Articles | Volume 20, issue 9
https://doi.org/10.5194/bg-20-1813-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1813-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global analysis of the controls on seawater dimethylsulfide spatial variability
Faculty of Environment, Science and Economy, University of Exeter,
Exeter, EX4 4PY, UK
Plymouth Marine Laboratory (PML), Plymouth, PL1 3DH, UK
Met Office, Exeter, EX1 3PB, UK
Plymouth Marine Laboratory (PML), Plymouth, PL1 3DH, UK
Jane P. Mulcahy
Met Office, Exeter, EX1 3PB, UK
Rafel Simó
Institut de Ciències del Mar (ICM-CSIC), Barcelona, 08003,
Catalonia, Spain
Martí Galí
Institut de Ciències del Mar (ICM-CSIC), Barcelona, 08003,
Catalonia, Spain
Barcelona Supercomputing Center (BSC-CNS), Barcelona, 08034,
Catalonia, Spain
Anoop S. Mahajan
Indian Institute of Tropical Meteorology (IITM), Ministry of Earth
Sciences, Pune, 411008, India
Shrivardhan Hulswar
Indian Institute of Tropical Meteorology (IITM), Ministry of Earth
Sciences, Pune, 411008, India
Paul R. Halloran
Faculty of Environment, Science and Economy, University of Exeter,
Exeter, EX4 4PY, UK
Related authors
Shrivardhan Hulswar, Rafel Simó, Martí Galí, Thomas G. Bell, Arancha Lana, Swaleha Inamdar, Paul R. Halloran, George Manville, and Anoop Sharad Mahajan
Earth Syst. Sci. Data, 14, 2963–2987, https://doi.org/10.5194/essd-14-2963-2022, https://doi.org/10.5194/essd-14-2963-2022, 2022
Short summary
Short summary
The third climatological estimation of sea surface dimethyl sulfide (DMS) concentrations based on in situ measurements was created (DMS-Rev3). The update includes a much larger input dataset and includes improvements in the data unification, filtering, and smoothing algorithm. The DMS-Rev3 climatology provides more realistic monthly estimates of DMS, and shows significant regional differences compared to past climatologies.
Arianna Rocchi, Mark F. Fitzsimons, Preston Akenga, Ana Sotomayor, Elisabet L. Sà, Queralt Güell-Bujons, Magda Vila, Yaiza M. Castillo, Manuel Dall'Osto, Dolors Vaqué, Charel Wohl, Rafel Simó, and Elisa Berdalet
Biogeosciences, 22, 3429–3448, https://doi.org/10.5194/bg-22-3429-2025, https://doi.org/10.5194/bg-22-3429-2025, 2025
Short summary
Short summary
During the PolarChange expedition, volatile alkylamines, important players in nitrogen cycling and cloud formation, were measured in Antarctic waters using a high-sensitivity method. Trimethylamine was the dominant alkylamine in marine particles, associated with nanophytoplankton. Dissolved dimethylamine likely originated from trimethylamine degradation, while diethylamine sources remain unclear. These findings confirm the biological origin of alkylamines in polar marine microbial food webs.
M. Andrea Orihuela-García, Yohan Ruprich-Robert, Vladimir Lapin, Saskia Loosveldt Tomas, Raffaele Bernardello, Margarida Samsó-Cabré, Pierre-Antoine Bretonnière, Miguel Castrillo, and Marti Gali
EGUsphere, https://doi.org/10.22541/essoar.174481514.42345660/v1, https://doi.org/10.22541/essoar.174481514.42345660/v1, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Tiny oceanic algae absorb carbon using sunlight. When they die, some sink as "detritus" that oceanic creatures eat or bacteria decompose. This "biological carbon pump" stores carbon in the deep ocean. Our study found that in warm southern waters, particles decompose quickly but more survive deeper trips. In cold northern waters, creatures eat more particles. Winter water mixing moves carbon down before spring algae bloom. Understanding these processes helps predict future ocean carbon storage.
Martin Richard Willett, Melissa Brooks, Andrew Bushell, Paul Earnshaw, Samantha Smith, Lorenzo Tomassini, Martin Best, Ian Boutle, Jennifer Brooke, John M. Edwards, Kalli Furtado, Catherine Hardacre, Andrew J. Hartley, Alan Hewitt, Ben Johnson, Adrian Lock, Andy Malcolm, Jane Mulcahy, Eike Müller, Heather Rumbold, Gabriel G. Rooney, Alistair Sellar, Masashi Ujiie, Annelize van Niekerk, Andy Wiltshire, and Michael Whitall
EGUsphere, https://doi.org/10.5194/egusphere-2025-1829, https://doi.org/10.5194/egusphere-2025-1829, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Global Atmosphere (GA) configurations of the Unified Model (UM) and Global Land (GL) configurations of JULES are developed for use in any global atmospheric modelling application. We describe a recent iteration of these configurations, GA8GL9, which includes improvements to the represenation of convection and other physical processes. GA8GL9 is used for operational weather prediction in the UK and forms the basis for the next GA and GL configuration.
Yugo Kanaya, Roberto Sommariva, Alfonso Saiz-Lopez, Andrea Mazzeo, Theodore K. Koenig, Kaori Kawana, James E. Johnson, Aurélie Colomb, Pierre Tulet, Suzie Molloy, Ian E. Galbally, Rainer Volkamer, Anoop Mahajan, John W. Halfacre, Paul B. Shepson, Julia Schmale, Hélène Angot, Byron Blomquist, Matthew D. Shupe, Detlev Helmig, Junsu Gil, Meehye Lee, Sean C. Coburn, Ivan Ortega, Gao Chen, James Lee, Kenneth C. Aikin, David D. Parrish, John S. Holloway, Thomas B. Ryerson, Ilana B. Pollack, Eric J. Williams, Brian M. Lerner, Andrew J. Weinheimer, Teresa Campos, Frank M. Flocke, J. Ryan Spackman, Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Ralf M. Staebler, Amir A. Aliabadi, Wanmin Gong, Roeland Van Malderen, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Juan Carlos Gómez Martin, Masatomo Fujiwara, Katie Read, Matthew Rowlinson, Keiichi Sato, Junichi Kurokawa, Yoko Iwamoto, Fumikazu Taketani, Hisahiro Takashima, Monica Navarro Comas, Marios Panagi, and Martin G. Schultz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-566, https://doi.org/10.5194/essd-2024-566, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
The first comprehensive dataset of tropospheric ozone over oceans/polar regions is presented, including 77 ship/buoy and 48 aircraft campaign observations (1977–2022, 0–5000 m altitude), supplemented by ozonesonde and surface data. Air masses isolated from land for 72+ hours are systematically selected as essentially oceanic. Among the 11 global regions, they show daytime decreases of 10–16% in the tropics, while near-zero depletions are rare, unlike in the Arctic, implying different mechanisms.
Alex T. Archibald, Bablu Sinha, Maria R. Russo, Emily Matthews, Freya A. Squires, N. Luke Abraham, Stephane J.-B. Bauguitte, Thomas J. Bannan, Thomas G. Bell, David Berry, Lucy J. Carpenter, Hugh Coe, Andrew Coward, Peter Edwards, Daniel Feltham, Dwayne Heard, Jim Hopkins, James Keeble, Elizabeth C. Kent, Brian A. King, Isobel R. Lawrence, James Lee, Claire R. Macintosh, Alex Megann, Bengamin I. Moat, Katie Read, Chris Reed, Malcolm J. Roberts, Reinhard Schiemann, David Schroeder, Timothy J. Smyth, Loren Temple, Navaneeth Thamban, Lisa Whalley, Simon Williams, Huihui Wu, and Mingxi Yang
Earth Syst. Sci. Data, 17, 135–164, https://doi.org/10.5194/essd-17-135-2025, https://doi.org/10.5194/essd-17-135-2025, 2025
Short summary
Short summary
Here, we present an overview of the data generated as part of the North Atlantic Climate System Integrated Study (ACSIS) programme that are available through dedicated repositories at the Centre for Environmental Data Analysis (CEDA; www.ceda.ac.uk) and the British Oceanographic Data Centre (BODC; bodc.ac.uk). The datasets described here cover the North Atlantic Ocean, the atmosphere above (it including its composition), and Arctic sea ice.
Sankirna D. Joge, Anoop S. Mahajan, Shrivardhan Hulswar, Christa A. Marandino, Martí Galí, Thomas G. Bell, and Rafel Simó
Biogeosciences, 21, 4439–4452, https://doi.org/10.5194/bg-21-4439-2024, https://doi.org/10.5194/bg-21-4439-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is the largest natural source of sulfur in the atmosphere and leads to the formation of cloud condensation nuclei. DMS emission and quantification of its impacts have large uncertainties, but a detailed study on the emissions and drivers of their uncertainty is missing to date. The emissions are usually calculated from the seawater DMS concentrations and a flux parameterization. Here we quantify the differences in DMS seawater products, which can affect DMS fluxes.
