Articles | Volume 20, issue 12
https://doi.org/10.5194/bg-20-2525-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-2525-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Variability of light absorption coefficients by different size fractions of suspensions in the southern Baltic Sea
Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
Dagmara Litwicka
Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
Monika Zabłocka
Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
Related authors
Justyna Meler, Joanna Stoń-Egiert, and Monika Zabłocka
EGUsphere, https://doi.org/10.5194/egusphere-2025-2800, https://doi.org/10.5194/egusphere-2025-2800, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We present a variability of absorption properties by different size fractions of particles suspended in the Spitsbergen Fjords waters in the summer season. The light absorption coefficient by all suspended particles, detritus and phytoplankton was determined for four size fractions: pico, ultra, nano and micro-particles. We have shown the proportions of particles from the size classes in the total absorptions, and we have found that dominant contribution had ultra-particles.
Justyna Meler, Joanna Stoń-Egiert, and Monika Zabłocka
EGUsphere, https://doi.org/10.5194/egusphere-2025-2800, https://doi.org/10.5194/egusphere-2025-2800, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We present a variability of absorption properties by different size fractions of particles suspended in the Spitsbergen Fjords waters in the summer season. The light absorption coefficient by all suspended particles, detritus and phytoplankton was determined for four size fractions: pico, ultra, nano and micro-particles. We have shown the proportions of particles from the size classes in the total absorptions, and we have found that dominant contribution had ultra-particles.
Aleksandra Cherkasheva, Rustam Manurov, Piotr Kowalczuk, Alexandra N. Loginova, Monika Zabłocka, and Astrid Bracher
EGUsphere, https://doi.org/10.5194/egusphere-2023-2495, https://doi.org/10.5194/egusphere-2023-2495, 2023
Preprint archived
Short summary
Short summary
We aimed to improve the quality of regional Greenland Sea primary production estimates. Seventy two versions of primary production model setups were tested against field data. Best performing models had local biomass and light absorption profiles. Thus by using local parametrizations for these parameters we can improve Arctic primary production model performance. Annual Greenland Sea basin estimates are larger than previously reported.
Cited articles
Aiken, J., Pradhan, Y., Barlow, R., Lavender, S., Poulton, A., Holligan, P., and Hardman-Mountford, N.: Phytoplankton pigments and functional types in the Atlantic Ocean: A decadal assessment, 1995–2005, Deep-Sea Res. Pt. II, 56, 2009, 899–917,
https://doi.org/10.1016/j.dsr2.2008.09.017, 2009.
Babin, M., Stramski, D., Ferrari, G. M., Claustre, H., Bricaud, A.,
Obolensky, G., and Hoepffner, N.: Variations in the light absorption
coefficient of phytoplankton, nonalgal particles, and dissolved organic
matter in coastal waters around Europe, J. Geophys. Res., 108, 3211,
https://doi.org/10.1029/2001JC000882, 2003.
Bidigare, R. R., Morrow, J. H., and Kiefer, D. A.: Derivative analysis of
spectral absorption by photosynthetic pigments in the western Sargasso Sea,
J. Mar. Res., 47, 323–341, 1989.
Brewin, R. J. W., Sathyendranath, S., Hirata, T., Lavender, S. J., Barciela, R. M., and Hardman-Mountford, N. J.: A three-component model of phytoplankton size class for the Atlantic Ocean, Ecol. Model. 221, 1472–1483,
https://doi.org/10.1016/j.ecolmodel.2010.02.014, 2010.
Brewin, R. J. W., Devred, E., Sathyendranath, S., Lavender, S. J., and
Hardman-Mountford, N. J.: Model of phytoplankton absorption based on three
size classes, Appl. Optics, 50, 4535–4549,
https://doi.org/10.1364/AO.50.004535, 2011.
