcoming Assessment Fast Track for the Seventh Phase of the Coupled Model Intercomparison Project (CMIP7) will require fast analysis. This paper describes a new Rapid Evaluation Framework (REF) that was developed for the Assessment Fast Track that will be run at the Earth System Grid Federation (ESGF) to inform the community about the performance of models.
Damien Couespel, Xabier Davila, Nadine Goris, Emil Jeansson, Siv K. Lauvset, and Jerry Tjiputra
EGUsphere, https://doi.org/10.5194/egusphere-2025-2566, https://doi.org/10.5194/egusphere-2025-2566, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Remineralised carbon storage is projected to increase along the 21st century, but the magnitude of increase varies depending on the Earth system models. To constrain the projections, we explore the relation between remineralised carbon and circulation in the deep ocean. Comparing model simulations and observations, we show that models overestimate the sensitivity of remineralised carbon storage to circulation slowdown, suggesting an overestimation of the future remineralised carbon increase.
Angel Ruiz-Angulo, Esther Portela, Charly de Marez, Andreas Macrander, Sólveig Rósa Ólafsdóttir, Thomas Meunier, Steingrímur Jónsson, and M. Dolores Pérez-Hernández
EGUsphere, https://doi.org/10.5194/egusphere-2025-2102, https://doi.org/10.5194/egusphere-2025-2102, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
The ocean around Iceland is a key region for water mass transformation that drives global ocean circulation. We use 29 years of hydrographic data to examine the spatial and temporal variability of mixed layer depth and stratification, identifying three distinct regions: South, North, and Northeast. We present a comprehensive view of seasonal to multi-decadal variability in upper ocean structure and its link to a changing North Atlantic under global warming.
Li-Qing Jiang, Amanda Fay, Jens Daniel Müller, Lydia Keppler, Dustin Carroll, Siv K. Lauvset, Tim DeVries, Judith Hauck, Christian Rödenbeck, Luke Gregor, Nicolas Metzl, Andrea J. Fassbender, Jean-Pierre Gattuso, Peter Landschützer, Rik Wanninkhof, Christopher Sabine, Simone R. Alin, Mario Hoppema, Are Olsen, Matthew P. Humphreys, Kumiko Azetsu-Scott, Dorothee C. E. Bakker, Leticia Barbero, Nicholas R. Bates, Nicole Besemer, Henry C. Bittig, Albert E. Boyd, Daniel Broullón, Wei-Jun Cai, Brendan R. Carter, Thi-Tuyet-Trang Chau, Chen-Tung Arthur Chen, Frédéric Cyr, John E. Dore, Ian Enochs, Richard A. Feely, Hernan E. Garcia, Marion Gehlen, Lucas Gloege, Melchor González-Dávila, Nicolas Gruber, Yosuke Iida, Masao Ishii, Esther Kennedy, Alex Kozyr, Nico Lange, Claire Lo Monaco, Derek P. Manzello, Galen A. McKinley, Natalie M. Monacci, Xose A. Padin, Ana M. Palacio-Castro, Fiz F. Pérez, Alizée Roobaert, J. Magdalena Santana-Casiano, Jonathan Sharp, Adrienne Sutton, Jim Swift, Toste Tanhua, Maciej Telszewski, Jens Terhaar, Ruben van Hooidonk, Anton Velo, Andrew J. Watson, Angelicque E. White, Zelun Wu, Hyelim Yoo, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-255, https://doi.org/10.5194/essd-2025-255, 2025
Preprint under review for ESSD
Short summary
Short summary
This review article provides an overview of 60 existing ocean carbonate chemistry data products, encompassing a broad range of types, including compilations of cruise datasets, gap-filled observational products, model simulations, and more. It is designed to help researchers identify and access the data products that best support their scientific objectives, thereby facilitating progress in understanding the ocean's changing carbonate chemistry.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique M. Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda R. Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Xin Lan, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick C. McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data, 17, 965–1039, https://doi.org/10.5194/essd-17-965-2025, https://doi.org/10.5194/essd-17-965-2025, 2025
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Philip John Wallhead, Jörg Schwinger, Jerry Tjiputra, Trond Kristiansen, and Richard Garth James Bellerby
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-76, https://doi.org/10.5194/essd-2025-76, 2025
Preprint under review for ESSD
Short summary
Short summary
We developed a novel method to combine ocean data from observations and models, and applied it to produce gridded estimates of nutrients, oxygen, dissolved inorganic carbon and total alkalinity concentrations at latitudes >40° N and years 1980–2020. The new estimates showed improved accuracy and coverage relative to previous estimates, but highlighted remaining uncertainty in some poorly sampled regions. The work was largely motivated by a need for accurate input data for regional ocean models.
Lise Seland Graff, Jerry Tjiputra, Ada Gjermundsen, Andreas Born, Jens Boldingh Debernard, Heiko Goelzer, Yan-Chun He, Petra Margaretha Langebroek, Aleksi Nummelin, Dirk Olivié, Øyvind Seland, Trude Storelvmo, Mats Bentsen, Chuncheng Guo, Andrea Rosendahl, Dandan Tao, Thomas Toniazzo, Camille Li, Stephen Outten, and Michael Schulz
EGUsphere, https://doi.org/10.5194/egusphere-2025-472, https://doi.org/10.5194/egusphere-2025-472, 2025
Short summary
Short summary
The magnitude of future Arctic amplification is highly uncertain. Using the Norwegian Earth system model, we explore the effect of improving the representation of clouds, ocean eddies, the Greenland ice sheet, sea ice, and ozone on the projected Arctic winter warming in a coordinated experiment set. These improvements all lead to enhanced projected Arctic warming, with the largest changes found in the sea-ice retreat regions and the largest uncertainty on the Atlantic side.
Paul Dees, Friederike Fröb, Beatriz Arellano-Nava, David G. Johns, and Christoph Heinze
EGUsphere, https://doi.org/10.5194/egusphere-2025-470, https://doi.org/10.5194/egusphere-2025-470, 2025
Short summary
Short summary
In this paper we describe a novel methodology to automate the estimation of ecological regime shift probability in a single time series. We have applied this new methodology to the continuous plankton recorder dataset in the North Sea, and shown how the model is able to estimate the likelihood of a regime shift using abundance data of multiple phytoplankton and zooplankton species.
Yona Silvy, Thomas L. Frölicher, Jens Terhaar, Fortunat Joos, Friedrich A. Burger, Fabrice Lacroix, Myles Allen, Raffaele Bernardello, Laurent Bopp, Victor Brovkin, Jonathan R. Buzan, Patricia Cadule, Martin Dix, John Dunne, Pierre Friedlingstein, Goran Georgievski, Tomohiro Hajima, Stuart Jenkins, Michio Kawamiya, Nancy Y. Kiang, Vladimir Lapin, Donghyun Lee, Paul Lerner, Nadine Mengis, Estela A. Monteiro, David Paynter, Glen P. Peters, Anastasia Romanou, Jörg Schwinger, Sarah Sparrow, Eric Stofferahn, Jerry Tjiputra, Etienne Tourigny, and Tilo Ziehn
Earth Syst. Dynam., 15, 1591–1628, https://doi.org/10.5194/esd-15-1591-2024, https://doi.org/10.5194/esd-15-1591-2024, 2024
Short summary
Short summary
The adaptive emission reduction approach is applied with Earth system models to generate temperature stabilization simulations. These simulations provide compatible emission pathways and budgets for a given warming level, uncovering uncertainty ranges previously missing in the Coupled Model Intercomparison Project scenarios. These target-based emission-driven simulations offer a more coherent assessment across models for studying both the carbon cycle and its impacts under climate stabilization.
Julius Lauber, Tore Hattermann, Laura de Steur, Elin Darelius, and Agneta Fransson
Ocean Sci., 20, 1585–1610, https://doi.org/10.5194/os-20-1585-2024, https://doi.org/10.5194/os-20-1585-2024, 2024
Short summary
Short summary
Recent studies have highlighted the potential vulnerability of the East Antarctic Ice Sheet to atmospheric and oceanic changes. We present new insights from observations from three oceanic moorings below Fimbulisen Ice Shelf from 2009 to 2023. We find that relatively warm water masses reach below the ice shelf both close to the surface and at depth with implications for the basal melting of Fimbulisen.
Riccardo Martellucci, Michele Giani, Elena Mauri, Laurent Coppola, Melf Paulsen, Marine Fourrier, Sara Pensieri, Vanessa Cardin, Carlotta Dentico, Roberto Bozzano, Carolina Cantoni, Anna Lucchetta, Alfredo Izquierdo, Miguel Bruno, and Ingunn Skjelvan
Earth Syst. Sci. Data, 16, 5333–5356, https://doi.org/10.5194/essd-16-5333-2024, https://doi.org/10.5194/essd-16-5333-2024, 2024
Short summary
Short summary
As part of the ATL2MED demonstration experiment, two autonomous surface vehicles undertook a 9-month mission from the northeastern Atlantic to the Adriatic Sea. Biofouling affected the measurement of variables such as conductivity and dissolved oxygen. COVID-19 limited the availability of discrete samples for validation. We present correction methods for salinity and dissolved oxygen. We use model products to correct salinity and apply the Argo floats in-air correction method for oxygen
Benjamin Mark Sanderson, Victor Brovkin, Rosie Fisher, David Hohn, Tatiana Ilyina, Chris Jones, Torben Koenigk, Charles Koven, Hongmei Li, David Lawrence, Peter Lawrence, Spencer Liddicoat, Andrew Macdougall, Nadine Mengis, Zebedee Nicholls, Eleanor O'Rourke, Anastasia Romanou, Marit Sandstad, Jörg Schwinger, Roland Seferian, Lori Sentman, Isla Simpson, Chris Smith, Norman Steinert, Abigail Swann, Jerry Tjiputra, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3356, https://doi.org/10.5194/egusphere-2024-3356, 2024
Short summary
Short summary
This study investigates how climate models warm in response to simplified carbon emissions trajectories, refining understanding of climate reversibility and commitment. Metrics are defined for warming response to cumulative emissions and for the cessation or ramp-down to net-zero and net-negative levels. Results indicate that previous concentration-driven experiments may have overstated zero emissions commitment due to emissions rates exceeding historical levels.
Shunya Koseki, Lander R. Crespo, Jerry Tjiputra, Filippa Fransner, Noel S. Keenlyside, and David Rivas
Biogeosciences, 21, 4149–4168, https://doi.org/10.5194/bg-21-4149-2024, https://doi.org/10.5194/bg-21-4149-2024, 2024
Short summary
Short summary
We investigated how the physical biases of an Earth system model influence the marine biogeochemical processes in the tropical Atlantic. With four different configurations of the model, we have shown that the versions with better SST reproduction tend to better represent the primary production and air–sea CO2 flux in terms of climatology, seasonal cycle, and response to climate variability.
Malek Belgacem, Katrin Schroeder, Siv K. Lauvset, Marta Álvarez, Jacopo Chiggiato, Mireno Borghini, Carolina Cantoni, Tiziana Ciuffardi, and Stefania Sparnocchia
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-365, https://doi.org/10.5194/essd-2024-365, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Having consistent dissolved Oxygen (O2) data is crucial for understanding the health of our oceans. By monitoring O2 levels, we can spot changes in water quality. Reliable data helps scientist and policymakers make informed decisions to protect marine environments, ensuring practices that benefit both wildlife and people. The Mediterranean Sea is particularly sensitive to climate change. O2WMED dataset- a compilation of data that provides a clear picture of O2 changes over the past 20 years.