Sankirna D. Joge, Anoop S. Mahajan, Shrivardhan Hulswar, Christa A. Marandino, Martí Galí, Thomas G. Bell, Mingxi Yang, and Rafel Simó
Biogeosciences, 21, 4453–4467, https://doi.org/10.5194/bg-21-4453-2024, https://doi.org/10.5194/bg-21-4453-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is the largest natural source of sulfur in the atmosphere and leads to the formation of cloud condensation nuclei. DMS emissions and quantification of their impacts have large uncertainties, but a detailed study on the range of emissions and drivers of their uncertainty is missing to date. The emissions are calculated from the seawater DMS concentrations and a flux parameterization. Here we quantify the differences in the effect of flux parameterizations used in models.
Alkiviadis Kalisoras, Aristeidis K. Georgoulias, Dimitris Akritidis, Robert J. Allen, Vaishali Naik, Chaincy Kuo, Sophie Szopa, Pierre Nabat, Dirk Olivié, Twan van Noije, Philippe Le Sager, David Neubauer, Naga Oshima, Jane Mulcahy, Larry W. Horowitz, and Prodromos Zanis
Atmos. Chem. Phys., 24, 7837–7872, https://doi.org/10.5194/acp-24-7837-2024, https://doi.org/10.5194/acp-24-7837-2024, 2024
Short summary
Short summary
Effective radiative forcing (ERF) is a metric for estimating how human activities and natural agents change the energy flow into and out of the Earth’s climate system. We investigate the anthropogenic aerosol ERF, and we estimate the contribution of individual processes to the total ERF using simulations from Earth system models within the Coupled Model Intercomparison Project Phase 6 (CMIP6). Our findings highlight that aerosol–cloud interactions drive ERF variability during the last 150 years.
Jim M. Haywood, Andy Jones, Anthony C. Jones, Paul Halloran, and Philip J. Rasch
Atmos. Chem. Phys., 23, 15305–15324, https://doi.org/10.5194/acp-23-15305-2023, https://doi.org/10.5194/acp-23-15305-2023, 2023
Short summary
Short summary
The difficulties in ameliorating global warming and the associated climate change via conventional mitigation are well documented, with all climate model scenarios exceeding 1.5 °C above the preindustrial level in the near future. There is therefore a growing interest in geoengineering to reflect a greater proportion of sunlight back to space and offset some of the global warming. We use a state-of-the-art Earth-system model to investigate two of the most prominent geoengineering strategies.
Leighton A. Regayre, Lucia Deaconu, Daniel P. Grosvenor, David M. H. Sexton, Christopher Symonds, Tom Langton, Duncan Watson-Paris, Jane P. Mulcahy, Kirsty J. Pringle, Mark Richardson, Jill S. Johnson, John W. Rostron, Hamish Gordon, Grenville Lister, Philip Stier, and Ken S. Carslaw
Atmos. Chem. Phys., 23, 8749–8768, https://doi.org/10.5194/acp-23-8749-2023, https://doi.org/10.5194/acp-23-8749-2023, 2023
Short summary
Short summary
Aerosol forcing of Earth’s energy balance has persisted as a major cause of uncertainty in climate simulations over generations of climate model development. We show that structural deficiencies in a climate model are exposed by comprehensively exploring parametric uncertainty and that these deficiencies limit how much the model uncertainty can be reduced through observational constraint. This provides a future pathway towards building models with greater physical realism and lower uncertainty.
Edward Gryspeerdt, Adam C. Povey, Roy G. Grainger, Otto Hasekamp, N. Christina Hsu, Jane P. Mulcahy, Andrew M. Sayer, and Armin Sorooshian
Atmos. Chem. Phys., 23, 4115–4122, https://doi.org/10.5194/acp-23-4115-2023, https://doi.org/10.5194/acp-23-4115-2023, 2023
Short summary
Short summary
The impact of aerosols on clouds is one of the largest uncertainties in the human forcing of the climate. Aerosol can increase the concentrations of droplets in clouds, but observational and model studies produce widely varying estimates of this effect. We show that these estimates can be reconciled if only polluted clouds are studied, but this is insufficient to constrain the climate impact of aerosol. The uncertainty in aerosol impact on clouds is currently driven by cases with little aerosol.
Jane P. Mulcahy, Colin G. Jones, Steven T. Rumbold, Till Kuhlbrodt, Andrea J. Dittus, Edward W. Blockley, Andrew Yool, Jeremy Walton, Catherine Hardacre, Timothy Andrews, Alejandro Bodas-Salcedo, Marc Stringer, Lee de Mora, Phil Harris, Richard Hill, Doug Kelley, Eddy Robertson, and Yongming Tang
Geosci. Model Dev., 16, 1569–1600, https://doi.org/10.5194/gmd-16-1569-2023, https://doi.org/10.5194/gmd-16-1569-2023, 2023
Short summary
Short summary
Recent global climate models simulate historical global mean surface temperatures which are too cold, possibly to due to excessive aerosol cooling. This raises questions about the models' ability to simulate important climate processes and reduces confidence in future climate predictions. We present a new version of the UK Earth System Model, which has an improved aerosols simulation and a historical temperature record. Interestingly, the long-term response to CO2 remains largely unchanged.
Veronica Z. Berta, Lynn M. Russell, Derek J. Price, Chia-Li Chen, Alex K. Y. Lee, Patricia K. Quinn, Timothy S. Bates, Thomas G. Bell, and Michael J. Behrenfeld
Atmos. Chem. Phys., 23, 2765–2787, https://doi.org/10.5194/acp-23-2765-2023, https://doi.org/10.5194/acp-23-2765-2023, 2023
Short summary
Short summary
Amines are compounds emitted from a variety of marine and continental sources and were measured by aerosol mass spectrometry and Fourier transform infrared spectroscopy during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) cruises. Secondary continental and primary marine sources of amines were identified by comparisons to tracers. The results show that the two methods are complementary for investigating amines in the marine environment.
Leighton A. Regayre, Lucia Deaconu, Daniel P. Grosvenor, David Sexton, Christopher C. Symonds, Tom Langton, Duncan Watson-Paris, Jane P. Mulcahy, Kirsty J. Pringle, Mark Richardson, Jill S. Johnson, John Rostron, Hamish Gordon, Grenville Lister, Philip Stier, and Ken S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2022-1330, https://doi.org/10.5194/egusphere-2022-1330, 2022
Preprint archived
Short summary
Short summary
We show that potential structural deficiencies in a climate model can be exposed by comprehensively exploring its parametric uncertainty, and that these deficiencies limit how much the model uncertainty can be reduced through observational constraint. Combined consideration of parametric and structural uncertainties provides a future pathway towards building models that have greater physical realism and lower uncertainty.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Ville Leinonen, Harri Kokkola, Taina Yli-Juuti, Tero Mielonen, Thomas Kühn, Tuomo Nieminen, Simo Heikkinen, Tuuli Miinalainen, Tommi Bergman, Ken Carslaw, Stefano Decesari, Markus Fiebig, Tareq Hussein, Niku Kivekäs, Radovan Krejci, Markku Kulmala, Ari Leskinen, Andreas Massling, Nikos Mihalopoulos, Jane P. Mulcahy, Steffen M. Noe, Twan van Noije, Fiona M. O'Connor, Colin O'Dowd, Dirk Olivie, Jakob B. Pernov, Tuukka Petäjä, Øyvind Seland, Michael Schulz, Catherine E. Scott, Henrik Skov, Erik Swietlicki, Thomas Tuch, Alfred Wiedensohler, Annele Virtanen, and Santtu Mikkonen
Atmos. Chem. Phys., 22, 12873–12905, https://doi.org/10.5194/acp-22-12873-2022, https://doi.org/10.5194/acp-22-12873-2022, 2022
Short summary
Short summary
We provide the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five different earth system models. We investigated aerosol modes (nucleation, Aitken, and accumulation) separately and were able to show the differences between measured and modeled trends and especially their seasonal patterns. The differences in model results are likely due to complex effects of several processes instead of certain specific model features.