Brewin, R. J. W., Hirata, T., Hardman-Mountford, N. J., Lavender, S. J.,
Sathyendranath, S., and Barlow, R.: The influence of the Indian Ocean Dipole
on interannual variations in phytoplankton size structure as revealed by
Earth Observation, Deep-Sea Res. II, 77–80, 117–127,
https://doi.org/10.1016/j.dsr2.2012.04.009, 2012.
Bricaud, A. and Stramski, D.: Spectral absorption coefficients of living
phytoplankton and nonalgal biogenous matter: A comparison between the Peru
upwelling area and the Sargasso Sea, Limnol. Oceanogr., 35,
562–582, https://doi.org/10.4319/lo.1990.35.3.0562, 1990.
Bricaud, A., Morel, A., Babin, M., Allali, K., and Claustre, H.: Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models, J. Geophys. Res., 103, 31033–31044, https://doi.org/10.1029/98JC02712, 1998.
Bricaud, A., Claustre, H., Ras, J., and Oubelkheir, K.: Natural variability
of phytoplankton absorption in oceanic waters: influence of the size
structure of algal populations, J. Geophys. Res., 109, C11010,
https://doi.org/10.1029/2004JC002419, 2004.
Bricaud, A., Ciotti, A. M, and Gentili, B.: Spatial-temporal variations in
phytoplankton size and colored detrital matter absorption at global and
regional scales, as derived from twelve years of SeaWiFS data (1998–2009),
Global Biogeochem. Cy., 26, GB1010, https://doi.org/10.1029/2010GB003952, 2012.
Carstensen, J., Andersen, J., Dromph, K. M., Flemming-Lehtinen, V., Simis, S., Gustafsson, B., Norkko, A., Radtke, H., Petersen, D. L. J., and Uhrenholdt, T.: Approaches and methods for eutrophication target setting in the Baltic Sea region. Baltic Sea Environment Proceedings, Helsinki Commission – HELCOM, no. 133, https://helcom.fi/wp-content/uploads/2019/10/BSEP133.pdf (last access: 29 June 2023), 2013.
Castagna, A., Amadei Martínez, L., Bogorad, M., Daveloose, I., Dasseville, R., Dierssen, H. M., Beck, M., Mortelmans, J., Lavigne, H., Dogliotti, A., Doxaran, D., Ruddick, K., Vyverman, W., and Sabbe, K.: Optical and biogeochemical properties of diverse Belgian inland and coastal waters, Earth Syst. Sci. Data, 14, 2697–2719, https://doi.org/10.5194/essd-14-2697-2022, 2022.
Cermeño, P., Estévez-Blanco, P., Marañón, E., and
Fernóndez, E.: Maximum photosynthetic efficiency of size-fractionated
phytoplankton assessed by 14C uptake and fast repetition rate fluorometry,
Limnol. Oceanogr., 50, 1438–1446, https://doi.org/10.4319/lo.2005.50.5.1438, 2005.
Ciotti, A. M. and Bricaud, A.: Retrievals of a size parameter for
phytoplankton and spectral light absorption by colored detrital matter from
water-leaving radiances at SeaWiFS channels in a continental shelf region
off Brazil, Limnol. Oceanogr.-Meth., 4, 237–253, https://doi.org/10.4319/lom.2006.4.237, 2006.
Ciotti, A. M., Lewis, M. R., and Cullen, J. J.: Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient, Limnol. Oceanogr., 47,
404–417, 2002.
Davies, E. J., McKee, D., Bowers, D., Graham, G. W., and Nimmo-Smith, W. A. M.: Optically significant particle sizes in seawater, Appl. Optics, 53, 1067–1074, https://doi.org/10.1364/AO.53.001067, 2014.
Decembrini, F., Bergamasco, A., and Mangoni, O.: Seasonal characteristics of
size-fractionated phytoplankton community and fate of photosynthesized
carbon in a sub-Antarctic area (Straits of Magellan), J. Mar. Sys., 136,
31–41, https://doi.org/10.1016/j.jmarsys.2014.03.008, 2014.