Timothée Bourgeois, Olivier Torres, Friederike Fröb, Aurich Jeltsch-Thömmes, Giang T. Tran, Jörg Schwinger, Thomas L. Frölicher, Jean Negrel, David Keller, Andreas Oschlies, Laurent Bopp, and Fortunat Joos
EGUsphere, https://doi.org/10.5194/egusphere-2024-2768, https://doi.org/10.5194/egusphere-2024-2768, 2024
Short summary
Short summary
Anthropogenic greenhouse gas emissions significantly impact ocean ecosystems through climate change and acidification, leading to either progressive or abrupt changes. This study maps the crossing of physical and ecological limits for various ocean impact metrics under three emission scenarios. Using Earth system models, we identify when these limits are exceeded, highlighting the urgent need for ambitious climate action to safeguard the world's oceans and ecosystems.
Nil Irvalı, Ulysses S. Ninnemann, Are Olsen, Neil L. Rose, David J. R. Thornalley, Tor L. Mjell, and François Counillon
Geochronology, 6, 449–463, https://doi.org/10.5194/gchron-6-449-2024, https://doi.org/10.5194/gchron-6-449-2024, 2024
Short summary
Short summary
Marine sediments are excellent archives for reconstructing past changes in climate and ocean circulation. Yet, dating uncertainties, particularly during the 20th century, pose major challenges. Here we propose a novel chronostratigraphic approach that uses anthropogenic signals, such as the oceanic 13C Suess effect and spheroidal carbonaceous fly-ash particles, to reduce age model uncertainties in high-resolution marine archives over the 20th century.
Dennis Booge, Jerry F. Tjiputra, Dirk J. L. Olivié, Birgit Quack, and Kirstin Krüger
Earth Syst. Dynam., 15, 801–816, https://doi.org/10.5194/esd-15-801-2024, https://doi.org/10.5194/esd-15-801-2024, 2024
Short summary
Short summary
Oceanic bromoform, produced by algae, is an important precursor of atmospheric bromine, highlighting the importance of implementing these emissions in climate models. The simulated mean oceanic concentrations align well with observations, while the mean atmospheric values are lower than the observed ones. Modelled annual mean emissions mostly occur from the sea to the air and are driven by oceanic concentrations, sea surface temperature, and wind speed, which depend on season and location.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 16, 2047–2072, https://doi.org/10.5194/essd-16-2047-2024, https://doi.org/10.5194/essd-16-2047-2024, 2024
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2023 is the fifth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1108 hydrographic cruises covering the world's oceans from 1972 to 2021.
Itzel Ruvalcaba Baroni, Elin Almroth-Rosell, Lars Axell, Sam T. Fredriksson, Jenny Hieronymus, Magnus Hieronymus, Sandra-Esther Brunnabend, Matthias Gröger, Ivan Kuznetsov, Filippa Fransner, Robinson Hordoir, Saeed Falahat, and Lars Arneborg
Biogeosciences, 21, 2087–2132, https://doi.org/10.5194/bg-21-2087-2024, https://doi.org/10.5194/bg-21-2087-2024, 2024
Short summary
Short summary
The health of the Baltic and North seas is threatened due to high anthropogenic pressure; thus, different methods to assess the status of these regions are urgently needed. Here, we validated a novel model simulating the ocean dynamics and biogeochemistry of the Baltic and North seas that can be used to create future climate and nutrient scenarios, contribute to European initiatives on de-eutrophication, and provide water quality advice and support on nutrient load reductions for both seas.
Nico Lange, Björn Fiedler, Marta Álvarez, Alice Benoit-Cattin, Heather Benway, Pier Luigi Buttigieg, Laurent Coppola, Kim Currie, Susana Flecha, Dana S. Gerlach, Makio Honda, I. Emma Huertas, Siv K. Lauvset, Frank Muller-Karger, Arne Körtzinger, Kevin M. O'Brien, Sólveig R. Ólafsdóttir, Fernando C. Pacheco, Digna Rueda-Roa, Ingunn Skjelvan, Masahide Wakita, Angelicque White, and Toste Tanhua
Earth Syst. Sci. Data, 16, 1901–1931, https://doi.org/10.5194/essd-16-1901-2024, https://doi.org/10.5194/essd-16-1901-2024, 2024
Short summary
Short summary
The Synthesis Product for Ocean Time Series (SPOTS) is a novel achievement expanding and complementing the biogeochemical data landscape by providing consistent and high-quality biogeochemical time-series data from 12 ship-based fixed time-series programs. SPOTS covers multiple unique marine environments and time-series ranges, including data from 1983 to 2021. All in all, it facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations.
Ali Asaadi, Jörg Schwinger, Hanna Lee, Jerry Tjiputra, Vivek Arora, Roland Séférian, Spencer Liddicoat, Tomohiro Hajima, Yeray Santana-Falcón, and Chris D. Jones
Biogeosciences, 21, 411–435, https://doi.org/10.5194/bg-21-411-2024, https://doi.org/10.5194/bg-21-411-2024, 2024
Short summary
Short summary
Carbon cycle feedback metrics are employed to assess phases of positive and negative CO2 emissions. When emissions become negative, we find that the model disagreement in feedback metrics increases more strongly than expected from the assumption that the uncertainties accumulate linearly with time. The geographical patterns of such metrics over land highlight that differences in response between tropical/subtropical and temperate/boreal ecosystems are a major source of model disagreement.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Veli Çağlar Yumruktepe, Erik Askov Mousing, Jerry Tjiputra, and Annette Samuelsen
Geosci. Model Dev., 16, 6875–6897, https://doi.org/10.5194/gmd-16-6875-2023, https://doi.org/10.5194/gmd-16-6875-2023, 2023
Short summary
Short summary
We present an along BGC-Argo track 1D modelling framework. The model physics is constrained by the BGC-Argo temperature and salinity profiles to reduce the uncertainties related to mixed layer dynamics, allowing the evaluation of the biogeochemical formulation and parameterization. We objectively analyse the model with BGC-Argo and satellite data and improve the model biogeochemical dynamics. We present the framework, example cases and routines for model improvement and implementations.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript not accepted
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Bogi Hansen, Karin M. H. Larsen, Hjálmar Hátún, Steffen M. Olsen, Andrea M. U. Gierisch, Svein Østerhus, and Sólveig R. Ólafsdóttir
Ocean Sci., 19, 1225–1252, https://doi.org/10.5194/os-19-1225-2023, https://doi.org/10.5194/os-19-1225-2023, 2023
Short summary
Short summary
Based on in situ observations combined with sea level anomaly (SLA) data from satellite altimetry, volume as well as heat (relative to 0 °C) transport of the Iceland–Faroe warm-water inflow towards the Arctic (IF inflow) increased from 1993 to 2021. The reprocessed SLA data released in December 2021 represent observed variations accurately. The IF inflow crosses the Iceland–Faroe Ridge in two branches, with retroflection in between. The associated coupling to overflow reduces predictability.
Asmita Singh, Susanne Fietz, Sandy J. Thomalla, Nicolas Sanchez, Murat V. Ardelan, Sébastien Moreau, Hanna M. Kauko, Agneta Fransson, Melissa Chierici, Saumik Samanta, Thato N. Mtshali, Alakendra N. Roychoudhury, and Thomas J. Ryan-Keogh
Biogeosciences, 20, 3073–3091, https://doi.org/10.5194/bg-20-3073-2023, https://doi.org/10.5194/bg-20-3073-2023, 2023
Short summary
Short summary
Despite the scarcity of iron in the Southern Ocean, seasonal blooms occur due to changes in nutrient and light availability. Surprisingly, during an autumn bloom in the Antarctic sea-ice zone, the results from incubation experiments showed no significant photophysiological response of phytoplankton to iron addition. This suggests that ambient iron concentrations were sufficient, challenging the notion of iron deficiency in the Southern Ocean through extended iron-replete post-bloom conditions.
Claire Waelbroeck, Jerry Tjiputra, Chuncheng Guo, Kerim H. Nisancioglu, Eystein Jansen, Natalia Vázquez Riveiros, Samuel Toucanne, Frédérique Eynaud, Linda Rossignol, Fabien Dewilde, Elodie Marchès, Susana Lebreiro, and Silvia Nave
Clim. Past, 19, 901–913, https://doi.org/10.5194/cp-19-901-2023, https://doi.org/10.5194/cp-19-901-2023, 2023
Short summary
Short summary
The precise geometry and extent of Atlantic circulation changes that accompanied rapid climate changes of the last glacial period are still unknown. Here, we combine carbon isotopic records from 18 Atlantic sediment cores with numerical simulations and decompose the carbon isotopic change across a cold-to-warm transition into remineralization and circulation components. Our results show that the replacement of southern-sourced by northern-sourced water plays a dominant role below ~ 3000 m depth.
Nadine Goris, Klaus Johannsen, and Jerry Tjiputra
Geosci. Model Dev., 16, 2095–2117, https://doi.org/10.5194/gmd-16-2095-2023, https://doi.org/10.5194/gmd-16-2095-2023, 2023
Short summary
Short summary
Climate projections of a high-CO2 future are highly uncertain. A new study provides a novel approach to identifying key regions that dynamically explain the model uncertainty. To yield an accurate estimate of the future North Atlantic carbon uptake, we find that a correct simulation of the upper- and interior-ocean volume transport at 25–30° N is key. However, results indicate that models rarely perform well for both indicators and point towards inconsistencies within the model ensemble.
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023, https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Short summary
Ocean alkalinity is critical to the uptake of atmospheric carbon and acidification in surface waters. We review the representation of alkalinity and the associated calcium carbonate cycle in Earth system models. While many parameterizations remain present in the latest generation of models, there is a general improvement in the simulated alkalinity distribution. This improvement is related to an increase in the export of biotic calcium carbonate, which closer resembles observations.
Shuang Gao, Jörg Schwinger, Jerry Tjiputra, Ingo Bethke, Jens Hartmann, Emilio Mayorga, and Christoph Heinze
Biogeosciences, 20, 93–119, https://doi.org/10.5194/bg-20-93-2023, https://doi.org/10.5194/bg-20-93-2023, 2023
Short summary
Short summary
We assess the impact of riverine nutrients and carbon (C) on projected marine primary production (PP) and C uptake using a fully coupled Earth system model. Riverine inputs alleviate nutrient limitation and thus lessen the projected PP decline by up to 0.7 Pg C yr−1 globally. The effect of increased riverine C may be larger than the effect of nutrient inputs in the future on the projected ocean C uptake, while in the historical period increased nutrient inputs are considered the largest driver.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Simone Alin, Marta Álvarez, Kumiko Azetsu-Scott, Leticia Barbero, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Li-Qing Jiang, Steve D. Jones, Claire Lo Monaco, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, https://doi.org/10.5194/essd-14-5543-2022, 2022
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2022 is the fourth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1085 hydrographic cruises covering the world's oceans from 1972 to 2021.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Hein J. W. de Baar, Mario Hoppema, and Elizabeth M. Jones
EGUsphere, https://doi.org/10.5194/egusphere-2022-676, https://doi.org/10.5194/egusphere-2022-676, 2022
Preprint archived
Short summary
Short summary
There is confusion in the literature on interactions of dissolved phosphate and sulphate with the alkalinity of seawater. These do play a minor role in the titration to determine alkalinity. However, a perceived biological role of phosphate and sulphate has been suggested in the value of Oceanic Alkalinity. We think this is mistaken. Some other minor issues additionally have led to confusion on the exact description of Alkalinity. We treat those against a theoretical and empirical background.
Pradeebane Vaittinada Ayar, Laurent Bopp, Jim R. Christian, Tatiana Ilyina, John P. Krasting, Roland Séférian, Hiroyuki Tsujino, Michio Watanabe, Andrew Yool, and Jerry Tjiputra
Earth Syst. Dynam., 13, 1097–1118, https://doi.org/10.5194/esd-13-1097-2022, https://doi.org/10.5194/esd-13-1097-2022, 2022
Short summary
Short summary
The El Niño–Southern Oscillation is the main driver for the natural variability of global atmospheric CO2. It modulates the CO2 fluxes in the tropical Pacific with anomalous CO2 influx during El Niño and outflux during La Niña. This relationship is projected to reverse by half of Earth system models studied here under the business-as-usual scenario. This study shows models that simulate a positive bias in surface carbonate concentrations simulate a shift in the ENSO–CO2 flux relationship.