Marcus Falls, Raffaele Bernardello, Miguel Castrillo, Mario Acosta, Joan Llort, and Martí Galí
Geosci. Model Dev., 15, 5713–5737, https://doi.org/10.5194/gmd-15-5713-2022, https://doi.org/10.5194/gmd-15-5713-2022, 2022
Short summary
Short summary
This paper describes and tests a method which uses a genetic algorithm (GA), a type of optimisation algorithm, on an ocean biogeochemical model. The aim is to produce a set of numerical parameters that best reflect the observed data of particulate organic carbon in a specific region of the ocean. We show that the GA can provide optimised model parameters in a robust and efficient manner and can also help detect model limitations, ultimately leading to a reduction in the model uncertainties.
Shrivardhan Hulswar, Rafel Simó, Martí Galí, Thomas G. Bell, Arancha Lana, Swaleha Inamdar, Paul R. Halloran, George Manville, and Anoop Sharad Mahajan
Earth Syst. Sci. Data, 14, 2963–2987, https://doi.org/10.5194/essd-14-2963-2022, https://doi.org/10.5194/essd-14-2963-2022, 2022
Short summary
Short summary
The third climatological estimation of sea surface dimethyl sulfide (DMS) concentrations based on in situ measurements was created (DMS-Rev3). The update includes a much larger input dataset and includes improvements in the data unification, filtering, and smoothing algorithm. The DMS-Rev3 climatology provides more realistic monthly estimates of DMS, and shows significant regional differences compared to past climatologies.
Susann Tegtmeier, Christa Marandino, Yue Jia, Birgit Quack, and Anoop S. Mahajan
Atmos. Chem. Phys., 22, 6625–6676, https://doi.org/10.5194/acp-22-6625-2022, https://doi.org/10.5194/acp-22-6625-2022, 2022
Short summary
Short summary
In the atmosphere over the Indian Ocean, intense anthropogenic pollution from Southeast Asia mixes with pristine oceanic air. During the winter monsoon, high pollution levels are regularly observed over the entire northern Indian Ocean, while during the summer monsoon, clean air dominates. Here, we review current progress in detecting and understanding atmospheric gas-phase composition over the Indian Ocean and its impacts on the upper atmosphere, oceanic biogeochemistry, and marine ecosystems.
Richard P. Sims, Michael Bedington, Ute Schuster, Andrew J. Watson, Vassilis Kitidis, Ricardo Torres, Helen S. Findlay, James R. Fishwick, Ian Brown, and Thomas G. Bell
Biogeosciences, 19, 1657–1674, https://doi.org/10.5194/bg-19-1657-2022, https://doi.org/10.5194/bg-19-1657-2022, 2022
Short summary
Short summary
The amount of carbon dioxide (CO2) being absorbed by the ocean is relevant to the earth's climate. CO2 values in the coastal ocean and estuaries are not well known because of the instrumentation used. We used a new approach to measure CO2 across the coastal and estuarine zone. We found that CO2 and salinity were linked to the state of the tide. We used our CO2 measurements and model salinity to predict CO2. Previous studies overestimate how much CO2 the coastal ocean draws down at our site.
Kevin J. Sanchez, Bo Zhang, Hongyu Liu, Matthew D. Brown, Ewan C. Crosbie, Francesca Gallo, Johnathan W. Hair, Chris A. Hostetler, Carolyn E. Jordan, Claire E. Robinson, Amy Jo Scarino, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Elizabeth B. Wiggins, Edward L. Winstead, Luke D. Ziemba, Georges Saliba, Savannah L. Lewis, Lynn M. Russell, Patricia K. Quinn, Timothy S. Bates, Jack Porter, Thomas G. Bell, Peter Gaube, Eric S. Saltzman, Michael J. Behrenfeld, and Richard H. Moore
Atmos. Chem. Phys., 22, 2795–2815, https://doi.org/10.5194/acp-22-2795-2022, https://doi.org/10.5194/acp-22-2795-2022, 2022
Short summary
Short summary
Atmospheric particle concentrations impact clouds, which strongly impact the amount of sunlight reflected back into space and the overall climate. Measurements of particles over the ocean are rare and expensive to collect, so models are necessary to fill in the gaps by simulating both particle and clouds. However, some measurements are needed to test the accuracy of the models. Here, we measure changes in particles in different weather conditions, which are ideal for comparison with models.
Martí Galí, Marcus Falls, Hervé Claustre, Olivier Aumont, and Raffaele Bernardello
Biogeosciences, 19, 1245–1275, https://doi.org/10.5194/bg-19-1245-2022, https://doi.org/10.5194/bg-19-1245-2022, 2022
Short summary
Short summary
Part of the organic matter produced by plankton in the upper ocean is exported to the deep ocean. This process, known as the biological carbon pump, is key for the regulation of atmospheric carbon dioxide and global climate. However, the dynamics of organic particles below the upper ocean layer are not well understood. Here we compared the measurements acquired by autonomous robots in the top 1000 m of the ocean to a numerical model, which can help improve future climate projections.
Jie Zhang, Kalli Furtado, Steven T. Turnock, Jane P. Mulcahy, Laura J. Wilcox, Ben B. Booth, David Sexton, Tongwen Wu, Fang Zhang, and Qianxia Liu
Atmos. Chem. Phys., 21, 18609–18627, https://doi.org/10.5194/acp-21-18609-2021, https://doi.org/10.5194/acp-21-18609-2021, 2021
Short summary
Short summary
The CMIP6 ESMs systematically underestimate TAS anomalies in the NH midlatitudes, especially from 1960 to 1990. The anomalous cooling is concurrent in time and space with anthropogenic SO2 emissions. The spurious drop in TAS is attributed to the overestimated aerosol concentrations. The aerosol forcing sensitivity cannot well explain the inter-model spread of PHC biases. And the cloud-amount term accounts for most of the inter-model spread in aerosol forcing sensitivity.
Catherine Hardacre, Jane P. Mulcahy, Richard J. Pope, Colin G. Jones, Steven T. Rumbold, Can Li, Colin Johnson, and Steven T. Turnock
Atmos. Chem. Phys., 21, 18465–18497, https://doi.org/10.5194/acp-21-18465-2021, https://doi.org/10.5194/acp-21-18465-2021, 2021
Short summary
Short summary
We investigate UKESM1's ability to represent the sulfur (S) cycle in the recent historical period. The S cycle is a key driver of historical radiative forcing. Earth system models such as UKESM1 should represent the S cycle well so that we can have confidence in their projections of future climate. We compare UKESM1 to observations of sulfur compounds, finding that the model generally performs well. We also identify areas for UKESM1’s development, focussing on how SO2 is removed from the air.
Sebastian Landwehr, Michele Volpi, F. Alexander Haumann, Charlotte M. Robinson, Iris Thurnherr, Valerio Ferracci, Andrea Baccarini, Jenny Thomas, Irina Gorodetskaya, Christian Tatzelt, Silvia Henning, Rob L. Modini, Heather J. Forrer, Yajuan Lin, Nicolas Cassar, Rafel Simó, Christel Hassler, Alireza Moallemi, Sarah E. Fawcett, Neil Harris, Ruth Airs, Marzieh H. Derkani, Alberto Alberello, Alessandro Toffoli, Gang Chen, Pablo Rodríguez-Ros, Marina Zamanillo, Pau Cortés-Greus, Lei Xue, Conor G. Bolas, Katherine C. Leonard, Fernando Perez-Cruz, David Walton, and Julia Schmale
Earth Syst. Dynam., 12, 1295–1369, https://doi.org/10.5194/esd-12-1295-2021, https://doi.org/10.5194/esd-12-1295-2021, 2021
Short summary
Short summary
The Antarctic Circumnavigation Expedition surveyed a large number of variables describing the dynamic state of ocean and atmosphere, freshwater cycle, atmospheric chemistry, ocean biogeochemistry, and microbiology in the Southern Ocean. To reduce the dimensionality of the dataset, we apply a sparse principal component analysis and identify temporal patterns from diurnal to seasonal cycles, as well as geographical gradients and
hotspotsof interaction. Code and data are open access.
Anthony C. Jones, Adrian Hill, Samuel Remy, N. Luke Abraham, Mohit Dalvi, Catherine Hardacre, Alan J. Hewitt, Ben Johnson, Jane P. Mulcahy, and Steven T. Turnock
Atmos. Chem. Phys., 21, 15901–15927, https://doi.org/10.5194/acp-21-15901-2021, https://doi.org/10.5194/acp-21-15901-2021, 2021
Short summary
Short summary
Ammonium nitrate is hard to model because it forms and evaporates rapidly. One approach is to relate its equilibrium concentration to temperature, humidity, and the amount of nitric acid and ammonia gases. Using this approach, we limit the rate at which equilibrium is reached using various condensation rates in a climate model. We show that ammonium nitrate concentrations are highly sensitive to the condensation rate. Our results will help improve the representation of nitrate in climate models.