Deng, L., Zhou, W., Xu, J., Cao, W., Liao, J., and Zhao, J.: Estimation of
vertical size-fractionated phytoplankton primary production in the northern
South China Sea, Ecol. Indic., 135, 103546,
https://doi.org/10.1016/j.ecolind.2022.108546, 2022.
Devred, E., Sathyendranath, S., Stuart, V., Maas, H., Ulloa, O., and Platt,
T.: A two-component model of phytoplankton absorption in the open ocean:
Theory and applications, J. Geophys. Res., 111, C03011,
https://doi.org/10.1029/2005JC002880, 2006.
Devred, E., Sathyendranath, S., Stuart, V., and Platt, T.: A three component
classification of phytoplankton absorption spectra: Application to
ocean-color data, Remote Sens. Environ., 115, 2255–2266,
https://doi.org/10.1016/j.rse.2011.04.025, 2011.
D'Sa, E. J. and Ko, D. S.: Short-term influences on suspended particulate
matter distribution in the Northern Gulf of Mexico: Satellite and model
observations, Sensors, 8, 4249–4264, https://doi.org/10.3390/s8074249, 2008.
D'Sa, E. J., Miller, R. L., and Del Castillo, C.: Bio-optical properties and
ocean color algorithms for coastal waters influenced by the Mississippi
River during a cold front, Appl. Optics, 45, 7410–7428,
https://doi.org/10.1364/AO.45.007410, 2006.
Eleveld, M.A., van der Wal, D., and van Kessel, T.: Estuarine suspended
particulate matter concentrations from sunsynchronous satellite remote
sensing: Tidal and meteorological effects and biases, Remote Sens. Environ.,
143, 2014–215, https://doi.org/10.1016/j.rse.2013.12.019, 2014.
Grelowski, A. and Wojewódzki, T.: The impact of the Vistula River on
the hydrological conditions in the Gulf of Gdańsk in 1994, Bull. Sea
Fish. Inst., 137, 23–33, 1996.
Hamasaki, K., Ikeda, M., Ishikawa, M., Shirasawa, K., and Taguchi, S.:
Seasonal variability of size-fractionated chlorophyll a in Monbetsu Harbor,
Hokkaido, northern Japan, Plankton Biol. Ecol., 45, 151–158, 1998.
Hirata, T., Aiken, J., Hardman-Mountford, N. J., Smyth, T. J., and Barlow,
R. G.: An absorption model to determine phytoplankton size classes from
satellite ocean colour, Remote Sens. Environ., 112, 3153–3159,
https://doi.org/10.1016/j.rse.2008.03.011, 2008.
Hirata, T., Hardman-Mountford, N. J., Brewin, R. J. W., Aiken, J., Barlow, R., Suzuki, K., Isada, T., Howell, E., Hashioka, T., Noguchi-Aita, M., and Yamanaka, Y.: Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types, Biogeosciences, 8, 311–327, https://doi.org/10.5194/bg-8-311-2011, 2011.
Hoepffner, N. and Sathyendranath, S.: Bio-optical characteristics of
coastal waters: Absorption spectra of phytoplankton and pigment distribution
in the western North Atlantic, Limnol. Oceanogr., 37, 1160–1179,
https://doi.org/10.4319/lo.1992.37.8.1660, 1992.
IOCCG: Phytoplankton functional types from space, Reports of the International Ocean-Colour Coordinating Group, edited by: Sathyendranath, S., No. 15, IOCCG, Dartmouth, Canada, 154 pp., https://doi.org/10.25607/OBP-106, 2014.
Kheireddine, M., Ouhssain, M., Organelli, E., Bricaud, A., and Jones, B. H.: Light absorption by suspended particles in the Red Sea: effect of phytoplankton community size structure and pigment composition, J. Geophys. Res.-Oceans, 123, 1–20, https://doi.org/10.1002/2017JC013279, 2018.