Gilles Reverdin, Claire Waelbroeck, Catherine Pierre, Camille Akhoudas, Giovanni Aloisi, Marion Benetti, Bernard Bourlès, Magnus Danielsen, Jérôme Demange, Denis Diverrès, Jean-Claude Gascard, Marie-Noëlle Houssais, Hervé Le Goff, Pascale Lherminier, Claire Lo Monaco, Herlé Mercier, Nicolas Metzl, Simon Morisset, Aïcha Naamar, Thierry Reynaud, Jean-Baptiste Sallée, Virginie Thierry, Susan E. Hartman, Edward W. Mawji, Solveig Olafsdottir, Torsten Kanzow, Anton Velo, Antje Voelker, Igor Yashayaev, F. Alexander Haumann, Melanie J. Leng, Carol Arrowsmith, and Michael Meredith
Earth Syst. Sci. Data, 14, 2721–2735, https://doi.org/10.5194/essd-14-2721-2022, https://doi.org/10.5194/essd-14-2721-2022, 2022
Short summary
Short summary
The CISE-LOCEAN seawater stable isotope dataset has close to 8000 data entries. The δ18O and δD isotopic data measured at LOCEAN have uncertainties of at most 0.05 ‰ and 0.25 ‰, respectively. Some data were adjusted to correct for evaporation. The internal consistency indicates that the data can be used to investigate time and space variability to within 0.03 ‰ and 0.15 ‰ in δ18O–δD17; comparisons with data analyzed in other institutions suggest larger differences with other datasets.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Steve D. Jones, Maren K. Karlsen, Claire Lo Monaco, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 13, 5565–5589, https://doi.org/10.5194/essd-13-5565-2021, https://doi.org/10.5194/essd-13-5565-2021, 2021
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2021 is the third update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 989 hydrographic cruises covering the world's oceans from 1972 to 2020.
Ingo Bethke, Yiguo Wang, François Counillon, Noel Keenlyside, Madlen Kimmritz, Filippa Fransner, Annette Samuelsen, Helene Langehaug, Lea Svendsen, Ping-Gin Chiu, Leilane Passos, Mats Bentsen, Chuncheng Guo, Alok Gupta, Jerry Tjiputra, Alf Kirkevåg, Dirk Olivié, Øyvind Seland, Julie Solsvik Vågane, Yuanchao Fan, and Tor Eldevik
Geosci. Model Dev., 14, 7073–7116, https://doi.org/10.5194/gmd-14-7073-2021, https://doi.org/10.5194/gmd-14-7073-2021, 2021
Short summary
Short summary
The Norwegian Climate Prediction Model version 1 (NorCPM1) is a new research tool for performing climate reanalyses and seasonal-to-decadal climate predictions. It adds data assimilation capability to the Norwegian Earth System Model version 1 (NorESM1) and has contributed output to the Decadal Climate Prediction Project (DCPP) as part of the sixth Coupled Model Intercomparison Project (CMIP6). We describe the system and evaluate its baseline, reanalysis and prediction performance.
Josué Bock, Martine Michou, Pierre Nabat, Manabu Abe, Jane P. Mulcahy, Dirk J. L. Olivié, Jörg Schwinger, Parvadha Suntharalingam, Jerry Tjiputra, Marco van Hulten, Michio Watanabe, Andrew Yool, and Roland Séférian
Biogeosciences, 18, 3823–3860, https://doi.org/10.5194/bg-18-3823-2021, https://doi.org/10.5194/bg-18-3823-2021, 2021
Short summary
Short summary
In this study we analyse surface ocean dimethylsulfide (DMS) concentration and flux to the atmosphere from four CMIP6 Earth system models over the historical and ssp585 simulations.
Our analysis of contemporary (1980–2009) climatologies shows that models better reproduce observations in mid to high latitudes. The models disagree on the sign of the trend of the global DMS flux from 1980 onwards. The models agree on a positive trend of DMS over polar latitudes following sea-ice retreat dynamics.
Luca Possenti, Ingunn Skjelvan, Dariia Atamanchuk, Anders Tengberg, Matthew P. Humphreys, Socratis Loucaides, Liam Fernand, and Jan Kaiser
Ocean Sci., 17, 593–614, https://doi.org/10.5194/os-17-593-2021, https://doi.org/10.5194/os-17-593-2021, 2021
Short summary
Short summary
A Seaglider was deployed for 8 months in the Norwegian Sea mounting an oxygen and, for the first time, a CO2 optode and a chlorophyll fluorescence sensor. The oxygen and CO2 data were used to assess the spatial and temporal variability and calculate the net community production, N(O2) and N(CT). The dataset was used to calculate net community production from inventory changes, air–sea flux, diapycnal mixing and entrainment.
Tobias Reiner Vonnahme, Emma Persson, Ulrike Dietrich, Eva Hejdukova, Christine Dybwad, Josef Elster, Melissa Chierici, and Rolf Gradinger
The Cryosphere, 15, 2083–2107, https://doi.org/10.5194/tc-15-2083-2021, https://doi.org/10.5194/tc-15-2083-2021, 2021
Short summary
Short summary
We describe the impact of subglacial discharge in early spring on a sea-ice-covered fjord on Svalbard by comparing a site influenced by a shallow tidewater glacier with two reference sites. We found a moderate under-ice phytoplankton bloom at the glacier front, which we attribute to subglacial upwelling of nutrients; a strongly stratified surface layer; and higher light penetration. In contrast, sea ice algae biomass was limited by low salinities and brine volumes.
Hanna Lee, Helene Muri, Altug Ekici, Jerry Tjiputra, and Jörg Schwinger
Earth Syst. Dynam., 12, 313–326, https://doi.org/10.5194/esd-12-313-2021, https://doi.org/10.5194/esd-12-313-2021, 2021
Short summary
Short summary
We assess how three different geoengineering methods using aerosol affect land ecosystem carbon storage. Changes in temperature and precipitation play a large role in vegetation carbon uptake and storage, but our results show that increased levels of CO2 also play a considerable role. We show that there are unforeseen regional consequences under geoengineering applications, and these consequences should be taken into account in future climate policies before implementing them.
Jon Olafsson, Solveig R. Olafsdottir, Taro Takahashi, Magnus Danielsen, and Thorarinn S. Arnarson
Biogeosciences, 18, 1689–1701, https://doi.org/10.5194/bg-18-1689-2021, https://doi.org/10.5194/bg-18-1689-2021, 2021
Short summary
Short summary
The Atlantic north of 50° N is an intense ocean sink area for atmospheric CO2. Observations in the vicinity of Iceland reveal a previously unrecognized Arctic contribution to the North Atlantic CO2 sink. Sustained CO2 influx to waters flowing from the Arctic Ocean is linked to their excess alkalinity derived from sources in the changing Arctic. The results relate to the following question: will the North Atlantic continue to absorb CO2 in the future as it has in the past?
Meike Becker, Are Olsen, Peter Landschützer, Abdirhaman Omar, Gregor Rehder, Christian Rödenbeck, and Ingunn Skjelvan
Biogeosciences, 18, 1127–1147, https://doi.org/10.5194/bg-18-1127-2021, https://doi.org/10.5194/bg-18-1127-2021, 2021
Short summary
Short summary
We developed a simple method to refine existing open-ocean maps towards different coastal seas. Using a multi-linear regression, we produced monthly maps of surface ocean fCO2 in the northern European coastal seas (the North Sea, the Baltic Sea, the Norwegian Coast and the Barents Sea) covering a time period from 1998 to 2016. Based on this fCO2 map, we calculate trends in surface ocean fCO2, pH and the air–sea gas exchange.
Bogi Hansen, Karin Margretha Húsgarð Larsen, Hjálmar Hátún, Steingrímur Jónsson, Sólveig Rósa Ólafsdóttir, Andreas Macrander, William Johns, N. Penny Holliday, and Steffen Malskær Olsen
Ocean Sci. Discuss., https://doi.org/10.5194/os-2021-14, https://doi.org/10.5194/os-2021-14, 2021
Preprint withdrawn
Short summary
Short summary
Compared to other freshwater sources, runoff from Iceland is small and usually flows into the Nordic Seas. Under certain wind conditions, it can, however, flow into the Iceland Basin and this occurred after 2014, when this region had already freshened from other causes. This explains why the surface freshening in this area became so extreme. The local and shallow character of this runoff allows it to have a disproportionate effect on vertical mixing, winter convection, and biological production.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Henry C. Bittig, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Camilla S. Landa, Siv K. Lauvset, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, and Ryan J. Woosley
Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, https://doi.org/10.5194/essd-12-3653-2020, 2020
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2020 is the second update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 946 hydrographic cruises covering the world's oceans from 1972 to 2019.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Øyvind Seland, Mats Bentsen, Dirk Olivié, Thomas Toniazzo, Ada Gjermundsen, Lise Seland Graff, Jens Boldingh Debernard, Alok Kumar Gupta, Yan-Chun He, Alf Kirkevåg, Jörg Schwinger, Jerry Tjiputra, Kjetil Schanke Aas, Ingo Bethke, Yuanchao Fan, Jan Griesfeller, Alf Grini, Chuncheng Guo, Mehmet Ilicak, Inger Helene Hafsahl Karset, Oskar Landgren, Johan Liakka, Kine Onsum Moseid, Aleksi Nummelin, Clemens Spensberger, Hui Tang, Zhongshi Zhang, Christoph Heinze, Trond Iversen, and Michael Schulz
Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, https://doi.org/10.5194/gmd-13-6165-2020, 2020
Short summary
Short summary
The second version of the coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. The temperature and precipitation patterns has improved compared to NorESM1. The model reaches present-day warming levels to within 0.2 °C of observed temperature but with a delayed warming during the late 20th century. Under the four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the warming in the period of 2090–2099 compared to 1850–1879 reaches 1.3, 2.2, 3.1, and 3.9 K.
Malek Belgacem, Jacopo Chiggiato, Mireno Borghini, Bruno Pavoni, Gabriella Cerrati, Francesco Acri, Stefano Cozzi, Alberto Ribotti, Marta Álvarez, Siv K. Lauvset, and Katrin Schroeder
Earth Syst. Sci. Data, 12, 1985–2011, https://doi.org/10.5194/essd-12-1985-2020, https://doi.org/10.5194/essd-12-1985-2020, 2020
Short summary
Short summary
Long-term time series are a fundamental prerequisite to understanding and detecting climate shifts and trends. In marginal seas, such as the Mediterranean Sea, there are still monitoring gaps. An extensive dataset of dissolved inorganic nutrient profiles were collected between 2004 and 2017 in the western Mediterranean Sea to provide to the scientific community a publicly available, long-term, quality-controlled, internally consistent new database.
Cited articles
Allison, N., Cohen, I., Finch, A., Erez, J., and Tudhope, A.: Corals
concentrate dissolved inorganic carbon to facilitate calcification, Nat.