Paul R. Halloran, Jennifer K. McWhorter, Beatriz Arellano Nava, Robert Marsh, and William Skirving
Geosci. Model Dev., 14, 6177–6195, https://doi.org/10.5194/gmd-14-6177-2021, https://doi.org/10.5194/gmd-14-6177-2021, 2021
Short summary
Short summary
This paper describes the latest version of a simple model for simulating coastal oceanography in response to changes in weather and climate. The latest revision of this model makes scientific improvements but focuses on improvements that allow the model to be run simply at large scales and for long periods of time to explore the implications of (for example) future climate change along large areas of coastline.
Anoop S. Mahajan, Mriganka S. Biswas, Steffen Beirle, Thomas Wagner, Anja Schönhardt, Nuria Benavent, and Alfonso Saiz-Lopez
Atmos. Chem. Phys., 21, 11829–11842, https://doi.org/10.5194/acp-21-11829-2021, https://doi.org/10.5194/acp-21-11829-2021, 2021
Short summary
Short summary
Iodine plays a vital role in oxidation chemistry over Antarctica, with past observations showing highly elevated levels of iodine oxide (IO) leading to severe depletion of boundary layer ozone. We present IO observations over three summers (2015–2017) at the Indian Antarctic bases of Bharati and Maitri. IO was observed during all campaigns with mixing ratios below 2 pptv, which is lower than the peak levels observed in West Antarctica, showing the differences in regional chemistry and emissions.
Daniel P. Phillips, Frances E. Hopkins, Thomas G. Bell, Peter S. Liss, Philip D. Nightingale, Claire E. Reeves, Charel Wohl, and Mingxi Yang
Atmos. Chem. Phys., 21, 10111–10132, https://doi.org/10.5194/acp-21-10111-2021, https://doi.org/10.5194/acp-21-10111-2021, 2021
Short summary
Short summary
We present the first measurements of the rate of transfer (flux) of three gases between the atmosphere and the ocean, using a direct flux measurement technique, at a coastal site. We show greater atmospheric loss of acetone and acetaldehyde into the ocean than estimated by global models for the open water; importantly, the acetaldehyde transfer direction is opposite to the model estimates. Measured dimethylsulfide fluxes agreed with a recent model. Isoprene fluxes were too weak to be measured.
Josué Bock, Martine Michou, Pierre Nabat, Manabu Abe, Jane P. Mulcahy, Dirk J. L. Olivié, Jörg Schwinger, Parvadha Suntharalingam, Jerry Tjiputra, Marco van Hulten, Michio Watanabe, Andrew Yool, and Roland Séférian
Biogeosciences, 18, 3823–3860, https://doi.org/10.5194/bg-18-3823-2021, https://doi.org/10.5194/bg-18-3823-2021, 2021
Short summary
Short summary
In this study we analyse surface ocean dimethylsulfide (DMS) concentration and flux to the atmosphere from four CMIP6 Earth system models over the historical and ssp585 simulations.
Our analysis of contemporary (1980–2009) climatologies shows that models better reproduce observations in mid to high latitudes. The models disagree on the sign of the trend of the global DMS flux from 1980 onwards. The models agree on a positive trend of DMS over polar latitudes following sea-ice retreat dynamics.
Anoop S. Mahajan, Qinyi Li, Swaleha Inamdar, Kirpa Ram, Alba Badia, and Alfonso Saiz-Lopez
Atmos. Chem. Phys., 21, 8437–8454, https://doi.org/10.5194/acp-21-8437-2021, https://doi.org/10.5194/acp-21-8437-2021, 2021
Short summary
Short summary
Using a regional model, we show that iodine-catalysed reactions cause large regional changes in the chemical composition in the northern Indian Ocean, with peak changes of up to 25 % in O3, 50 % in nitrogen oxides (NO and NO2), 15 % in hydroxyl radicals (OH), 25 % in hydroperoxyl radicals (HO2), and up to a 50 % change in the nitrate radical (NO3). These results show the importance of including iodine chemistry in modelling the atmosphere in this region.
Yuanxu Dong, Mingxi Yang, Dorothee C. E. Bakker, Vassilis Kitidis, and Thomas G. Bell
Atmos. Chem. Phys., 21, 8089–8110, https://doi.org/10.5194/acp-21-8089-2021, https://doi.org/10.5194/acp-21-8089-2021, 2021
Short summary
Short summary
Eddy covariance (EC) is the most direct method for measuring air–sea CO2 flux from ships. However, uncertainty in EC air–sea CO2 fluxes has not been well quantified. Here we show that with the state-of-the-art gas analysers, instrumental noise no longer contributes significantly to the CO2 flux uncertainty. Applying an appropriate averaging timescale (1–3 h) and suitable air–sea CO2 fugacity threshold (at least 20 µatm) to EC flux data enables an optimal analysis of the gas transfer velocity.
Betty Croft, Randall V. Martin, Richard H. Moore, Luke D. Ziemba, Ewan C. Crosbie, Hongyu Liu, Lynn M. Russell, Georges Saliba, Armin Wisthaler, Markus Müller, Arne Schiller, Martí Galí, Rachel Y.-W. Chang, Erin E. McDuffie, Kelsey R. Bilsback, and Jeffrey R. Pierce
Atmos. Chem. Phys., 21, 1889–1916, https://doi.org/10.5194/acp-21-1889-2021, https://doi.org/10.5194/acp-21-1889-2021, 2021
Short summary
Short summary
North Atlantic Aerosols and Marine Ecosystems Study measurements combined with GEOS-Chem-TOMAS modeling suggest that several not-well-understood key factors control northwest Atlantic aerosol number and size. These synergetic and climate-relevant factors include particle formation near and above the marine boundary layer top, particle growth by marine secondary organic aerosol on descent, particle formation/growth related to dimethyl sulfide, sea spray aerosol, and ship emissions.
Fiona M. O'Connor, N. Luke Abraham, Mohit Dalvi, Gerd A. Folberth, Paul T. Griffiths, Catherine Hardacre, Ben T. Johnson, Ron Kahana, James Keeble, Byeonghyeon Kim, Olaf Morgenstern, Jane P. Mulcahy, Mark Richardson, Eddy Robertson, Jeongbyn Seo, Sungbo Shim, João C. Teixeira, Steven T. Turnock, Jonny Williams, Andrew J. Wiltshire, Stephanie Woodward, and Guang Zeng
Atmos. Chem. Phys., 21, 1211–1243, https://doi.org/10.5194/acp-21-1211-2021, https://doi.org/10.5194/acp-21-1211-2021, 2021
Short summary
Short summary
This paper calculates how changes in emissions and/or concentrations of different atmospheric constituents since the pre-industrial era have altered the Earth's energy budget at the present day using a metric called effective radiative forcing. The impact of land use change is also assessed. We find that individual contributions do not add linearly, and different Earth system interactions can affect the magnitude of the calculated effective radiative forcing.
Gillian Thornhill, William Collins, Dirk Olivié, Ragnhild B. Skeie, Alex Archibald, Susanne Bauer, Ramiro Checa-Garcia, Stephanie Fiedler, Gerd Folberth, Ada Gjermundsen, Larry Horowitz, Jean-Francois Lamarque, Martine Michou, Jane Mulcahy, Pierre Nabat, Vaishali Naik, Fiona M. O'Connor, Fabien Paulot, Michael Schulz, Catherine E. Scott, Roland Séférian, Chris Smith, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, and James Weber
Atmos. Chem. Phys., 21, 1105–1126, https://doi.org/10.5194/acp-21-1105-2021, https://doi.org/10.5194/acp-21-1105-2021, 2021
Short summary
Short summary
We find that increased temperatures affect aerosols and reactive gases by changing natural emissions and their rates of removal from the atmosphere. Changing the composition of these species in the atmosphere affects the radiative budget of the climate system and therefore amplifies or dampens the climate response of climate models of the Earth system. This study found that the largest effect is a dampening of climate change as warmer temperatures increase the emissions of cooling aerosols.