Koestner, D., Stramski, D., and Reynolds, R.: Assessing the effects of
particle size and composition on light scattering through measurements of
size-fractionated seawater samples, Limnol. Oceanogr., 65, 173–190, https://doi.org/10.1002/lno.11259, 2019.
Kormas, K. A., Garametsi, V., and Nicolaidou, A.: Size-fractionated
phytoplankton chlorophyll in an Eastern Mediterranean coastal system
(Maliakos Gulf, Greece), Helgol. Mar. Res., 56, 125–133,
https://doi.org/10.1007/s10152-002-0106-2, 2002.
Kowalczuk, P.: Seasonal variability of yellow substance absorption in the
surface layer of the Baltic Sea, J. Geophys. Res., 104, 30047–30058,
1999.
Kowalczuk, P., Sagan, S., Olszewski, J., Darecki, M., and Hapter, R.:
Seasonal changes in selected optical parameters in the Pomeranian Bay in
1996–1997, Oceanologia, 41, 309–334, 1999.
Kowalczuk, P., Olszewski, J., Darecki, M., and Kaczmarek, S.: Empirical
relationships between coloured dissolved organic matter (CDOM) absorption
and apparent optical properties in Baltic Sea waters, Int. J. Remote Sens.,
26, 345–370, 2005.
Kowalczuk, P., Stedmon, C. A., and Markager, S.: Modeling absorption by CDOM
in the Baltic Sea from season, salinity and chlorophyll, Mar. Chem.,
101, 1–11, https://doi.org/10.1016/j.marchem.2005.12.005, 2006.
Kowalczuk, P., Sagan, S., Zabłocka, M., and Borzycka, K.: Mixing anomaly
in deoxygenated Baltic Sea deeps indicates benthic flux and microbial
transformation of chromophoric and fluorescent dissolved organic matter,
Estuar. Coast. Shelf S., 163, 206–217, https://doi.org/10.1016/j.ecss.2015.06.027, 2015.
Lam, P. J., Ohnemus, D. C., and Auro, M. E.: Size-fractionated major particle
composition and concentrations from the US GEOTRACES North Atlantic Zonal
Transect, Deep-Sea Res. Pt. II, 116, 303–320, https://doi.org/10.1016/j.dsr2.2014.11.020, 2015.
Lam, P. J., Lee, J.-M., Heller, M. I., Mehic, S., Xiang, Y., and Bates, N. R.: Size-fractionated distributions of suspended particle concentration and
major phase composition from the U.S. GEOTRACES Eastern Pacific Zonal
Transect (GP16), Mar. Chem., 201, 90–107, https://doi.org/10.1016/j.marchem.2017.08.013, 2018.
Le Quéré, C., Harrison, S. P., Prentice, C. I., Buitenhuis, E. T.,
Aumont, O., Bopp, L., Claustre, H., Cotrim da Cunha, L., Geider, R., Giraud,
X., Klass, C., Kohfeld, K. E., Legendre, L., Manizza, M., Platt, T., Rivkin,
R., Sathyendranath, R. B., Uitz, J., Watson, A. J., and Wolf-Gladrow, D.:
Ecosystem dynamics based on plankton functional types for global ocean
biogeochemistry models, Glob. Change Biol., 11, 2016–2040,
https://doi.org/10.1111/j.1365-2486.2005.1004.x, 2005.
Loisel, H. and Poteau, A.: Inversion of IOP based on Rrs and remotely
retrieved Kd, in: Remote Sensing of Inherent Optical Properties:
Fundamentals, Tests of Algorithms, and Applications, edited by: Lee, Z. P.,
Reports of the International Ocean Colour Coordinating Group, No. 5. IOCCG,
Dartmouth, Canada, 35–41, https://doi.org/10.25607/OBP-96, 2006.
Loisel, H. and Stramski, D.: Estimation of the inherent optical properties
of natural waters from the irradiance attenuation coefficient and
reflectance in the presence of Raman scattering, Appl. Optics, 30,
3001–3011, https://doi.org/10.1364/AO.39.003001, 2000.