Commun., 5, 5741, https://doi.org/10.1038/ncomms6741, 2014. a
Anderson, L. G.: Dissolved inorganic carbon, pH, alkalinity, temperature,
salinity and other variables collected from discrete sample and profile
observations using CTD, bottle and other instruments from the LANCE in the
Barents Sea from 1986-07-19 to 1986-07-26 (NCEI Accession 0113910), NOAA
National Centers for Environmental Information [data set],
https://doi.org/10.3334/cdiac/otg.carina_58la19860719,
2013a. a
Anderson, L. G.: Dissolved inorganic carbon, pH, alkalinity, temperature,
salinity and other variables collected from discrete sample and profile
observations using CTD, bottle and other instruments from the ODEN in the
Arctic Ocean, Barents Sea and others from 2002-04-20 to 2002-06-06 (NCEI
Accession 0113590), NOAA National Centers for Environmental Information [data set],
https://doi.org/10.3334/cdiac/otg.carina_77dn20020420,
2013b. a
Anderson, L. G. and Olsen, A.: Air–sea flux of anthropogenic carbon dioxide
in the North Atlantic, Geophys. Res. Lett., 29, 16-1–16-4,
https://doi.org/10.1029/2002GL014820, 2002. a, b, c
Anderson, L. G., Blindheim, J., and Rey, F.: Dissolved inorganic carbon, pH,
alkalinity, temperature, salinity and other variables collected from discrete
sample and profile observations using CTD, bottle and other instruments from
the JOHAN HJORT in the North Greenland Sea and Norwegian Sea from 1997-04-14
to 1997-05-22 (NCEI Accession 0113563), NOAA National Centers for
Environmental Information [data set],
https://doi.org/10.3334/cdiac/otg.carina_58jh19970414,
2013a. a
Anderson, L. G., Johannessen, T., and Rey, F.: Dissolved inorganic carbon, pH,
alkalinity, temperature, salinity and other variables collected from discrete
sample and profile observations using CTD, bottle and other instruments from
the JOHAN HJORT in the North Greenland Sea and Norwegian Sea from 1998-08-01
to 1998-08-23 (NCEI Accession 0113758), NOAA National Centers for
Environmental Information [data set],
https://doi.org/10.3334/cdiac/otg.carina_58jh19980801,
2013b. a
Arora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L.,
Flato, G. M., Kharin, V. V., Lee, W. G., and Merryfield, W. J.: Carbon
emission limits required to satisfy future representative concentration
pathways of greenhouse gases, Geophys. Res. Lett., 38, L05805,
https://doi.org/10.1029/2010GL046270, 2011. a, b
Bellerby, R. G. J. and Smethie, W. M. J.: Dissolved inorganic carbon,
alkalinity, temperature, salinity and other variables collected from discrete
sample and profile observations using CTD, bottle and other instruments from
the KNORR in the Barents Sea, North Atlantic Ocean and others from 2002-05-30
to 2002-07-01 (NCEI Accession 0113569), NOAA National Centers for
Environmental Information [data set],
https://doi.org/10.3334/cdiac/otg.carina_316n20020530, 2013. a
Bellerby, R. G. J., Olsen, A., Furevik, T., and Anderson, L. G.: Response of
the Surface Ocean CO2 System in the Nordic Seas and Northern North Atlantic
to Climate Change, 189–197, edited by: Drange, H., Dokken, T., Furevik, T., Gerdes, R., and Berger W., American Geophysical Union (AGU),
https://doi.org/10.1029/158GM13, 2005. a, b, c
Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev., 6, 687–720, https://doi.org/10.5194/gmd-6-687-2013, 2013. a
Bleck, R. and Smith, L. T.: A wind-driven isopycnic coordinate model of the
north and equatorial Atlantic Ocean: 1. Model development and supporting
experiments, J. Geophys. Res.-Oceans, 95, 3273–3285,
https://doi.org/10.1029/JC095iC03p03273, 1990. a
Blindheim, J.: Arctic intermediate water in the Norwegian sea, Deep-Sea
Res. Pt. A, 37, 1475–1489,
https://doi.org/10.1016/0198-0149(90)90138-L, 1990. a
Blindheim, J. and Østerhus, S.: The Nordic Seas, Main Oceanographic
Features, 11–37, edited by: Drange, H., Dokken, T., Furevik, T., Gerdes, R., and Berger W., American Geophysical Union (AGU),
https://doi.org/10.1029/158GM03, 2013. a, b
Blindheim, J. and Rey, F.: Water-mass formation and distribution in the Nordic
Seas during the 1990s, ICES J. Mar. Sci., 61, 846–863,
https://doi.org/10.1016/j.icesjms.2004.05.003, 2004. a, b
Bockmon, E. E. and Dickson, A. G.: An inter-laboratory comparison assessing the
quality of seawater carbon dioxide measurements, Mar. Chem., 171,
36–43, https://doi.org/10.1016/j.marchem.2015.02.002, 2015. a
Booth, B. B. B., Bernie, D., McNeall, D., Hawkins, E., Caesar, J., Boulton, C., Friedlingstein, P., and Sexton, D. M. H.: Scenario and modelling uncertainty in global mean temperature change derived from emission-driven global climate models, Earth Syst. Dynam., 4, 95–108, https://doi.org/10.5194/esd-4-95-2013, 2013. a, b
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, 2013. a
Brakstad, A., Våge, K., Håvik, L., and Moore, G. W. K.: Water Mass
Transformation in the Greenland Sea during the Period 1986–2016, J. Phys. Oceanogr., 49, 121–140, https://doi.org/10.1175/JPO-D-17-0273.1, 2019. a, b
Brewer, P. G., Takahashi, T., and Williams, R. T.: Partial pressure (or
fugacity) of carbon dioxide, dissolved inorganic carbon (DIC), total
alkalinity, water temperature, salinity, dissolved oxygen concentration and
other variables collected from discrete sample and profile observations
during R/V Knorr TTO-NAS cruises in the North Atlantic Ocean from 1981-04-01
to 1981-10-19 (NCEI Accession 0000733), NOAA National Centers for
Environmental Information [data set], https://doi.org/10.3334/cdiac/otg.ndp004,
2010. a
Buhl-Mortensen, L., Olafsdottir, S. H., Buhl-Mortensen, P., Burgos, J. M., and
Ragnarsson, S. A.: Distribution of nine cold-water coral species
(Scleractinia and Gorgonacea) in the cold temperate North Atlantic: effects
of bathymetry and hydrography, Hydrobiologia, 759, 39–61,
https://doi.org/10.1007/s10750-014-2116-x, 2015. a
Caldeira, K. and Wickett, M. E.: Anthropogenic carbon and ocean pH, Nature,
425, 365–365, https://doi.org/10.1038/425365a, 2003. a
Chafik, L. and Rossby, T.: Volume, Heat, and Freshwater Divergences in the
Subpolar North Atlantic Suggest the Nordic Seas as Key to the State of the
Meridional Overturning Circulation, Geophys. Res. Lett., 46,
4799–4808, https://doi.org/10.1029/2019GL082110, 2019. a
Chierici, M. and Fransson, A.: Seasonal variability of the marine CO2 system
and nutrients in the Atlantic water inflow to the Arctic Ocean in 2014, The Norwegian Marine Data Centre [data set],
https://doi.org/10.21335/NMDC-154415697, 2019. a
Chierici, M., Sørensen, K., Johannessen, T., Børsheim, K. Y., Olsen,
A., Yakushev, E., Omar, A., and Blakseth, T. A.: Tillførselprogrammet 2011,
Overvåking av havsforsuring av norske farvann, Rapport, Klif, TA2936-2012,
Tech. rep., http://hdl.handle.net/11250/215966 (last access: 6 February 2022), 2012. a, b
Chierici, M., Sørensen, K., Johannessen, T., Børsheim, K. Y., Olsen, A., Yakushev, E., Omar, A., Skjelvan, I., Norli, M., and Lauvset,
S.:
Tillførselprogrammet 2012, Overvåking av havsforsuring av norske farvann.
Rapport, Klif, TA3043-2013, Tech. rep., http://hdl.handle.net/11250/216398 (last access: 6 February 2022), 2013. a
Chierici, M., Skjelvan, I., Bellerby, R., Norli, M., Lunde Fonnes, L., Lødemel Hodal, H., Børsheim, K. Y., Lauvset, S. K., Johannessen, T., Sørensen,
K., and Yakushev, E: Overvåking av havforsuring av norske farvann. Rapport,
Miljødirektoratet M-218, Tech. rep., https://www.miljodirektoratet.no/publikasjoner/2016/oktober-2016/overvaking-av-havforsuring-i-norske-farvann/ (last access: 6 February 2022), 2014. a
Chierici, M., Skjelvan, I., Norli, M., Lødemel, H. H., Lunde, L. F.,
Sørensen, K., Yakushev, E., Bellerby, R., King, A. L., Lauvset, S. K., Johannessen, T., and Børsheim, K. Y.: Overvåking av havforsuring i norske farvann i 2014,
Rapport, Miljødirektoratet, M-357, Tech. rep., https://www.miljodirektoratet.no/publikasjoner/2015/juli-2015/overvaking-av-havforsuring-i-norske-farvann-i-2014/ (last access: 6 February 2022), 2015. a
Chierici, M., Skjelvan, I., Norli, M., Børsheim, K., Lauvset, S.,
Lødemel, H., Sørensen, K., King, A., Kutti, T., Renner, A., Omar, A.,
and Johannessen, T.: Overvåking av havforsuring i norske farvann i 2015,
Rapport, Miljødirektoratet, M-573, Tech. rep., https://www.miljodirektoratet.no/publikasjoner/2016/juni-2016/overvaking-av-havforsuring-i-norske-farvann-i-2015/ (last access: 6 February 2022), 2016. a
Chierici, M., Skjelvan, I., Norli, M., Jones, E., Børsheim, K. Y., Lauvset,
S. K., Lødemel, H. H., Sørensen, K., King, A. L., and Johannessen,
T.: Overvåking
av havforsuring i norske farvann i 2016, Rapport, Miljødirektoratet,
M-776, Tech. rep., https://www.miljodirektoratet.no/publikasjoner/2017/september-2017/overvaking-av-havforsuring-i-norske-farvann-i-2016/ (last access: 6 February 2022), 2017. a
Chierici, M., Jones, E., and Lødemel, H. H.: Interannual variability of the
marine CO2 system and nutrients in the Barents Sea from 2011 to 2017, Nordic Marine Data Centre [data set],
https://doi.org/10.21335/NMDC-1738969988, 2019a. a
Chierici, M., Jones, E., and Lødemel, H. H.: Interannual variability of the
marine CO2 system and nutrients in the Norwegian Sea from 2011 to 2017, Nordic Marine Data Centre [data set],
https://doi.org/10.21335/NMDC-1939716216, 2019b. a
Chierici, M., Vernet, M., Fransson, A., and Børsheim, K. Y.: Net Community
Production and Carbon Exchange From Winter to Summer in the Atlantic Water
Inflow to the Arctic Ocean, Front. Mar. Sci., 6, 528,
https://doi.org/10.3389/fmars.2019.00528, 2019c. a
Dickson, A. G., Sabine, C. L., and Christian, J. R. (Eds.): Guide to best practices for ocean CO2 measurement, Sidney, British Columbia, North Pacific Marine Science Organization, 191 pp., PICES Special Publication 3; IOCCP Report 8, https://doi.org/10.25607/OBP-1342, 2007. a
Dickson, A. G.: Standard potential of the reaction: , and and the standard acidity constant of the ion in
synthetic sea water from 273.15 to 318.15 K, J. Chem.