Gillian D. Thornhill, William J. Collins, Ryan J. Kramer, Dirk Olivié, Ragnhild B. Skeie, Fiona M. O'Connor, Nathan Luke Abraham, Ramiro Checa-Garcia, Susanne E. Bauer, Makoto Deushi, Louisa K. Emmons, Piers M. Forster, Larry W. Horowitz, Ben Johnson, James Keeble, Jean-Francois Lamarque, Martine Michou, Michael J. Mills, Jane P. Mulcahy, Gunnar Myhre, Pierre Nabat, Vaishali Naik, Naga Oshima, Michael Schulz, Christopher J. Smith, Toshihiko Takemura, Simone Tilmes, Tongwen Wu, Guang Zeng, and Jie Zhang
Atmos. Chem. Phys., 21, 853–874, https://doi.org/10.5194/acp-21-853-2021, https://doi.org/10.5194/acp-21-853-2021, 2021
Short summary
Short summary
This paper is a study of how different constituents in the atmosphere, such as aerosols and gases like methane and ozone, affect the energy balance in the atmosphere. Different climate models were run using the same inputs to allow an easy comparison of the results and to understand where the models differ. We found the effect of aerosols is to reduce warming in the atmosphere, but this effect varies between models. Reactions between gases are also important in affecting climate.
Kevin J. Sanchez, Bo Zhang, Hongyu Liu, Georges Saliba, Chia-Li Chen, Savannah L. Lewis, Lynn M. Russell, Michael A. Shook, Ewan C. Crosbie, Luke D. Ziemba, Matthew D. Brown, Taylor J. Shingler, Claire E. Robinson, Elizabeth B. Wiggins, Kenneth L. Thornhill, Edward L. Winstead, Carolyn Jordan, Patricia K. Quinn, Timothy S. Bates, Jack Porter, Thomas G. Bell, Eric S. Saltzman, Michael J. Behrenfeld, and Richard H. Moore
Atmos. Chem. Phys., 21, 831–851, https://doi.org/10.5194/acp-21-831-2021, https://doi.org/10.5194/acp-21-831-2021, 2021
Short summary
Short summary
Models describing atmospheric airflow were combined with satellite measurements representative of marine phytoplankton and other meteorological variables. These combined variables were compared to measured aerosol to identify upwind influences on aerosol concentrations. Results indicate that phytoplankton production rates upwind impact the aerosol mass. Also, results suggest that the condensation of mass onto short-lived large sea spray particles may be a significant sink of aerosol mass.
Jane P. Mulcahy, Colin Johnson, Colin G. Jones, Adam C. Povey, Catherine E. Scott, Alistair Sellar, Steven T. Turnock, Matthew T. Woodhouse, Nathan Luke Abraham, Martin B. Andrews, Nicolas Bellouin, Jo Browse, Ken S. Carslaw, Mohit Dalvi, Gerd A. Folberth, Matthew Glover, Daniel P. Grosvenor, Catherine Hardacre, Richard Hill, Ben Johnson, Andy Jones, Zak Kipling, Graham Mann, James Mollard, Fiona M. O'Connor, Julien Palmiéri, Carly Reddington, Steven T. Rumbold, Mark Richardson, Nick A. J. Schutgens, Philip Stier, Marc Stringer, Yongming Tang, Jeremy Walton, Stephanie Woodward, and Andrew Yool
Geosci. Model Dev., 13, 6383–6423, https://doi.org/10.5194/gmd-13-6383-2020, https://doi.org/10.5194/gmd-13-6383-2020, 2020
Short summary
Short summary
Aerosols are an important component of the Earth system. Here, we comprehensively document and evaluate the aerosol schemes as implemented in the physical and Earth system models, HadGEM3-GC3.1 and UKESM1. This study provides a useful characterisation of the aerosol climatology in both models, facilitating the understanding of the numerous aerosol–climate interaction studies that will be conducted for CMIP6 and beyond.
David C. Loades, Mingxi Yang, Thomas G. Bell, Adam R. Vaughan, Ryan J. Pound, Stefan Metzger, James D. Lee, and Lucy J. Carpenter
Atmos. Meas. Tech., 13, 6915–6931, https://doi.org/10.5194/amt-13-6915-2020, https://doi.org/10.5194/amt-13-6915-2020, 2020
Short summary
Short summary
The loss of ozone to the sea surface was measured from the south coast of the UK and was found to be more rapid than previous observations over the open ocean. This is likely a consequence of different chemistry and biology in coastal environments. Strong winds appeared to speed up the loss of ozone. A better understanding of what influences ozone loss over the sea will lead to better model estimates of total ozone in the troposphere.
Wei-Lei Wang, Guisheng Song, François Primeau, Eric S. Saltzman, Thomas G. Bell, and J. Keith Moore
Biogeosciences, 17, 5335–5354, https://doi.org/10.5194/bg-17-5335-2020, https://doi.org/10.5194/bg-17-5335-2020, 2020
Short summary
Short summary
Dimethyl sulfide, a volatile compound produced as a byproduct of marine phytoplankton activity, can be emitted to the atmosphere via gas exchange. In the atmosphere, DMS is oxidized to cloud condensation nuclei, thus contributing to cloud formation. Therefore, oceanic DMS plays an important role in regulating the planet's climate by influencing the radiation budget. In this study, we use an artificial neural network model to update the global DMS climatology and estimate the sea-to-air flux.
Swaleha Inamdar, Liselotte Tinel, Rosie Chance, Lucy J. Carpenter, Prabhakaran Sabu, Racheal Chacko, Sarat C. Tripathy, Anvita U. Kerkar, Alok K. Sinha, Parli Venkateswaran Bhaskar, Amit Sarkar, Rajdeep Roy, Tomás Sherwen, Carlos Cuevas, Alfonso Saiz-Lopez, Kirpa Ram, and Anoop S. Mahajan
Atmos. Chem. Phys., 20, 12093–12114, https://doi.org/10.5194/acp-20-12093-2020, https://doi.org/10.5194/acp-20-12093-2020, 2020
Short summary
Short summary
Iodine chemistry is generating a lot of interest because of its impacts on the oxidising capacity of the marine boundary and depletion of ozone. However, one of the challenges has been predicting the right levels of iodine in the models, which depend on parameterisations for emissions from the sea surface. This paper discusses the different parameterisations available and compares them with observations, showing that our current knowledge is still insufficient, especially on a regional scale.
Cited articles
Alcolombri, U., Ben-Dor, S., Feldmesser, E., Levin, Y., Tawfik, D. S., and Vardi, A.: Identification of the algal dimethyl sulfide-releasing enzyme: A missing link in the marine sulfur cycle, Science, 348, 1466–1469, https://doi.org/10.1126/SCIENCE.AAB1586, 2015.
Anderson, T. R., Spall, S. A., Yool, A., Cipollini, P., Challenor, P. G.,
and Fasham, M. J. R.: Global fields of sea surface dimethylsulfide predicted
from chlorophyll, nutrients and light, J. Marine Syst., 30, 1–20,
https://doi.org/10.1016/S0924-7963(01)00028-8, 2001.
Aranami, K. and Tsunogai, S.: Seasonal and regional comparison of oceanic
and atmospheric dimethylsulfide in the northern North Pacific: Dilution
effects on its concentration during winter, J. Geophys. Res.-Atmos., 109, 1–15, https://doi.org/10.1029/2003JD004288, 2004.
Asher, E. C., Merzouk, A., and Tortell, P. D.: Fine-scale spatial and
temporal variability of surface water dimethylsufide (DMS) concentrations
and sea-air fluxes in the NE Subarctic Pacific, Mar. Chem., 126, 63–75,
https://doi.org/10.1016/j.marchem.2011.03.009, 2011.
Aumont, O., Belviso, S., and Monfray, P.: Dimethylsulfoniopropionate (DMSP)
and dimethylsulfide (DMS) sea surface distributions simulated from a global
three-dimensional ocean carbon cycle model, J. Geophys. Res., 107, 4-1–4-19,
https://doi.org/10.1029/1999jc000111, 2002.
Azen, R. and Budescu, D. V.: The Dominance Analysis Approach for Comparing
Predictors in Multiple Regression, Psychol. Methods, 8, 129–148,
https://doi.org/10.1037/1082-989X.8.2.129, 2003.
Bates, T. S., Lamb, B. K., Guenther, A., Dignon, J., and Stoiber, R. E.:
Sulfur emissions to the atmosphere from natural sources, J. Atmos. Chem., 14,
315–337, https://doi.org/10.1007/BF00115242, 1992.
Behrenfeld, M., Bidle, K., Boss, E., Carlson, C., Gaube, P., Giovannoni, S., Graff, J., Halsey, K., Kramer, S., Menden-Deuer, S., Nelson, N., Saltzman, E., Siegel, D., and Westberry, T.: North Atlantic Aerosol and Marine Ecosystem Study (NAAMES) 2015–2018, SeaWiFS Bio-optical Archive and Storage System (SeaBASS), NASA [data set], https://doi.org/10.5067/SeaBASS/NAAMES/DATA001, 2018.