Lorenzen, C. J.: Determination of chlorophyll and pheo-pigments:
spectrophotometric equations, Limnol. Oceanogr., 12, 343–346,
https://doi.org/10.4319/lo.1967.12.2.0343, 1967.
Marañón, E., Holligan, P. M., Barciela, R., González, N.,
Mouriño, B., Pazó, M. J., and Varela, M.: Patterns of phytoplankton
size structure and productivity in contrasting open-ocean environments, Mar.
Ecol. Prog. Ser., 216, 43–56, https://www.jstor.org/stable/24864737 (last access: 28 June 2023), 2001.
Marker, A. F., Nush, E. A., Rai, H., and Riemann, B.: The Measurement of
Photosynthetic Pigments in Freshwaters and Standardization of Methods:
Conclusions and Recommendations, Arch. Hydrobiol., 14, 91–106,
1980.
Matciak, M. and Nowacki, J.: The Vistula river discharge front – surface
observations, Oceanologia, 37, 75–88, 1995.
McKee, D. and Cunningham, A.: Identification and characterisation of two
optical water types in the Irish Sea from in situ inherent optical
properties and seawater constituents, Estuar. Coast. Shelf S., 68,
305–316, https://doi.org/10.1016/j.ecss.2006.02.010, 2006.
Meler, J., Kowalczuk, P., Ostrowska, M., Ficek, D., Zabłocka, M., and Zdun, A.: Parameterization of the light absorption properties of chromophoric dissolved organic matter in the Baltic Sea and Pomeranian lakes, Ocean Sci., 12, 1013–1032, https://doi.org/10.5194/os-12-1013-2016, 2016a.
Meler, J., Ostrowska, M., and Stoń-Egiert, J.: Seasonal and spatial
variability of phytoplankton and non-algal absorption in the surface layer
of the Baltic, Estuar. Coast. Shelf S., 180, 123-135,
https://doi.org/10.1016/j.ecss.2016.06.012, 2016b.
Meler, J., Ostrowska, M., Stoń-Egiert, J., and Zabłocka, M.: Seasonal
and spatial variability of light absorption by suspended particles in the
southern Baltic: a mathematical description, J. Mar. Sys., 170, 68–87,
https://doi.org/10.1016/j.jmarsys.2016.10.011, 2017.
Meler, J., Woźniak, S. B., Stoń-Egiert, J., and Woźniak, B.: Parameterization of phytoplankton spectral absorption coefficients in the Baltic Sea: general, monthly and two-component variants of approximation formulas, Ocean Sci., 14, 1523–1545, https://doi.org/10.5194/os-14-1523-2018, 2018.
Meler, J., Woźniak, S. B., and Stoń-Egiert, J.: Comparison of methods
for indirectly estimating the phytoplankton population size structure and
their preliminary modifications adapted to the specific conditions of the
Baltic Sea, J. Mar. Sys, 212, 103446, https://doi.org/10.1016/j.jmarsys.2020.103446, 2020.
Mohammadpour, G., Gagné, J.-P., Larouche, P., and Montes-Hugo, M. A.: Optical properties of size fractions of suspended particulate matter in littoral waters of Québec, Biogeosciences, 14, 5297–5312, https://doi.org/10.5194/bg-14-5297-2017, 2017.
Moisan, J. R., Moisan, T. A. H., and Linkswiler, M. A.: An inverse modeling
approach to estimating phytoplankton pigment concentrations from
phytoplankton absorption spectra, J. Geophys. Res., 116, C09018,
https://doi.org/10.1029/2010JC006786, 2011.
Morel, A. and Bricaud, A.: Theoretical results concerning light absorption
in a discrete medium, and application to specific absorption of
phytoplankton, Deep-Sea Res., 28, 1375–1393,
https://doi.org/10.1016/0198-0149(81)90039-X, 1981.