Thermodyn., 22, 113–127,
https://doi.org/10.1016/0021-9614(90)90074-Z, 1990. a
Dickson, R. R. and Brown, J.: The production of North Atlantic Deep Water:
Sources, rates, and pathways, J. Geophys. Res.-Oceans, 99,
12319–12341, https://doi.org/10.1029/94JC00530, 1994. a
Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean
Acidification: The Other CO2 Problem, Annu. Rev. Mar. Sci., 1,
169–192, https://doi.org/10.1146/annurev.marine.010908.163834, 2009. a
Doney, S. C., Busch, D. S., Cooley, S. R., and Kroeker, K. J.: The Impacts of
Ocean Acidification on Marine Ecosystems and Reliant Human Communities,
Annu. Rev. Env. Resour., 45, 83–112,
https://doi.org/10.1146/annurev-environ-012320-083019, 2020. a
Doo, S. S., Kealoha, A., Andersson, A., Cohen, A. L., Hicks, T. L., Johnson,
Z. I., Long, M. H., McElhany, P., Mollica, N., Shamberger, K. E. F.,
Silbiger, N. J., Takeshita, Y., and Busch, D. S.: The challenges of
detecting and attributing ocean acidification impacts on marine ecosystems,
ICES J. Mar. Sci., 77, 2411–2422, https://doi.org/10.1093/icesjms/fsaa094, 2020. a
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O.,
Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L.,
Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A.,
Cugnet, D., de Noblet, N., Duvel, J.-P., Ethé, P., Fairhead, L.,
Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L.,
Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J.,
Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A.,
Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F.,
Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J.,
Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D.,
Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.: Climate
change projections using the IPSL-CM5 Earth System Model: from
CMIP3 to CMIP5, Clim. Dynam., 40, 2123–2165,
https://doi.org/10.1007/s00382-012-1636-1, 2013. a, b
Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W.,
Shevliakova, E. N., Stouffer, R. J., Cooke, W., Dunne, K. A., Harrison,
M. J., Krasting, J. P., Malyshev, S. L., Milly, P. C. D., Phillips, P. J.,
Sentman, L. T., Samuels, B. L., Spelman, M., Winton, M., Wittenberg, A. T.,
and Zadeh, N.: GFDL's ESM2 global coupled climate-carbon Earth System
Models Part I: Physical Formulation and Baseline Simulation
Characteristics, J. Climate, 25, 6646–6665, https://doi.org/10.1175/JCLI-D-11-00560.1,
2013a. a, b, c
Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W.,
Shevliakova, E. N., Stouffer, R. J., Cooke, W., Dunne, K. A., Harrison,
M. J., Krasting, J. P., Malyshev, S. L., Milly, P. C. D., Phillips, P. J.,
Sentman, L. T., Samuels, B. L., Spelman, M., Winton, M., Wittenberg, A. T.,
and Zadeh, N.: GFDL's ESM2 global coupled climate-carbon Earth System
Models Part II: Carbon System Formulation and Baseline
Simulation Characteristics, J. Climate, 26, 2247–2267,
https://doi.org/10.1175/JCLI-D-12-00150.1, 2013b. a, b, c
EMODnet: Seabed habitats, https://www.emodnet-seabedhabitats.eu, last access: 19 May 2020. a
Fassbender, A. J., Sabine, C. L., and Palevsky, H. I.: Nonuniform ocean
acidification and attenuation of the ocean carbon sink, Geophys. Res.
Lett., 44, 8404–8413, https://doi.org/10.1002/2017GL074389, 2017. a
Fassbender, A. J., Orr, J. C., and Dickson, A. G.: Technical note: Interpreting pH changes, Biogeosciences, 18, 1407–1415, https://doi.org/10.5194/bg-18-1407-2021, 2021. a, b
Frankignoulle, M.: A complete set of buffer factors for acid/base CO2 system in
seawater, J. Marine Syst., 5, 111–118,
https://doi.org/10.1016/0924-7963(94)90026-4, 1994. a
Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A.,
Liddicoat, S. K., and Knutti, R.: Uncertainties in CMIP5 Climate Projections
due to Carbon Cycle Feedbacks, J. Climate, 27, 511–526,
https://doi.org/10.1175/JCLI-D-12-00579.1, 2014. a, b
Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S., Aragão, L. E. O. C., Arneth, A., Arora, V., Bates, N. R., Becker, M., Benoit-Cattin, A., Bittig, H. C., Bopp, L., Bultan, S., Chandra, N., Chevallier, F., Chini, L. P., Evans, W., Florentie, L., Forster, P. M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V., Houghton, R. A., Ilyina, T., Jain, A. K., Joetzjer, E., Kadono, K., Kato, E., Kitidis, V., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland, G., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P. I., Pierrot, D., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Smith, A. J. P., Sutton, A. J., Tanhua, T., Tans, P. P., Tian, H., Tilbrook, B., van der Werf, G., Vuichard, N., Walker, A. P., Wanninkhof, R., Watson, A. J., Willis, D., Wiltshire, A. J., Yuan, W., Yue, X., and Zaehle, S.: Global Carbon Budget 2020, Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, 2020. a
Friis, K., Körtzinger, A., and Wallace, D. W. R.: The salinity normalization
of marine inorganic carbon chemistry data, Geophys. Res. Lett., 30, 1085,
https://doi.org/10.1029/2002GL015898, 2003. a
Fröb, F., Olsen, A., Becker, M., Chafik, L., Johannessen, T., Reverdin, G.,
and Omar, A.: Wintertime fCO2 Variability in the Subpolar North Atlantic
Since 2004, Geophys. Res. Lett., 46, 1580–1590,
https://doi.org/10.1029/2018GL080554, 2019. a
Frölicher, T. L., Rodgers, K. B., Stock, C. A., and Cheung, W. W. L.: Sources
of uncertainties in 21st century projections of potential ocean ecosystem
stressors, Global Biogeochem. Cy., 30, 1224–1243,
https://doi.org/10.1002/2015GB005338, 2016. a
García-Ibáñez, M. I., Bates, N. R., Bakker, D. C., Fontela, M., and Velo,
A.: Cold-water corals in the Subpolar North Atlantic Ocean exposed to
aragonite undersaturation if the 2 ∘C global warming target is not met,
Global Planet. Change, 201, 103480,
https://doi.org/10.1016/j.gloplacha.2021.103480, 2021. a
Gattuso, J.-P. and Hansson, L.: Ocean acidification: background and history, in:
Ocean Acidification, edited: Gattuso, J.-P. and Hansson, L., 1–20, Oxford University
Press, Oxford, UK, https://doi.org/10.1093/oso/9780199591091.003.0006, 2011. a
Gehlen, M., Séférian, R., Jones, D. O. B., Roy, T., Roth, R., Barry, J., Bopp, L., Doney, S. C., Dunne, J. P., Heinze, C., Joos, F., Orr, J. C., Resplandy, L., Segschneider, J., and Tjiputra, J.: Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk, Biogeosciences, 11, 6955–6967, https://doi.org/10.5194/bg-11-6955-2014, 2014. a
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J.,
Bóttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K.,
Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh, L.,
Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan,
F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R.,
Segschneider, J., Six, K. D., Stockhause, M., Timmreck, C., Wegner, J.,
Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and Stevens, B.:
Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations
for the Coupled Model Intercomparison Project phase 5, J.
Adv. Model. Earth Sy., 5, 572–597, https://doi.org/10.1002/jame.20038,
2013. a, b
Giraudeau, J., Hulot, V., Hanquiez, V., Devaux, L., Howa, H., and Garlan, T.: A
survey of the summer coccolithophore community in the western Barents Sea,
J. Marine Syst., 158, 93–105,
https://doi.org/10.1016/j.jmarsys.2016.02.012, 2016. a, b
Guinotte, J. M., Orr, J., Cairns, S., Freiwald, A., Morgan, L., and George, R.:
Will human-induced changes in seawater chemistry alter the distribution of
deep-sea scleractinian corals?, Front. Ecol. Environ., 4,
141–146, https://doi.org/10.1890/1540-9295(2006)004[0141:WHCISC]2.0.CO;2, 2006. a, b
He, Y.-C., Tjiputra, J., Langehaug, H. R., Jeansson, E., Gao, Y., Schwinger,
J., and Olsen, A.: A Model-Based Evaluation of the Inverse Gaussian
Transit-Time Distribution Method for Inferring Anthropogenic Carbon Storage
in the Ocean, J. Geophys. Res.-Oceans, 123, 1777–1800,
https://doi.org/10.1002/2017JC013504, 2018. a
Hennige, S. J., Wicks, L. C., Kamenos, N. A., Perna, G., Findlay, H. S., and
Roberts, J. M.: Hidden impacts of ocean acidification to live and dead coral
framework, P. Roy. Soc. B, 282,
20150990, https://doi.org/10.1098/rspb.2015.0990, 2015. a
Holliday, N. P., Hughes, S. L., Bacon, S., Beszczynska-Möller, A., Hansen, B.,
Lavín, A., Loeng, H., Mork, K. A., Østerhus, S., Sherwin, T., and
Walczowski, W.: Reversal of the 1960s to 1990s freshening trend in the
northeast North Atlantic and Nordic Seas, Geophys. Res. Lett., 35, L03614,
https://doi.org/10.1029/2007GL032675, 2008. a, b
Jeansson, E., Olsen, A., Eldevik, T., Skjelvan, I., Omar, A. M., Lauvset,
S. K., Nilsen, J. E. Ø., Bellerby, R. G. J., Johannessen, T., and Falck,
E.: The Nordic Seas carbon budget: Sources, sinks, and uncertainties, Global
Biogeochem. Cy., 25, GB4010, https://doi.org/10.1029/2010GB003961, 2011. a
Jeansson, E., Olsen, A., and Jutterström, S.: Arctic Intermediate Water in the
Nordic Seas, 1991–2009, Deep-Sea Res. Pt. I, 128, 82–97, https://doi.org/10.1016/j.dsr.2017.08.013, 2017. a
Jeansson, E., Olsen, A., Lauvset, S. K., Brakstad, A., Jackson, K., Lunde,
L. F., He, Y., and Onarheim, T.: Discrete profile measurements of dissolved
inorganic carbon, total alkalinity, other hydrographic and chemical data
obtained during the R/V G.O. Sars Repeat Hydrography Cruise in the Greenland
Sea and Iceland Sea: GO-SHIP Section 75N (EXPOCODE 58GS20160802), from
2016-08-02 to 2016-08-12 (NCEI Accession 0174834), NOAA National Centers for
Environmental Information [data set], https://doi.org/10.25921/3kjg-ak47,
2018. a
Johannessen, T.: Dissolved inorganic carbon, alkalinity, temperature, salinity
and other variables collected from discrete sample and profile observations
using CTD, bottle and other instruments from the HAKON MOSBY in the North
Greenland Sea from 1996-11-21 to 1996-11-30 (NCEI Accession 0113544), NOAA
National Centers for Environmental Information [data set],
https://doi.org/10.3334/cdiac/otg.carina_58aa19961121,
2013a. a
Johannessen, T.: Dissolved inorganic carbon, alkalinity, temperature, salinity
and other variables collected from discrete sample and profile observations
using CTD, bottle and other instruments from the HAKON MOSBY in the North
Greenland Sea and Norwegian Sea from 1997-02-25 to 1997-03-24 (NCEI Accession
0113545), NOAA National Centers for Environmental Information [data set],
https://doi.org/10.3334/cdiac/otg.carina_58aa19970225,
2013b. a
Johannessen, T. and Golmen, L. G.: Dissolved inorganic carbon, alkalinity,
temperature, salinity and other variables collected from discrete sample and
profile observations using CTD, bottle and other instruments from the HAKON
MOSBY in the North Greenland Sea and Norwegian Sea from 1994-08-26 to
1994-09-10 (NCEI Accession 0113542), NOAA National Centers for Environmental
Information [data set], https://doi.org/10.3334/cdiac/otg.carina_58aa19940826,
2013. a
Johannessen, T. and Olsen, A.: Dissolved inorganic carbon, alkalinity,
temperature, salinity and other variables collected from discrete sample and
profile observations during the G.O. SARS cruise along GO-SHIP Repeat Section
A75N (EXPOCODE 58GS200309) in the North Atlantic Ocean, North Greenland Sea
and Norwegian Sea from 2003-09-22 to 2003-10-13 (NCEI Accession 0113752).