Behrenfeld, M. J., Moore, R. H., Hostetler, C. A., Graff, J., Gaube, P.,
Russell, L. M., Chen, G., Doney, S. C., Giovannoni, S., Liu, H., Proctor,
C., Bolaños, L. M., Baetge, N., Davie-Martin, C., Westberry, T. K.,
Bates, T. S., Bell, T. G., Bidle, K. D., Boss, E. S., Brooks, S. D., Cairns,
B., Carlson, C., Halsey, K., Harvey, E. L., Hu, C., Karp-Boss, L., Kleb, M.,
Menden-Deuer, S., Morison, F., Quinn, P. K., Scarino, A. J., Anderson, B.,
Chowdhary, J., Crosbie, E., Ferrare, R., Hair, J. W., Hu, Y., Janz, S.,
Redemann, J., Saltzman, E., Shook, M., Siegel, D. A., Wisthaler, A., Martin,
M. Y., and Ziemba, L.: The North Atlantic Aerosol and Marine Ecosystem Study
(NAAMES): Science motive and mission overview, Front. Mar. Sci., 6, 122,
https://doi.org/10.3389/FMARS.2019.00122, 2019.
Bell, T. G., Malin, G., McKee, C. M., and Liss, P. S.: A comparison of
dimethylsulphide (DMS) data from the Atlantic Meridional Transect (AMT)
programme with proposed algorithms for global surface DMS concentrations,
Deep-Sea Res. Pt. 2, 53, 1720–1735, https://doi.org/10.1016/j.dsr2.2006.05.013, 2006.
Bell, T. G., Malin, G., Lee, G. A., Stefels, J., Archer, S., Steinke, M.,
and Matrai, P.: Global oceanic DMS data inter-comparability,
Biogeochemistry, 110, 147–161, https://doi.org/10.1007/s10533-011-9662-3, 2012.
Bell, T. G., Porter, J. G., Wang, W. L., Lawler, M. J., Boss, E.,
Behrenfeld, M. J., and Saltzman, E. S.: Predictability of Seawater DMS
During the North Atlantic Aerosol and Marine Ecosystem Study (NAAMES), Front.
Mar. Sci., 7, 1200, https://doi.org/10.3389/FMARS.2020.596763, 2021.
Belviso, S., Moulin, C., Bopp, L., and Stefels, J.: Assessment of a global
climatology of oceanic dimethylsulfide (DMS) concentrations based on SeaWiFS
imagery (1998–2001), Can. J. Fish. Aquat. Sci., 61, 804–816, https://doi.org/10.1139/f04-001, 2004a.
Belviso, S., Bopp, L., Moulin, C., Orr, J. C., Anderson, T. R., Aumont, O.,
Chu, S., Elliott, S., Maltrud, M. E., and Simó, R.: Comparison of global
climatological maps of sea surface dimethyl sulfide, Global Biogeochem.
Cy., 18, GB3013, https://doi.org/10.1029/2003GB002193, 2004b.
Bock, J., Michou, M., Nabat, P., Abe, M., Mulcahy, J. P., Olivié, D. J. L., Schwinger, J., Suntharalingam, P., Tjiputra, J., van Hulten, M., Watanabe, M., Yool, A., and Séférian, R.: Evaluation of ocean dimethylsulfide concentration and emission in CMIP6 models, Biogeosciences, 18, 3823–3860, https://doi.org/10.5194/bg-18-3823-2021, 2021.
Boucher, O., Moulin, C., Belviso, S., Aumont, O., Bopp, L., Cosme, E., von Kuhlmann, R., Lawrence, M. G., Pham, M., Reddy, M. S., Sciare, J., and Venkataraman, C.: DMS atmospheric concentrations and sulphate aerosol indirect radiative forcing: a sensitivity study to the DMS source representation and oxidation, Atmos. Chem. Phys., 3, 49–65, https://doi.org/10.5194/acp-3-49-2003, 2003.
Carslaw, K. S., Lee, L. A., Reddington, C. L., Pringle, K. J., Rap, A.,
Forster, P. M., Mann, G. W., Spracklen, D. V., Woodhouse, M. T., Regayre, L.
A., and Pierce, J. R.: Large contribution of natural aerosols to uncertainty
in indirect forcing, Nature, 503, 67–71, https://doi.org/10.1038/nature12674, 2013.
Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic
phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326,
655–661, https://doi.org/10.1038/326655a0, 1987.
Chelton, D. B., deSzoeke, R. A., Schlax, M. G., el Naggar, K., and Siwertz,
N.: Geographical Variability of the First Baroclinic Rossby Radius of
Deformation, J. Phys. Oceanogr., 28, 433–460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2, 1998.
Chu, S., Elliott, S., and Maltrud, M. E.: Global eddy permitting simulations
of surface ocean nitrogen, iron, sulfur cycling, Chemosphere, 50, 223–235,
https://doi.org/10.1016/S0045-6535(02)00162-5, 2003.
Cui, Y., Suzuki, S., Omori, Y., Wong, S. K., Ijichi, M., Kaneko, R.,
Kameyama, S., Tanimoto, H., and Hamasaki, K.: Abundance and distribution of
dimethylsulfoniopropionate degradation genes and the corresponding bacterial
community structure at dimethyl sulfide hot spots in the tropical and
subtropical Pacific Ocean, Appl. Environ. Microbiol., 81, 4184–4194,
https://doi.org/10.1128/AEM.03873-14, 2015.
della Penna, A. and Gaube, P.: Overview of (sub)mesoscale ocean dynamics for
the NAAMES field program, Front. Mar. Sci., 6, 384,
https://doi.org/10.3389/FMARS.2019.00384, 2019.
Derevianko, G. J., Deutsch, C., and Hall, A.: On the relationship between
ocean DMS and solar radiation, Geophys. Res. Lett., 36, L17606,
https://doi.org/10.1029/2009GL039412, 2009.
Eden, C.: Eddy length scales in the North Atlantic Ocean, J. Geophys. Res.-Oceans, 112, 6004, https://doi.org/10.1029/2006JC003901, 2007.
Fay, A. R. and McKinley, G. A.: Global open-ocean biomes: mean and temporal variability, Earth Syst. Sci. Data, 6, 273–284, https://doi.org/10.5194/essd-6-273-2014, 2014.
Fernandes: python-seawater v3.3.2, Zenodo [code], https://doi.org/10.5281/zenodo.11395, 2014.
Fox, J., Behrenfeld, M. J., Haëntjens, N., Chase, A., Kramer, S. J.,
Boss, E., Karp-Boss, L., Fisher, N. L., Penta, W. B., Westberry, T. K., and
Halsey, K. H.: Phytoplankton Growth and Productivity in the Western North
Atlantic: Observations of Regional Variability From the NAAMES Field
Campaigns, Front. Mar. Sci., 7, 24, https://doi.org/10.3389/FMARS.2020.00024, 2020.
Galí, M. and Simó, R.: A meta-analysis of oceanic DMS and DMSP
cycling processes: Disentangling the summer paradox, Global Biogeochem.
Cy., 29, 496–515, https://doi.org/10.1002/2014GB004940, 2015.
Galí, M., Devred, E., Levasseur, M., Royer, S. J., and Babin, M.: A
remote sensing algorithm for planktonic dimethylsulfoniopropionate (DMSP)
and an analysis of global patterns, Remote Sens. Environ., 171, 171–184,
https://doi.org/10.1016/j.rse.2015.10.012, 2015.
Galí, M., Levasseur, M., Devred, E., Simó, R., and Babin, M.: Sea-surface dimethylsulfide (DMS) concentration from satellite data at global and regional scales, Biogeosciences, 15, 3497–3519, https://doi.org/10.5194/bg-15-3497-2018, 2018.
Galí, M., Devred, E., Babin, M., and Levasseur, M.: Decadal increase in
Arctic dimethylsulfide emission, P. Natl. Acad. Sci. USA, 116,
19311–19317, https://doi.org/10.1073/PNAS.1904378116, 2019.
Galí, M., Lizotte, M., Kieber, D. J., Randelhoff, A., Hussherr, R.,
Xue, L., Dinasquet, J., Babin, M., Rehm, E., and Levasseur, M.: DMS
emissions from the Arctic marginal ice zone, Elem. Sci. Anthr., 9, 00113, https://doi.org/10.1525/ELEMENTA.2020.00113, 2021.
Gaube, P., J. McGillicuddy, D., and Moulin, A. J.: Mesoscale Eddies Modulate
Mixed Layer Depth Globally, Geophys. Res. Lett., 46, 1505–1512,
https://doi.org/10.1029/2018GL080006, 2019.