Mouw, C. B. and Yoder, J.: Optical determination of phytoplankton size
composition from global SeaWiFS imagery, J. Geophys. Res., 115, C12018,
https://doi.org/10.1029/2010JC006337, 2010.
Mouw, C. B., Hardman-Mountford, N. J., Alvain, S., Bracher, A., Brewin,
R. J. W., Bricaud, A., Ciotti, A., Devred, E., Fujiwara, A., Hirata, T.,
Hiraweke, T., Kostadinov, T. S., Roy, S., and Uitz, J.: A consumer's guide
to satellite remote sensing of multiple phytoplankton groups in the global
ocean, Front. Mar. Sci., 4, 41, https://doi.org/10.3389/fmars.2017.00041, 2017.
Moynihan, M. A., Barbier, P., Olivier, F., Toupoint, N., and Meziane, T.: Spatial and temporal dynamics of nano- and pico-size particulate organic matter (POM) in a coastal megatidal marine system, Limnol. Oceanogr., 61, 1087–1100, https://doi.org/10.1002/lno.10276, 2016.
Olszewski, J., Sagan, S., and Darecki, M.: Spatial and temporal changes in
some optical parameters in the southern Baltic, Oceanologia, 33, 87–103,
1992.
Organelli, E., Bricaud, A., Antoine, D., and Uitz, J.: Multivariate approach
for the retrieval of phytoplankton size structure from measured light
absorption spectra in the Mediterranean Sea (BOUSSOLE site), Appl. Optics,
52, 2257–2273, https://doi.org/10.1364/AO.52.002257, 2013.
Pearlman, S. R., Costa, H. S., Jung, R. A., McKeown, J. J., and Pearson, H. E.: Solids (section 2540), in: Standard Methods for the Examination of Water and Wastewater, edited by: Eaton, A. D., Clesceri, L. S., and Greenberg, A. E., 19th edn., American Public Health Association, Washington, D.C., USA, 2-53–2-64, ISBN 978-0875532292, 1995.
Platt, T. and Sathyendranath, S.: Ecological indicators for the pelagic
zone of the ocean from remote sensing, Remote Sens. Environ., 112,
3426–3436, https://doi.org/10.1016/j.rse.2007.10.016, 2008.
Sagan, S.: Light Transmission in the Waters of the Southern Baltic Sea.
Dissertations and Monographs, 2/1991, Institute of Oceanology PAS, Sopot, p. 149, ISBN 83-900555-0-3, 1991 (in Polish).
Sagan, S.: The inherit water optical properties of Baltic waters.
Dissertations and Monographs IO PAS 21/2008, Institute of Oceanology Polish
Academy of Sciences, p. 242, ISBN 978-83-921552-4-9, 2008 (in Polish).
Saggiomo, V., Goffart, G., Carrada, G. C., and Hecq, J. H.: Spatial patterns
of phytoplanktonic pigments and primary production in a semi-enclosed
periantarctic ecosystem: the Strait of Magellan, J. Mar. Sys., 5,
119–142, https://doi.org/10.1016/0924-7963(94)90027-2, 1994.
Sathyendranath, S., Lazzara, L., and Prieur, L.: Variations in the spectral
values of specific absorption of phytoplankton, Limnol. Oceanogr.,
32, 403–415, https://doi.org/10.4319/lo.1987.32.2.0403, 1987.
Sathyendranath, S., Cota, G., Stuart, V., Maass, H., and Platt, T.: Remote
sensing of phytoplankton pigments: a comparison of empirical and theoretical
approaches, Int. J. Remote Sens., 22, 249–273, https://doi.org/10.1080/014311601449925, 2001.
Sieburth, J. M., Smetacek, V., and Lenz, J.: Pelagic ecosystem structure:
heterotrophic compartments of the plankton and their relationship to
plankton size fractions, Limnol. Oceanogr., 23, 1256–1263,
https://doi.org/10.4319/lo.1978.23.6.1256, 1978.