NOAA National Centers for Environmental Information [data set],
https://doi.org/10.3334/cdiac/otg.carina_58gs20030922, 2013. a
Johannessen, T. and Simonsen, K.: Dissolved inorganic carbon, alkalinity,
temperature, salinity and other variables collected from discrete sample and
profile observations using CTD, bottle and other instruments from the HAKON
MOSBY in the North Greenland Sea and Norwegian Sea from 1998-03-08 to
1998-03-24 (NCEI Accession 0113546), NOAA National Centers for Environmental
Information [data set], https://doi.org/10.3334/cdiac/otg.carina_58aa19980308,
2013. a
Johannessen, T., Skjelvan, I., and Rey, F.: Dissolved inorganic carbon,
alkalinity, temperature, salinity and other variables collected from discrete
sample and profile observations using CTD, bottle and other instruments from
the JOHAN HJORT in the North Greenland Sea and Norwegian Sea from 1994-05-25
to 1994-06-06 (NCEI Accession 0113954), NOAA National Centers for
Environmental Information [data set],
https://doi.org/10.3334/cdiac/otg.carina_58jh19940525,
2013a. a
Johannessen, T., Skjelvan, I., and Watson, A. J.: Dissolved inorganic carbon,
alkalinity, temperature, salinity and other variables collected from discrete
sample and profile observations using CTD, bottle and other instruments from
the JAMES CLARK ROSS in the North Greenland Sea and Norwegian Sea from
1996-07-20 to 1996-08-22 (NCEI Accession 0113757), NOAA National Centers for
Environmental Information [data set],
https://doi.org/10.3334/cdiac/otg.carina_74jc19960720, 2013b. a
Johannessen, T., Soiland, H., Thingstad, T. F., Bellerby, R. G. J., and Olsen,
A.: Dissolved inorganic carbon, alkalinity, temperature, salinity and other
variables collected from discrete sample and profile observations using CTD,
bottle and other instruments from the G.O. SARS in the Barents Sea, North
Atlantic Ocean and others from 2009-05-28 to 2009-08-11 (NCEI Accession
0114433), NOAA National Centers for Environmental Information [data set],
https://doi.org/10.25921/3q88-gs40, 2013c. a
Jones, E., Chierici, M., Skjelvan, I., Norli, M., Børsheim, K. Y., Lødemel, H. H., Kutti, T., Sørensen, K., King, A. L., Jackson, K., and de Lange, T.: Monitoring of
the ocean acidification in Norwegian seas in 2017, Report,
Miljødirektoratet, M-1072, Tech. rep., https://www.miljodirektoratet.no/publikasjoner/2018/juli-2018/monitoring-ocean-acidification-in-norwegian-seas-in-2017/ (last access: 6 February 2022), 2018. a
Jones, E., Chierici, M., Skjelvan, I., Norli, M., Børsheim, K. Y.,
Lødemel, H. H., Sørensen, K., King, A. L., Lauvset, S., Jackson, K.,
de Lange, T., Johannsessen, T., and Mourgues, C.: Monitoring ocean acidification in
Norwegian seas in 2018, Rapport, Miljødirektoratet, M-1417, Tech. rep., https://www.miljodirektoratet.no/publikasjoner/2019/desember-2019/monitoring-ocean-acidification-in-norwegian-seas-in-2018/ (last access: 6 February 2022),
2019. a
Jones, E., Chierici, M., Skjelvan, I., Norli, M., Frigstad, H., Børsheim,
K. Y., Lødemel, H. H., Kutti, T., King, A. L., Sørensen, K., Lauvset,
S. K., Jackson-Misje, K., Apelthun, L., de Lange, T., Johannsessen,
T., Mourgues, C., and Bellerby, R.: Monitoring ocean acidification in Norwegian seas in
2019, Rapport, Miljødirektoratet, M-1735, Tech. rep., https://www.miljodirektoratet.no/publikasjoner/2020/juli-2020/monitoring-ocean-acidification-in-norwegian-seas-in-2019/ (last access: 6 February 2022), 2020. a, b
Jones, E. P., Azetsu-Scott, K., Aagaard, K., Carmack, E., and Swift, J. H.:
Dissolved inorganic carbon, alkalinity, temperature, salinity and other
variables collected from discrete sample and profile observations using CTD,
bottle and other instruments from the LOUIS S. ST. LAURENT in the Arctic
Ocean, Beaufort Sea and North Greenland Sea from 1994-07-24 to 1994-09-01
(NCEI Accession 0113983), NOAA National Centers for Environmental
Information [data set], https://doi.org/10.3334/cdiac/otg.carina_18sn19940724,
2013. a
Jutterström, S. and Jeansson, E.: Anthropogenic carbon in the East Greenland
Current, Prog. Oceanogr., 78, 29–36,
https://doi.org/10.1016/j.pocean.2008.04.001, 2008. a
Karstensen, J., Schlosser, P., Wallace, D. W. R., Bullister, J. L., and
Blindheim, J.: Water mass transformation in the Greenland Sea during the
1990s, J. Geophys. Res.-Oceans, 110, C07022,
https://doi.org/10.1029/2004JC002510, 2005. a
Keeling, C. D., Brix, H., and Gruber, N.: Seasonal and long-term dynamics of
the upper ocean carbon cycle at Station ALOHA near Hawaii, Global
Biogeochem. Cy., 18, GB4006, https://doi.org/10.1029/2004GB002227, 2004. a
Kutti, T., Bergstad, O. A., Fosså, J. H., and Helle, K.: Cold-water coral
mounds and sponge-beds as habitats for demersal fish on the Norwegian shelf,
Deep-Sea Res. Pt. II, 99, 122–133,
https://doi.org/10.1016/j.dsr2.2013.07.021, 2014. a
Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, J. P., Gehlen, M., Ilyina, T., John, J. G., Lenton, A., Li, H., Lovenduski, N. S., Orr, J. C., Palmieri, J., Santana-Falcón, Y., Schwinger, J., Séférian, R., Stock, C. A., Tagliabue, A., Takano, Y., Tjiputra, J., Toyama, K., Tsujino, H., Watanabe, M., Yamamoto, A., Yool, A., and Ziehn, T.: Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections, Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, 2020. a
Lauvset, S. K., Gruber, N., Landschützer, P., Olsen, A., and Tjiputra, J.: Trends and drivers in global surface ocean pH over the past 3 decades, Biogeosciences, 12, 1285–1298, https://doi.org/10.5194/bg-12-1285-2015, 2015. a, b
Lauvset, S. K., Key, R. M., Olsen, A., van Heuven, S., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F. F., Suzuki, T., and Watelet, S.: A new global interior ocean mapped climatology: the 1∘ × 1∘ GLODAP version 2, Earth Syst. Sci. Data, 8, 325–340, https://doi.org/10.5194/essd-8-325-2016, 2016 (data available at: and https://www.glodap.info/index.php/mapped-data-product/, last access: 3 October 2019). a, b, c, d, e
Lauvset, S. K., Brakstad, A., Våge, K., Olsen, A., Jeansson, E., and Mork,
K. A.: Continued warming, salinification and oxygenation of the Greenland Sea
gyre, Tellus A, 70, 1–9,
https://doi.org/10.1080/16000870.2018.1476434, 2018. a, b
Lauvset, S. K., Carter, B. R., Pèrez, F. F., Jiang, L.-Q., Feely, R. A., Velo,
A., and Olsen, A.: Processes Driving Global Interior Ocean pH Distribution,
Global Biogeochem. Cy., 34, e2019GB006229,
https://doi.org/10.1029/2019GB006229, 2020. a
Lawrence Livermore National Laboratory: WCRP CMIP5, https://esgf-node.llnl.gov/search/cmip5/, last access: 20 April 2021. a
Lefèvre, N., Watson, A. J., Olsen, A., Ríos, A. F., Pérez, F. F., and
Johannessen, T.: A decrease in the sink for atmospheric CO2 in the North
Atlantic, Geophys. Res. Lett., 31, L07306, https://doi.org/10.1029/2003GL018957, 2004. a
Lenton, A., Metzl, N., Takahashi, T., Kuchinke, M., Matear, R. J., Roy, T.,
Sutherland, S. C., Sweeney, C., and Tilbrook, B.: The observed evolution of
oceanic pCO2 and its drivers over the last two decades, Global Biogeochem.
Cy., 26, GB2021, https://doi.org/10.1029/2011GB004095, 2012. a
Lewis, E. and Wallace, D. W. R.: Program Developed for CO2 System
Calculations, ORNL/CDIAC-105, Carbon Dioxide Information Analysis Center,
Oak Ridge National Laboratory, US Department of Energy, Oak Ridge,
Tennessee [code], 1998. a
Long, M. C., Lindsay, K., Peacock, S., Moore, J. K., and Doney, S. C.:
Twentieth-century oceanic carbon uptake and storage in CESM1(BGC),
J. Climate, 26, 6775–6800,
https://doi.org/10.1175/JCLI-D-12-00184.1, 2013. a, b
Lovenduski, N. S., Gruber, N., Doney, S. C., and Lima, I. D.: Enhanced CO2
outgassing in the Southern Ocean from a positive phase of the Southern
Annular Mode, Global Biogeochem. Cy., 21, GB2026,
https://doi.org/10.1029/2006GB002900, 2007. a
Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean pCO2 calculated
from dissolved inorganic carbon, alkalinity, and equations for K1 and K2:
validation based on laboratory measurements of CO2 in gas and seawater at
equilibrium, Mar. Chem., 70, 105–119,
https://doi.org/10.1016/S0304-4203(00)00022-0, 2000. a
Maier-Reimer, E., Kriest, I., Segschneider, J., and Wetzel, P.: The HAMburg
Ocean Carbon Cycle Model HAMOCC5.1 – Technical Description Release
1.1.Berichte zur Erdsystemforschung, 14., Tech. rep., http://hdl.handle.net/11858/00-001M-0000-0011-FF5C-D (last access: 6 February 2022), 2005. a
Malmberg, S. A. and Désert, J.: Hydrographic conditions in North Icelandic
waters and annual air temperature in Iceland, ICES CM 1999/LM:14, 21 pp., 1999. a
Manno, C., Bednaršek, N., Tarling, G. A., Peck, V. L., Comeau, S., Adhikari,
D., Bakker, D. C., Bauerfeind, E., Bergan, A. J., Berning, M. I., Buitenhuis,
E., Burridge, A. K., Chierici, M., Flöter, S., Fransson, A., Gardner, J.,
Howes, E. L., Keul, N., Kimoto, K., Kohnert, P., Lawson, G. L., Lischka, S.,
Maas, A., Mekkes, L., Oakes, R. L., Pebody, C., Peijnenburg, K. T., Seifert,
M., Skinner, J., Thibodeau, P. S., Wall-Palmer, D., and Ziveri, P.: Shelled
pteropods in peril: Assessing vulnerability in a high CO2 ocean,
Earth-Sci. Rev., 169, 132–145,
https://doi.org/10.1016/j.earscirev.2017.04.005, 2017. a
Marcussen, C. and Anderson, L. G.: Discrete profile measurements of carbon
dioxide, hydrographic and chemical data during the R/V Oden Lomonosov Ridge
off Greenland (LOMROG) expedition (EXPOCODE 77DN20070812) in the Arctic Ocean
from 2007-08-12 to 2007-09-19 (NCEI Accession 0170966), NOAA National Centers
for Environmental Information [data set], https://doi.org/10.7289/v52n50jb,
2018. a
McCulloch, M., Trotter, J., Montagna, P., Falter, J., Dunbar, R., Freiwald, A.,
Försterra, G., López Correa, M., Maier, C., Rüggeberg, A., and Taviani,
M.: Resilience of cold-water scleractinian corals to ocean acidification:
Boron isotopic systematics of pH and saturation state up-regulation,
Geochim. Cosmochim. Ac., 87, 21–34,
https://doi.org/10.1016/j.gca.2012.03.027, 2012. a
Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, I. G., Weaver, A. J., and Zhao, Z.-C.: Global Climate Projections, in: Climate Change 2007: The
Physical Science Basis. Contribution of Working Group I to the Fourth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon,
S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and
Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, 2007. a
Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T.,
Lamarque, J.-F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K.,
Thomson, A., Velders, G. J. M., and van Vuuren, D. P. P.: The RCP greenhouse
gas concentrations and their extensions from 1765 to 2300, Climatic Change,
109, 213, https://doi.org/10.1007/s10584-011-0156-z, 2011. a
Messias, M.-J., Watson, A., Johannessen, T., Oliver, K., Olsson, K.,
Fogelqvist, E., Olafsson, J., Bacon, S., Balle, J., Bergman, N., Budéus, G.,
Danielsen, M., Gascard, J.-C., Jeansson, E., Olafsdottir, S., Simonsen, K.,
Tanhua, T., Van Scoy, K., and Ledwell, J.: The Greenland Sea tracer
experiment 1996–2002: Horizontal mixing and transport of Greenland Sea
Intermediate Water, Prog. Oceanogr., 78, 85–105,
https://doi.org/10.1016/j.pocean.2007.06.005, 2008. a
Metzl, N., Corbière, A., Reverdin, G., Lenton, A., Takahashi, T., Olsen, A.,
Johannessen, T., Pierrot, D., Wanninkhof, R., Ólafsdóttir, S. R., Olafsson,
J., and Ramonet, M.: Recent acceleration of the sea surface fCO2 growth
rate in the North Atlantic subpolar gyre (1993–2008) revealed by winter
observations, Global Biogeochem. Cy., 24, GB4004, https://doi.org/10.1029/2009GB003658,
2010. a
Middelburg, J. J., Soetaert, K., and Hagens, M.: Ocean Alkalinity, Buffering
and Biogeochemical Processes, Rev. Geophys., 58, e2019RG000681,
https://doi.org/10.1029/2019RG000681, 2020. a
NOAA National Geophysical Data Center: ETOPO1 1 Arc-Minute Global Relief
Model, NOAA National Centers for Environmental Information [data set],
https://doi.org/10.7289/V5C8276M, 2020. a
Nondal, G., Bellerby, R. G. J., Olsen, A., Johannessen, T., and Olafsson, J.:
Optimal evaluation of the surface ocean CO2 system in the northern North
Atlantic using data from voluntary observing ships, Limnol.