Hales, B. and Takahashi, T.: High-resolution biogeochemical investigation of
the Ross Sea, Antarctica, during the AESOPS (U.S. JGOFS) Program, Global
Biogeochem. Cy., 18, GB3006, https://doi.org/10.1029/2003GB002165, 2004.
Halloran, P. R., Bell, T. G., and Totterdell, I. J.: Can we trust empirical marine DMS parameterisations within projections of future climate?, Biogeosciences, 7, 1645–1656, https://doi.org/10.5194/bg-7-1645-2010, 2010.
Herr, A. E., Kiene, R. P., Dacey, J. W. H., and Tortell, P. D.: Patterns and drivers of dimethylsulfide concentration in the northeast subarctic Pacific across multiple spatial and temporal scales, Biogeosciences, 16, 1729–1754, https://doi.org/10.5194/bg-16-1729-2019, 2019.
Hulswar, S., Simó, R., Galí, M., Bell, T. G., Lana, A., Inamdar, S., Halloran, P. R., Manville, G., and Mahajan, A. S.: Third revision of the global surface seawater dimethyl sulfide climatology (DMS-Rev3), Earth Syst. Sci. Data, 14, 2963–2987, https://doi.org/10.5194/essd-14-2963-2022, 2022.
Humphries, G. R. W., Deal, C. J., Elliott, S., and Huettmann, F.: Spatial
predictions of sea surface dimethylsulfide concentrations in the high
arctic, Biogeochemistry, 110, 287–301,
https://doi.org/10.1007/S10533-011-9683-Y, 2012.
Jacobs, G. A., Barron, C. N., and Rhodes, R. C.: Mesoscale characteristics,
J. Geophys. Res., 106, 581–600, https://doi.org/10.1029/2000JC000669, 2001.
Kettle, A. J., Andreae, M. O., Amouroux, D., Andreae, T. W., Bates, T. S.,
Berresheim, H., Bingemer, H., Boniforti, R., Curran, M. A. J., DiTullio, G.
R., Helas, G., Jones, G. B., Keller, M. D., Kiene, R. P., Leek, C.,
Levasseur, M., Malin, G., Maspero, M., Matrai, P., McTaggart, A. R.,
Mihalopoulos, N., Nguyen, B. C., Novo, A., Putaud, J. P., Rapsomanikis, S.,
Roberts, G., Schebeske, G., Sharma, S., Simó, R., Staubes, R., Turner,
S., and Uher, G.: A global database of sea surface dimethylsulfide (DMS)
measurements and a procedure to predict sea surface DMS as a function of
latitude, longitude, and month, Global Biogeochem. Cy., 13, 399–444,
https://doi.org/10.1029/1999GB900004, 1999.
Klocker, A., Marshall, D. P., Keating, S. R., and Read, P. L.: A regime
diagram for ocean geostrophic turbulence, Q. J. Roy. Meteor. Soc, 142, 2411–2417, https://doi.org/10.1002/qj.2833, 2016.
Lana, A., Bell, T. G., Simó, R., Vallina, S. M., Ballabrera-Poy, J.,
Kettle, A. J., Dachs, J., Bopp, L., Saltzman, E. S., Stefels, J., Johnson,
J. E., and Liss, P. S.: An updated climatology of surface dimethlysulfide
concentrations and emission fluxes in the global ocean, Global Biogeochem.
Cy., 25, 1–17, https://doi.org/10.1029/2010GB003850, 2011.
Lannuzel, D., Tedesco, L., van Leeuwe, M., Campbell, K., Flores, H.,
Delille, B., Miller, L., Stefels, J., Assmy, P., Bowman, J., Brown, K.,
Castellani, G., Chierici, M., Crabeck, O., Damm, E., Else, B., Fransson, A.,
Fripiat, F., Geilfus, N. X., Jacques, C., Jones, E., Kaartokallio, H.,
Kotovitch, M., Meiners, K., Moreau, S., Nomura, D., Peeken, I., Rintala, J.
M., Steiner, N., Tison, J. L., Vancoppenolle, M., van der Linden, F., Vichi,
M., and Wongpan, P.: The future of Arctic sea-ice biogeochemistry and
ice-associated ecosystems, Nat. Clim. Change, 10, 983–992,
https://doi.org/10.1038/s41558-020-00940-4, 2020.
Mahajan, A. S., Fadnavis, S., Thomas, M. A., Pozzoli, L., Gupta, S., Royer,
S. J., Saiz-Lopez, A., and Simó, R.: Quantifying the impacts of an
updated global dimethyl sulfide climatology on cloud microphysics and
aerosol radiative forcing, J. Geophys. Res., 120, 2524–2536,
https://doi.org/10.1002/2014JD022687, 2015.
Manville, G. and Bell, T.: Ship-based continuous underway surface seawater dimethylsulfide concentration timeseries collected in the southeast Atlantic sector of the Southern Ocean as part of the spring cruise of the SCALE project, October–November 2019, NERC EDS British Oceanographic Data Centre NOC [data set], https://doi.org/10.5285/f70248ef-cb60-77d0-e053-6c86abc0c75a, 2023.
McGillicuddy, D. J.: Mechanisms of Physical-Biological-Biogeochemical
Interaction at the Oceanic Mesoscale, Annu. Rev. Mar. Sci., 8, 125–159,
https://doi.org/10.1146/ANNUREV-MARINE-010814-015606, 2016.
McNabb, B. J. and Tortell, P. D.: Improved prediction of dimethyl sulfide (DMS) distributions in the northeast subarctic Pacific using machine-learning algorithms, Biogeosciences, 19, 1705–1721, https://doi.org/10.5194/bg-19-1705-2022, 2022.
McNabb, B. J. and Tortell, P. D.: Oceanographic controls on Southern Ocean
dimethyl sulfide distributions revealed by machine learning algorithms,
Limnol. Oceanogr., 68, 616–630, https://doi.org/10.1002/LNO.12298, 2023.
Miles, C. J., Bell, T. G., and Lenton, T. M.: Testing the relationship between the solar radiation dose and surface DMS concentrations using in situ data, Biogeosciences, 6, 1927–1934, https://doi.org/10.5194/bg-6-1927-2009, 2009.
Mulcahy, J. P., Johnson, C., Jones, C. G., Povey, A. C., Scott, C. E., Sellar, A., Turnock, S. T., Woodhouse, M. T., Abraham, N. L., Andrews, M. B., Bellouin, N., Browse, J., Carslaw, K. S., Dalvi, M., Folberth, G. A., Glover, M., Grosvenor, D. P., Hardacre, C., Hill, R., Johnson, B., Jones, A., Kipling, Z., Mann, G., Mollard, J., O'Connor, F. M., Palmiéri, J., Reddington, C., Rumbold, S. T., Richardson, M., Schutgens, N. A. J., Stier, P., Stringer, M., Tang, Y., Walton, J., Woodward, S., and Yool, A.: Description and evaluation of aerosol in UKESM1 and HadGEM3-GC3.1 CMIP6 historical simulations, Geosci. Model Dev., 13, 6383–6423, https://doi.org/10.5194/gmd-13-6383-2020, 2020.
NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology
Processing Group: Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua
Chlorophyll Data, 2018 Reprocessing, NASA OB.DAAC, Greenbelt, MD, USA [data set], https://doi.org/10.5067/AQUA/MODIS/L3M/CHL/2018, 2018.
Nemcek, N., Ianson, D., and Tortell, P. D.: A high-resolution survey of DMS,
CO2, and O2/Ar distributions in productive coastal waters, Global Biogeochem. Cy., 22, GB2009, https://doi.org/10.1029/2006GB002879, 2008.
Nowinski, B., Motard-Côté, J., Landa, M., Preston, C. M., Scholin,
C. A., Birch, J. M., Kiene, R. P., and Moran, M. A.: Microdiversity and
temporal dynamics of marine bacterial dimethylsulfoniopropionate genes,
Environ. Microbiol., 21, 1687–1701, https://doi.org/10.1111/1462-2920.14560,
2019.
Polimene, L., Archer, S. D., Butenschön, M., and Allen, J. I.: A
mechanistic explanation of the Sargasso Sea DMS “summer paradox”,
Biogeochemistry, 110, 243–255, https://doi.org/10.1007/s10533-011-9674-z, 2012.
Quinn, P. K., Coffman, D. J., Johnson, J. E., Upchurch, L. M., and Bates, T.
S.: Small fraction of marine cloud condensation nuclei made up of sea spray
aerosol, Nat. Geosci., 10, 674–679, https://doi.org/10.1038/ngeo3003, 2017.