Stedmon, C. A., Markager, S., and Kaas, H.: Optical properties and signatures
of chromophoric dissolved organic matter (CDOM) in Danish coastal waters.
Estuar. Coast. Shelf S., 51, 267–278, https://doi.org/10.1006/ecss.2000.0645, 2000.
Stramski, D., Reynolds, R. I., Kaczmarek, S., Uitz, J., and Zheng, G.:
Correction of pathlength amplification in the filter-pad technique for
measurements of particulate absorption coefficient in the visible spectral
region, Appl. Optics, 54, 6763–6782, https://doi.org/10.1364/AO.54.006763, 2015.
Strickland, J. D. H. and Parsons, T. R.: A practical handbook of seawater
analyses, Fisheries Research Board of Canada, Ottawa,
https://doi.org/10.1002/iroh.19700550118, 1972.
Thamm, R., Schernewski, G., Wasmund, N., and Neumann, T.: Spatial
phytoplankton pattern in the Baltic Sea, in: Baltic Sea Typology, edited by: Schernewski, G. and Wielgat, M., Warnemünde, M., EUCC – The Coastal Union, Die Küsten Union Deutschlands e.V., Coastline reports; 4, 85–109, http://eucc-d-inline.databases.eucc-d.de/files/documents/00000301_coastline_reports_4_typology.pdf (last access: 28 June 2023), 2004.
Turner, J. T.: Zooplankton fecal pellets, amrine snow, phytodetritus and the
ocean's biological pump, Prog. Oceanogr., 130, 205–248, 2015.
Uitz, J., Claustre, H., Morel, A., and Hooker, S. B.: Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface
chlorophyll, J. Geophys. Res. 111, C08005, https://doi.org/10.1029/2005JC003207, 2006.
Uitz, J., Huot, Y., Bruyant, F., Babin, M., and Claustre, H.: Relating
phytoplankton photophysiological properties to community structure on large
scales, Limnol. Oceanogr., 53, 614–630,
https://doi.org/10.4319/lo.2008.53.2.0614, 2008.
Vidussi, F., Claustre, H., Manca, B. B., Luchetta, A., and Marty, J. C.:
Phytoplankton pigment distribution in relation to upper thermocline
circulation in the eastern Mediterranean Sea during winter, J. Geophys. Res.,
106, 19939–19956, https://doi.org/10.1029/1999JC000308, 2001.
Volkman, J. K. and Tanoue, E.: Chemical and biological studies of
particulate organic matter in the ocean, J. Oceanogr., 58, 265–279,
https://doi.org/10.1023/A:1015809708632, 2002.
Voss, M., Bange, H. W., Dippner, J. W., Middelburg, J. J., Montoya, J. P., and Ward, B.: The marine nitrogen cycle: Recent discoveries, uncertainties and the potential relevance of climate change. Philos. T. Roy. Soc. B, 368, 20130121, https://doi.org/10.1098/rstb.2013.0121, 2013.
Wasmund, N. and Uhlig, S.: Phytoplankton in large river plumes in the
Baltic Sea, ICES J. Mar. Sci., 56, 23–32, 2003.
Wasmund, N., Breuel, G., Edler, L., Kuosa, H., Olsonen, R., Schultz, H.,
Pys-Wolska, M., and Wrzołek, L.: Pelagic biology. Third Periodic
Assessment of the State of Marine Environment of the Baltic Sea. 199–93;
Background document, Baltic Sea Environment Proceedings No. 64B, Helsinki
Commission, 89–93, https://helcom.fi/wp-content/uploads/2019/08/BSEP64B.pdf (last access: 28 June 2023), 1996.