Oceanogr.-Meth., 7, 109–118,
https://doi.org/10.4319/lom.2009.7.109, 2009. a, b
Ólafsdóttir, S. R., Benoit-Cattin, A., and Danielsen, M.: Dissolved
inorganic carbon (DIC), total alkalinity, temperature, salinity, nutrients
and dissolved oxygen collected from discrete samples and profile observations
during the R/Vs Arni Fridriksson and Bjarni Saemundsson time series
IcelandSea (LN6) cruises in the North Atlantic Ocean from 2014-02-18 to
2019-10-31 (NCEI Accession 0209074), National Centers for Environmental Information [data set],
https://doi.org/10.25921/qhed-3h84, 2020. a
Ólafsson, J.: Winter mixed layer nutrients in the Irminger and Iceland
Seas, 1990–2000, ICES Mar. Sci., 219, 329–332, 2003. a
Ólafsson, J.: Partial pressure (or fugacity) of carbon dioxide, dissolved
inorganic carbon, temperature, salinity and other variables collected from
discrete samples, profile and time series profile observations during the
R/Vs Arni Fridriksson and Bjarni Saemundsson time series IcelandSea (LN6)
cruises in the North Atlantic Ocean from 1985-02-22 to 2013-11-26 (NCEI
Accession 0100063), National Centers for Environmental Information [data set],
https://doi.org/10.3334/cdiac/otg.carina_icelandsea, 2012. a
Ólafsson, J., Lee, K., Ólafsdóttir, S. R., Benoit-Cattin, A., Lee,
C.-H., and Kim, M.: Boron to salinity ratios for Atlantic, Arctic and Polar
Waters: A view from downstream, Mar. Chem., 224, 103809,
https://doi.org/10.1016/j.marchem.2020.103809, 2020a. a
Olafsson, J., Olafsdottir, S. R., Takahashi, T., Danielsen, M., and Arnarson, T. S.: Enhancement of the North Atlantic CO2 sink by Arctic Waters, Biogeosciences, 18, 1689–1701, https://doi.org/10.5194/bg-18-1689-2021, 2021b. a
Olsen, A. and Omar, A. M.: Dissolved inorganic carbon, alkalinity, temperature,
salinity and other variables collected from discrete sample and profile
observations using Alkalinity titrator, CTD and other instruments from the
G.O. SARS in the North Greenland Sea and Norwegian Sea from 2006-07-21 to
2006-08-05 (NCEI Accession 0105859), NOAA National Centers for Environmental
Information [data set], https://doi.org/10.3334/cdiac/otg.clivar_75n_2006,
2013. a
Olsen, A., Omar, A. M., Bellerby, R. G. J., Johannessen, T., Ninnemann, U.,
Brown, K. R., Olsson, K. A., Olafsson, J., Nondal, G., Kivimäe, C.,
Kringstad, S., Neill, C., and Olafsdottir, S.: Magnitude and origin of the
anthropogenic CO2 increase and 13C Suess effect in the Nordic seas since
1981, Global Biogeochem. Cy., 20, GB3027, https://doi.org/10.1029/2005GB002669, 2006. a, b, c, d, e
Olsen, A., Omar, A. M., and Johannessen, T.: Dissolved inorganic carbon,
alkalinity, temperature, salinity and other variables collected from discrete
sample and profile observations using CTD, bottle and other instruments from
the HAKON MOSBY in the North Atlantic Ocean, North Greenland Sea and
Norwegian Sea from 2001-05-27 to 2001-06-19 (NCEI Accession 0113754), NOAA
National Centers for Environmental Information [data set],
https://doi.org/10.3334/cdiac/otg.carina_58aa20010527, 2013. a
Olsen, A., Lange, N., Key, R. M., Tanhua, T., Álvarez, M., Becker, S., Bittig, H. C., Carter, B. R., Cotrim da Cunha, L., Feely, R. A., van Heuven, S., Hoppema, M., Ishii, M., Jeansson, E., Jones, S. D., Jutterström, S., Karlsen, M. K., Kozyr, A., Lauvset, S. K., Lo Monaco, C., Murata, A., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Telszewski, M., Tilbrook, B., Velo, A., and Wanninkhof, R.: GLODAPv2.2019 – an update of GLODAPv2, Earth Syst. Sci. Data, 11, 1437–1461, https://doi.org/10.5194/essd-11-1437-2019, 2019 (data available at: https://www.glodap.info/index.php/merged-and-adjusted-data-product-v2-2019/, last access: 3 October 2019). a, b, c, d, e
Omar, A. M. and Olsen, A.: Dissolved inorganic carbon, alkalinity, temperature,
salinity and other variables collected from discrete sample and profile
observations using CTD, bottle and other instruments from the HAKON MOSBY in
the Barents Sea, North Greenland Sea and Norwegian Sea from 1999-10-03 to
1999-10-11 (NCEI Accession 0113888), NOAA National Centers for Environmental
Information [data set], https://doi.org/10.3334/cdiac/otg.carina_58aa19991003,
2013. a
Omar, A. M. and Skogseth, R.: Dissolved inorganic carbon, alkalinity,
temperature, salinity and other variables collected from discrete sample and
profile observations using CTD, bottle and other instruments from the HAKON
MOSBY in the Barents Sea and Norwegian Sea from 2001-08-22 to 2001-08-29
(NCEI Accession 0113887), NOAA National Centers for Environmental
Information [data set], https://doi.org/10.3334/cdiac/otg.carina_58aa20010822,
2013. a
Omar, A. M. and Østerhus, S.: Dissolved inorganic carbon, alkalinity,
temperature, salinity and other variables collected from discrete sample and
profile observations using CTD, bottle and other instruments from the HAKON
MOSBY in the Barents Sea from 2000-09-23 to 2000-10-03 (NCEI Accession
0113886), NOAA National Centers for Environmental Information [data set],
https://doi.org/10.3334/cdiac/otg.carina_58aa20000923, 2013. a
Orr, J. C.: Recent and future changes in ocean carbonate chemistry, in: Ocean
Acidification, edited by: Gattuso, J.-P. and Hansson, L., 41–66, Oxford University
Press, Oxford, UK, https://doi.org/10.1093/oso/9780199591091.003.0008, 2011. a, b, c
Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A.,
Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K.,
Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G.,
Plattner, G.-K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer,
R., Slater, R. D., Totterdell, I. J., Weirig, M.-F., Yamanaka, Y., and Yool,
A.: Anthropogenic ocean acidification over the twenty-first century and its
impact on calcifying organisms, Nature, 437, 681–686,
https://doi.org/10.1038/nature04095, 2005. a
Orr, J. C., Epitalon, J.-M., Dickson, A. G., and Gattuso, J.-P.: Routine
uncertainty propagation for the marine carbon dioxide system, Mar.