Rhines, P. B.: Waves and turbulence on a beta-plane, J. Fluid Mech., 69,
417–443, https://doi.org/10.1017/S0022112075001504, 1975.
Royer, S. J., Mahajan, A. S., Galí, M., Saltzman, E., and Simõ, R.:
Small-scale variability patterns of DMS and phytoplankton in surface waters
of the tropical and subtropical Atlantic, Indian, and Pacific Oceans,
Geophys. Res. Lett., 42, 475–483, https://doi.org/10.1002/2014GL062543, 2015.
Royer, S. J., Galí, M., Mahajan, A. S., Ross, O. N., Pérez, G. L.,
Saltzman, E. S., and Simó, R.: A high-resolution time-depth view of
dimethylsulphide cycling in the surface sea, Sci. Rep., 6, 32325,
https://doi.org/10.1038/srep32325, 2016.
Saltzman, E. S., De Bruyn, W. J., Lawler, M. J., Marandino, C. A., and McCormick, C. A.: A chemical ionization mass spectrometer for continuous underway shipboard analysis of dimethylsulfide in near-surface seawater, Ocean Sci., 5, 537–546, https://doi.org/10.5194/os-5-537-2009, 2009.
Sanchez, K. J., Chen, C. L., Russell, L. M., Betha, R., Liu, J., Price, D.
J., Massoli, P., Ziemba, L. D., Crosbie, E. C., Moore, R. H., Müller,
M., Schiller, S. A., Wisthaler, A., Lee, A. K. Y., Quinn, P. K., Bates, T.
S., Porter, J., Bell, T. G., Saltzman, E. S., Vaillancourt, R. D., and
Behrenfeld, M. J.: Substantial Seasonal Contribution of Observed Biogenic
Sulfate Particles to Cloud Condensation Nuclei, Sci. Rep.,
8, 1–14, https://doi.org/10.1038/s41598-018-21590-9, 2018.
Scott, R. B. and Wang, F.: Direct Evidence of an Oceanic Inverse Kinetic
Energy Cascade from Satellite Altimetry, J. Phys. Oceanogr., 35, 1650–1666,
https://doi.org/10.1175/JPO2771.1, 2005.
Simó, R.: Production of atmospheric sulfur by oceanic plankton:
biogeochemical, ecological and evolutionary links, Trends Ecol. Evol., 16,
287–294, 2001.
Simó, R. and Dachs, J.: Global ocean emission of dimethylsulfide
predicted from biogeophysical data, Global Biogeochem. Cy., 16,
26-1–26-10, https://doi.org/10.1029/2001GB001829, 2002.
Simó, R., Saló, V., Almeda, R., Movilla, J., Trepat, I., Saiz, E.,
and Calbet, A.: The quantitative role of microzooplankton grazing in
dimethylsulfide (DMS) production in the NW Mediterranean, Biogeochemistry,
141, 125–142, https://doi.org/10.1007/S10533-018-0506-2, 2018.
Stefels, J., van Leeuwe, M. A., Jones, E. M., Meredith, M. P., Venables, H.
J., Webb, A. L., and Henley, S. F.: Impact of sea-ice melt on dimethyl
sulfide (sulfoniopropionate) inventories in surface waters of Marguerite
Bay, West Antarctic Peninsula, Philos. T. Roy. Soc. A, 376, 20170169,
https://doi.org/10.1098/RSTA.2017.0169, 2018.
Tesdal, J.-E., Christian, J. R., Monahan, A. H., and von Salzen, K.: Evaluation of diverse approaches for estimating sea-surface DMS concentration and air–sea exchange at global scale, Environ. Chem., 13, 390–412, https://doi.org/10.1071/EN14255, 2015.
Toole, D. A. and Siegel, D. A.: Light-driven cycling of dimethylsulfide
(DMS) in the Sargasso Sea: Closing the loop, Geophys. Res. Lett., 31, L09308,
https://doi.org/10.1029/2004GL019581, 2004.
Toole, D. A., Siegel, D. A., and Doney, S. C.: A light-driven,
one-dimensional dimethylsulfide biogeochemical cycling model for the
Sargasso Sea, J. Geophys. Res.-Biogeosci., 113, G02009, https://doi.org/10.1029/2007JG000426, 2008.
Tortell, P. D.: Dissolved gas measurements in oceanic waters made by
membrane inlet mass spectrometry, Limnol. Oceanogr.-Meth., 3, 24–37,
https://doi.org/10.4319/lom.2005.3.24, 2005a.
Tortell, P. D.: Small-scale heterogeneity of dissolved gas concentrations in
marine continental shelf waters, Geochem. Geophy. Geosy., 6, Q11M04,
https://doi.org/10.1029/2005GC000953, 2005b.
Tortell, P. D. and Long, M. C.: Spatial and temporal variability of biogenic
gases during the Southern Ocean spring bloom, Geophys. Res. Lett., 36, L01603, https://doi.org/10.1029/2008GL035819, 2009.
Tortell, P. D., Guéguen, C., Long, M. C., Payne, C. D., Lee, P., and
DiTullio, G. R.: Spatial variability and temporal dynamics of surface water
pCO2, δO2/Ar and dimethylsulfide in the Ross Sea, Antarctica, Deep-Sea Res. Pt. 1, 58, 241–259, https://doi.org/10.1016/j.dsr.2010.12.006, 2011.
Tulloch, R., Marshall, J., Hill, C., and Smith, K. S.: Scales, Growth Rates,
and Spectral Fluxes of Baroclinic Instability in the Ocean, J. Phys. Oceanogr., 41, 1057–1076, https://doi.org/10.1175/2011JPO4404.1, 2011.
Vallina, S. M. and Simó, R.: Strong Relationship Between DMS and the
Solar Radiation Dose over the Global Surface Ocean, Science, 315, 506–508,
https://doi.org/10.1126/science.281.5374.200, 2007.
Vallina, S. M., Simó, R., Anderson, T. R., Gabric, A., Cropp, R., and
Pacheco, J. M.: A dynamic model of oceanic sulfur (DMOS) applied to the
Sargasso Sea: Simulating the dimethylsulfide (DMS) summer paradox, J. Geophys. Res.-Biogeosci, 113, G01009, https://doi.org/10.1029/2007JG000415, 2008.
Wang, W.-L., Song, G., Primeau, F., Saltzman, E. S., Bell, T. G., and Moore, J. K.: Global ocean dimethyl sulfide climatology estimated from observations and an artificial neural network, Biogeosciences, 17, 5335–5354, https://doi.org/10.5194/bg-17-5335-2020, 2020.
Williams, R. G. and Follows, M. J.: Ocean eddies, in: Ocean Dynamics and the
Carbon Cycle, Cambridge University Press, 211–235,
https://doi.org/10.1017/CBO9780511977817.010, 2011.
Woodhouse, M. T., Carslaw, K. S., Mann, G. W., Vallina, S. M., Vogt, M., Halloran, P. R., and Boucher, O.: Low sensitivity of cloud condensation nuclei to changes in the sea-air flux of dimethyl-sulphide, Atmos. Chem. Phys., 10, 7545–7559, https://doi.org/10.5194/acp-10-7545-2010, 2010.
Woodhouse, M. T., Mann, G. W., Carslaw, K. S., and Boucher, O.: Sensitivity of cloud condensation nuclei to regional changes in dimethyl-sulphide emissions, Atmos. Chem. Phys., 13, 2723–2733, https://doi.org/10.5194/acp-13-2723-2013, 2013.
Zindler, C., Marandino, C. A., Bange, H. W., Schütte, F., and Saltzman,
E. S.: Nutrient availability determines dimethyl sulfide and isoprene
distribution in the eastern Atlantic Ocean, Geophys. Res. Lett., 41,
3181–3188, https://doi.org/10.1002/2014GL059547, 2014.
Zlotnicki, V., Qu, Z., and Willis, J.: SEA_SURFACE_HEIGHT_ ALT_GRIDS_L4_2SATS_5DAY_6THDEG_V_JPL1609. Ver.
1812, PO.DAAC, CA, USA [data set], https://doi.org/10.5067/SLREF-CDRV2, 2019.
Short summary
We present the first global investigation of controls on seawater dimethylsulfide (DMS) spatial variability over scales of up to 100 km. Sea surface height anomalies, density, and chlorophyll a help explain almost 80 % of DMS variability. The results suggest that physical and biogeochemical processes play an equally important role in controlling DMS variability. These data provide independent confirmation that existing parameterisations of seawater DMS concentration use appropriate variables.
We present the first global investigation of controls on seawater dimethylsulfide (DMS) spatial...
Altmetrics
Final-revised paper
Preprint