Wasmund, N., Andrushaitis, A., Łysiak-Pastuszak, E., Müller-Karulis,
B., Nausch, G., Neumann, T., Ojaveer, H., Olenina, I., Postel, L., and
Witek, Z.: Trophic status of the south-eastern Baltic Sea: a comparison of
coastal and open areas, Estuar. Coast. Shelf S., 53, 849–864, 2001.
Wintermans, J. F. G. M. and De Mots, A.: Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol, Biochim.
Biophys. Acta – Biophysics including Photosynthesis, 109,
448–453, https://doi.org/10.1016/0926-6585(65)90170-6, 1965.
Witek, B. and Pliński, M.: Occurrence of blue-green algae in the
phytoplankton of the Gulf of Gdańsk in the years 1994–1997,
Oceanological Stud., 3, 77–82, 1998.
Woźniak, B. and Dera, J.: Light Absorption in Sea Water, Springer, New York, 452 pp., https://doi.org/10.1007/978-0-387-49560-6, 2007.
Woźniak, S. B. and Meler, J.: Modelling Water Colour Characteristics in
an Optically Complex Nearshore Environment in the Baltic Sea; Quantitative
Interpretation of the Forel-Ule Scale and Algorithms for the Remote
Estimation of Seawater Composition, Remote Sens., 12, 2852,
https://doi.org/10.3390/rs12172852, 2020.
Woźniak, S. B., Meler, J., Lednicka, B., Zdun, A., and Stoń-Egiert,
J.: Inherent optical properties of suspended particulate matter in the
southern Baltic Sea, Oceanologia, 53, 691–729,
https://doi.org/10.5697/oc.53-3.691, 2011.
Woźniak, S. B., Sagan, S., Zabłocka, M., Stoń-Egiert, J., and
Borzycka, K.: Light scattering and backscattering by particles suspended in
the Baltic Sea in relation to the mass concentration of particles and the
proportions of their organic and inorganic fractions, J. Mar. Syst., 182,
79–96, https://doi.org/10.1016/j.jmarsys.2017.12.005, 2018.
Woźniak, S. B., Meler, J., and Stoń-Egiert, J.: Inherent optical
properties of suspended particulate matter in the southern Baltic Sea in
relation to the concentration, composition and characteristics of the
particle size distribution; new forms of multicomponent parameterizations of
optical properties, J. Mar. Syst., 229, 10372,
https://doi.org/10.1016/j.jmarsys.2022.103720, 2022.
Xiang, Y. and Lam, P. J.: Size-fractionated compositions of marine suspended
particles in the western Arctic Ocean: Lateral and vertical sources, J.
Geoph. Res.-Oceans, 125, e2020JC016144, https://doi.org/10.1029/2020JC016144, 2020.
Yigiterhan, O., Al-Ansari, E. M., Nelson, A., Abdel-Moati, M. A., Turner, J., Alsaadi, H. A., Paul, B., Al-Maslamani, I. A., Al-Ansi Al-Yafei, M. A., and Murray, J. W.: Trace element composition of size-fractionated suspended particulate matter samples from the Qatari Exclusive Economic Zone of the Arabian Gulf: the role of atmospheric dust, Biogeosciences, 17, 381–404, https://doi.org/10.5194/bg-17-381-2020, 2020.
Zhang, X., Huot, Y., Bricaud, A., and Sosik, H.: Inversion of spectral
absorption coefficients to infer phytoplankton size classes, chlorophyll
concentration, and detrital matter, Appl. Optics, 54, 5805–5816,
https://doi.org/10.1364/AO.54.005805, 2015.
Short summary
We present a variability of absorption properties by different size fractions of particles suspended in the Baltic Sea waters. The light absorption coefficient by all suspended particles (ap), detritus (ad) and phytoplankton (aph) was determined for four size fractions: pico-particles, ultra-particles, nano-particles and micro-particles. We have shown the proportions of particles from the size classes (micro-, nano-, ultra- and pico-particles) in the total ap, ad and aph.
We present a variability of absorption properties by different size fractions of particles...
Altmetrics
Final-revised paper
Preprint