Chem., 207, 84–107, https://doi.org/10.1016/j.marchem.2018.10.006,
2018. a, b
Østerhus, S. and Gammelsrød, T.: The Abyss of the Nordic Seas Is
Warming, J. Climate, 12, 3297–3304,
https://doi.org/10.1175/1520-0442(1999)012<3297:TAOTNS>2.0.CO;2, 1999. a
Oziel, L., Baudena, A., Ardyna, M., Massicotte, P., Randelhoff, A., Sallée,
J.-B., Ingvaldsen, R. B., Devred, E., and Babin, M.: Faster Atlantic currents
drive poleward expansion of temperate phytoplankton in the Arctic Ocean,
Nat. Commun., 11, 1705, https://doi.org/10.1038/s41467-020-15485-5, 2020. a
Pegler, K., Graf, G., and Pfannkuche, O.: Partial pressure (or fugacity) of
carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity
and other variables collected from discrete sample and profile observations
using CTD, bottle and other instruments from the METEOR in the North Atlantic
Ocean, North Greenland Sea and Norwegian Sea from 1992-07-01 to 1992-08-31
(NCEI Accession 0113985), NOAA National Centers for Environmental
Information [data set], https://doi.org/10.3334/cdiac/otg.carina_06mt19920701,
2013. a
Perez, F. F., Fontela, M., García-Ibáñez, M. I., Mercier, H.,
Velo, A., Lherminier, P., Zunino, P., de la Paz, M., Alonso-Pérez, F.,
Guallart, E. F., and Padin, X. A.: Meridional overturning circulation conveys
fast acidification to the deep Atlantic Ocean, Nature, 554, 515–518,
https://doi.org/10.1038/nature25493, 2018. a
Pérez, F. F., Olafsson, J., Ólafsdóttir, S. R., Fontela, M., and
Takahashi, T.: Contrasting drivers and trends of ocean acidification in the
subarctic Atlantic, Sci. Rep.-UK, 11, 13991,
https://doi.org/10.1038/s41598-021-93324-3, 2021. a
Raven, J., Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P.,
Riebesell, U., Shepherd, J., Turley, C., and Watson, A.: Ocean acidification
due to increasing atmospheric carbon dioxide, Policy document, The Royal
Society, London, 1–68, ISBN 0-85403-617-2, 2005. a
Ruiz-Barradas, A., Chafik, L., Nigam, S., and Häkkinen, S.: Recent subsurface
North Atlantic cooling trend in context of Atlantic decadal-to-multidecadal
variability, Tellus A, 70, 1–19,
https://doi.org/10.1080/16000870.2018.1481688, 2018. a
Schauer, U., Jones, E. M., Ulfsbo, A., Hansell, D. A., Smethie, William M., J.,
Rabe, B., and van Ooijen, J. C.: Discrete, profile measurements of the
dissolved inorganic carbon (DIC), total alkalinity, pH on total scale and
other hydrographic and chemical data obtained during the PS-94, ARK-XXIX/3,
TransArc-II cruise onboard the R/V Polarstern (EXPOCODE 06AQ20150817) in the
central Arctic Ocean from 2015-08-17 to 2015-10-15 (NCEI Accession 0170256),
NOAA National Centers for Environmental Information [data set],
https://doi.org/10.7289/v5319t5z, 2018. a
Shu, Q., Qiao, F., Song, Z., Zhao, J., and Li, X.: Projected Freshening of the
Arctic Ocean in the 21st Century, J. Geophys. Res.-Oceans,
123, 9232–9244, https://doi.org/10.1029/2018JC014036, 2018. a
Skjelvan, I.: Dissolved Inorganic Carbon and Total Alkalinity bottle data from Ocean Weather Station M (66∘ N, 2∘ E) from 2008 to 2019, Norwegian Marine Data Centre [data set], https://doi.org/10.21335/NMDC-872095870, 2021. a
Skjelvan, I., Falck, E., Rey, F., and Kringstad, S. B.: Inorganic carbon time series at Ocean Weather Station M in the Norwegian Sea, Biogeosciences, 5, 549–560, https://doi.org/10.5194/bg-5-549-2008, 2008. a, b, c, d
Skjelvan, I., Johannessen, T., and Anderson, L. G.: Dissolved inorganic carbon,
alkalinity, temperature, salinity and other variables collected from discrete
sample and profile observations using CTD, bottle and other instruments from
the HAKON MOSBY in the North Greenland Sea and Norwegian Sea from 1994-02-24
to 1994-03-17 (NCEI Accession 0113541), NOAA National Centers for
Environmental Information [data set],
https://doi.org/10.3334/cdiac/otg.carina_58aa19940224, 2013. a
Skjelvan, I., Jeansson, E., Chierici, M., Omar, A., Olsen, A., Lauvset, S., and
Johannessen, T.: Havforsuring og opptak av antropogent karbon i de Nordiske
hav [Ocean acidification and uptake of anthropogenic carbon in the Nordic
Seas], 1981–2013, Miljødirektoratet, Rapport M244-2014, Tech. rep., https://www.miljodirektoratet.no/publikasjoner/2015/februar/havforsuring-og-opptak-av-antropogent-karbon-i-de-nordiske-hav-1981-2013/ (last access: 6 February 2022), 2014. a, b, c, d, e, f, g, h, i, j, k, l
Skjelvan, I., Jones, E., Chierici, M., Frigstad, H., Børsheim, K. Y.,
Lødemel, H. H., Kutti, T., King, A. L., Sørensen, K., Omar, A.,
Bellerby, R., Christensen, G., Marty, S., Protsenko, E., Mengeot,
C., Valestrand, L., Norli, M., Jackson-Misje, K., Apelthun, L. B.,
de Lange, T., Johannessen, T., and Mourgues, C.: Monitoring of the ocean acidification in Norwegian seas in
2020, Report, Miljødirektoratet, M-2056, Tech. rep., https://www.miljodirektoratet.no/publikasjoner/2021/mai-2021/monitoring-ocean-acidification-in-norwegian-seas-in-2020/ (last access: 6 February 2022), 2021. a
Skogen, M. D., Hjøllo, S. S., Sandø, A. B., and Tjiputra, J.: Future
ecosystem changes in the Northeast Atlantic: a comparison between a global
and a regional model system, ICES J. Mar. Sci., 75, 2355–2369,
https://doi.org/10.1093/icesjms/fsy088, 2018. a, b, c, d
Somavilla, R., Schauer, U., and Budéus, G.: Increasing amount of Arctic Ocean
deep waters in the Greenland Sea, Geophys. Res. Lett., 40,
4361–4366, https://doi.org/10.1002/grl.50775, 2013. a, b
Stöven, T., Tanhua, T., Hoppema, M., and von Appen, W.-J.: Transient tracer distributions in the Fram Strait in 2012 and inferred anthropogenic carbon content and transport, Ocean Sci., 12, 319–333, https://doi.org/10.5194/os-12-319-2016, 2016. a
Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W., and Sutherland,
S. C.: Seasonal variation of CO2 and nutrients in the high-latitude
surface oceans: A comparative study, Global Biogeochem. Cy., 7,
843–878, https://doi.org/10.1029/93GB02263, 1993. a, b
Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N.,
Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson,
J., and Nojiri, Y.: Global sea–air CO2 flux based on climatological surface
ocean pCO2, and seasonal biological and temperature effects, Deep-Sea
Res. Pt. II, 49, 1601–1622,
https://doi.org/10.1016/S0967-0645(02)00003-6, 2002. a
Tanhua, T. and Hoppema, M.: Dissolved Inorganic Carbon (DIC), Total Alkalinity,
Oxygen and other Hydrographic and Chemical Data Obtained During the R/V
Polarstern Cruise ARKXXVII/1 (EXPOCODE 06AQ20120614) along the CLIVAR Repeat
Section 75N in the North Atlantic Ocean from 2012-06-14 to 2012-07-15 (NCEI
Accession 0162432), NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/v5tt4p5v, 2017. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the
Experiment Design, B. Am. Meteorol. Soc., 93,
485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a, b
Terhaar, J., Kwiatkowski, L., and Bopp, L.: Emergent constraint on Arctic Ocean
acidification in the twenty-first century, Nature, 582, 379–383,
https://doi.org/10.1038/s41586-020-2360-3, 2020a. a
Terhaar, J., Tanhua, T., Stöven, T., Orr, J. C., and Bopp, L.: Evaluation of
Data-Based Estimates of Anthropogenic Carbon in the Arctic Ocean, J.
Geophys. Res.-Oceans, 125, e2020JC016124,
https://doi.org/10.1029/2020JC016124, 2020b. a
Terhaar, J., Torres, O., Bourgeois, T., and Kwiatkowski, L.: Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble, Biogeosciences, 18, 2221–2240, https://doi.org/10.5194/bg-18-2221-2021, 2021. a
Tjiputra, J. F., Assmann, K., and Heinze, C.: Anthropogenic carbon dynamics in the changing ocean, Ocean Sci., 6, 605–614, https://doi.org/10.5194/os-6-605-2010, 2010. a
Tjiputra, J. F., Roelandt, C., Bentsen, M., Lawrence, D. M., Lorentzen, T., Schwinger, J., Seland, Ø., and Heinze, C.: Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM), Geosci. Model Dev., 6, 301–325, https://doi.org/10.5194/gmd-6-301-2013, 2013. a, b
Tjiputra, J. F., Grini, A., and Lee, H.: Impact of idealized future
stratospheric aerosol injection on the large-scale ocean and land carbon
cycles, J. Geophys. Res.-Biogeo., 121, 2–27,
https://doi.org/10.1002/2015JG003045, 2016. a, b
Turley, C. M., Roberts, J. M., and Guinotte, J. M.: Corals in deep-water: will
the unseen hand of ocean acidification destroy cold-water ecosystems?, Coral
Reefs, 26, 445–448, https://doi.org/10.1007/s00338-007-0247-5, 2007. a
Uppström, L. R.: The boron/chlorinity ratio of deep-sea water from the Pacific
Ocean, Deep-Sea Research and Oceanographic Abstracts, 21, 161–162,
https://doi.org/10.1016/0011-7471(74)90074-6, 1974. a
van Heuven, S., Pierrot, D., Rae, J., Lewis, E., and Wallace, D.: MATLAB
Program Developed for CO2 System Calculations, ORNL/CDIAC-105b, Carbon
Dioxide Information Analysis Center, Oak Ridge National Laboratory, US
Department of Energy, Oak Ridge, Tennessee [code], https://risweb.st-andrews.ac.uk/portal/en/researchoutput/co2sys-v-11(5a46dedd-9f47-4263-a848-5c6bf9ca6e53)/export.html, 2011. a
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard,
K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T.,
Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The
representative concentration pathways: an overview, Climatic Change, 109, 5,
https://doi.org/10.1007/s10584-011-0148-z, 2011a. a
van Vuuren, D. P., Stehfest, E., den Elzen, M. G. J., Kram, T., van Vliet, J.,
Deetman, S., Isaac, M., Klein Goldewijk, K., Hof, A., Mendoza Beltran, A.,
Oostenrijk, R., and van Ruijven, B.: RCP2.6: exploring the possibility to
keep global mean temperature increase below 2 °C, Climatic Change,
109, 95, https://doi.org/10.1007/s10584-011-0152-3, 2011b. a
Våge, K., Pickart, R. S., Spall, M. A., Moore, G., Valdimarsson, H., Torres,
D. J., Erofeeva, S. Y., and Nilsen, J. E. Ø.: Revised circulation scheme
north of the Denmark Strait, Deep-Sea Res. Pt. I, 79, 20–39, https://doi.org/10.1016/j.dsr.2013.05.007, 2013. a
Våge, K., Moore, G., Jónsson, S., and Valdimarsson, H.: Water mass
transformation in the Iceland Sea, Deep-Sea Res. Pt. I, 101, 98–109,
https://doi.org/10.1016/j.dsr.2015.04.001, 2015. a, b, c
Wallace, D. W. R. and Deming, J.: Dissolved inorganic carbon, alkalinity,
temperature, salinity and other variables collected from discrete sample and
profile observations using CTD, bottle and other instruments from the USCGC
POLAR SEA in the North Greenland Sea from 1992-07-15 to 1992-08-14 (NCEI
Accession 0115687), NOAA National Centers for Environmental Information [data set],
https://doi.org/10.3334/cdiac/otg.carina_32l919920715, 2014. a
Woosley, R. J. and Millero, F. J.: Freshening of the western Arctic negates
anthropogenic carbon uptake potential, Limnol. Oceanogr., 65,
1834–1846, https://doi.org/10.1002/lno.11421, 2020. a
Wu, Y., Hain, M. P., Humphreys, M. P., Hartman, S., and Tyrrell, T.: What drives the latitudinal gradient in open-ocean surface dissolved inorganic carbon concentration?, Biogeosciences, 16, 2661–2681, https://doi.org/10.5194/bg-16-2661-2019, 2019. a
Yukimoto, S., Yoshimura, H., and Hosaka, M.: Meteorological Research
Institute-Earth System Model v1 (MRI-ESM1) – Model Description, Technical
Report of MRI, Ibaraki, Japan, 88 pp., Tech. rep., https://doi.org/10.11483/mritechrepo.64, 2011.
a, b
Zeebe, R. and Wolf-Gladrow, D.: CO2 in Seawater: Equilibrium, Kinetics,
Isotopes, vol. 65 of Elsevier Oceanography Series, Elsevier Science,
1st Edn., ISBN 978-0-4445-094-68, 2001. a
Zheng, M.-D. and Cao, L.: Simulation of global ocean acidification and chemical
habitats of shallow- and cold-water coral reefs, Advances in Climate Change
Research, 5, 189–196, https://doi.org/10.1016/j.accre.2015.05.002, 2014. a
Short summary
Ocean acidification, a direct consequence of the CO2 release by human activities, is a serious threat to marine ecosystems. In this study, we conduct a detailed investigation of the acidification of the Nordic Seas, from 1850 to 2100, by using a large set of samples taken during research cruises together with numerical model simulations. We estimate the effects of changes in different environmental factors on the rate of acidification and its potential effects on cold-water corals.
Ocean acidification, a direct consequence of the CO2 release by human activities, is a serious...
Altmetrics
Final-revised paper
Preprint