Articles | Volume 20, issue 3
https://doi.org/10.5194/bg-20-597-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-597-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nature and origin of variations in pelagic carbonate production in the tropical ocean since the mid-Miocene (ODP Site 927)
MARUM – Centre for Marine Environmental
Sciences, University of Bremen, Leobener Straße 8, 28359 Bremen, Germany
Thomas Westerhold
MARUM – Centre for Marine Environmental
Sciences, University of Bremen, Leobener Straße 8, 28359 Bremen, Germany
Heiko Pälike
MARUM – Centre for Marine Environmental
Sciences, University of Bremen, Leobener Straße 8, 28359 Bremen, Germany
Torsten Bickert
MARUM – Centre for Marine Environmental
Sciences, University of Bremen, Leobener Straße 8, 28359 Bremen, Germany
Karl-Heinz Baumann
Geoscience Department, University of Bremen, Klagenfurter Straße,
P.O. Box 330440, 28359 Bremen, Germany
Michal Kucera
MARUM – Centre for Marine Environmental
Sciences, University of Bremen, Leobener Straße 8, 28359 Bremen, Germany
Related authors
Pauline Cornuault, Luc Beaufort, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
EGUsphere, https://doi.org/10.5194/egusphere-2025-198, https://doi.org/10.5194/egusphere-2025-198, 2025
Short summary
Short summary
We present new high-resolution data of the relative contribution of the two main pelagic carbonate producers (coccoliths and foraminifera) to the total pelagic carbonate production from the tropical Atlantic in past warm periods since the Miocene. Our findings suggests that the two groups responded differently to orbital forcing and oceanic changes in tropical ocean, but their proportion changes did not drive the changes in overall pelagic carbonate deposition.
Mariem Saavedra-Pellitero, Karl-Heinz Baumann, Nuria Bachiller-Jareno, Harold Lovell, Nele Manon Vollmar, and Elisa Malinverno
Biogeosciences, 22, 3143–3164, https://doi.org/10.5194/bg-22-3143-2025, https://doi.org/10.5194/bg-22-3143-2025, 2025
Short summary
Short summary
This study combines micropaleontology and satellite remote sensing to investigate particulate inorganic carbon in the Pacific sector of the Southern Ocean. We compare estimates of calcium carbonate produced by coccolithophores (tiny marine algae) to satellite measurements of particulate inorganic carbon. Both datasets show good agreement north of the Polar Front, but large differences are observed to the south of it, likely because of highly reflective small opal particles in this zone.
Elwyn de la Vega, Markus Raitzsch, Gavin Foster, Jelle Bijma, Ulysses Silas Ninnemann, Michal Kucera, Tali Lea Babila, Jessica Crumpton Banks, Mohamed M. Ezat, and Audrey Morley
EGUsphere, https://doi.org/10.5194/egusphere-2025-2443, https://doi.org/10.5194/egusphere-2025-2443, 2025
Short summary
Short summary
The boron isotopic composition (δ11B) of foraminifera shells is an established proxy for the reconstruction of ocean pH. Applications to the Arctic oceans are however limited as robust calibrations in these regions are lacking. Here, we present a new calibration linking δ11B measured in two high-latitude foraminifera species to seawater pH. We show that the δ11B of the species analysed is well correlated with seawater pH and that this calibration can be applied to the paleorecord.
Lukas Jonkers, Tonke Strack, Montserrat Alonso-Garcia, Simon D'haenens, Robert Huber, Michal Kucera, Iván Hernández-Almeida, Chloe L. C. Jones, Brett Metcalfe, Rajeev Saraswat, Lóránd Silye, Sanjay K. Verma, Muhamad Naim Abd Malek, Gerald Auer, Cátia F. Barbosa, Maria A. Barcena, Karl-Heinz Baumann, Flavia Boscolo-Galazzo, Joeven Austine S. Calvelo, Lucilla Capotondi, Martina Caratelli, Jorge Cardich, Humberto Carvajal-Chitty, Markéta Chroustová, Helen K. Coxall, Renata M. de Mello, Anne de Vernal, Paula Diz, Kirsty M. Edgar, Helena L. Filipsson, Ángela Fraguas, Heather L. Furlong, Giacomo Galli, Natalia L. García Chapori, Robyn Granger, Jeroen Groeneveld, Adil Imam, Rebecca Jackson, David Lazarus, Julie Meilland, Marína Molčan Matejová, Raphael Morard, Caterina Morigi, Sven N. Nielsen, Diana Ochoa, Maria Rose Petrizzo, Andrés S. Rigual-Hernández, Marina C. Rillo, Matthew L. Staitis, Gamze Tanık, Raúl Tapia, Nishant Vats, Bridget S. Wade, and Anna E. Weinmann
J. Micropalaeontol., 44, 145–168, https://doi.org/10.5194/jm-44-145-2025, https://doi.org/10.5194/jm-44-145-2025, 2025
Short summary
Short summary
Our study provides guidelines improving the reuse of marine microfossil assemblage data, which are valuable for understanding past ecosystems and environmental change. Based on a survey of 113 researchers, we identified key data attributes required for effective reuse. Analysis of a selection of datasets available online reveals a gap between the attributes scientists consider essential and the data currently available, highlighting the need for clearer data documentation and sharing practices.
Pauline Cornuault, Luc Beaufort, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
EGUsphere, https://doi.org/10.5194/egusphere-2025-198, https://doi.org/10.5194/egusphere-2025-198, 2025
Short summary
Short summary
We present new high-resolution data of the relative contribution of the two main pelagic carbonate producers (coccoliths and foraminifera) to the total pelagic carbonate production from the tropical Atlantic in past warm periods since the Miocene. Our findings suggests that the two groups responded differently to orbital forcing and oceanic changes in tropical ocean, but their proportion changes did not drive the changes in overall pelagic carbonate deposition.
Julia de Entrambasaguas, Thomas Westerhold, Heather L. Jones, and Laia Alegret
J. Micropalaeontol., 43, 303–322, https://doi.org/10.5194/jm-43-303-2024, https://doi.org/10.5194/jm-43-303-2024, 2024
Short summary
Short summary
The Gulf Stream plays a crucial role in the ocean stability and climate regulation of the Northern Hemisphere. By analysing the fossil microorganisms that lived in the water column and the ocean floor, as well as reconstructing the ancient ocean's biogeochemistry, we were able to trace longitudinal shifts in the Gulf Stream during the late Eocene (36 Ma). Our results provide insight into the Gulf Stream's behaviour and the NW Atlantic's palaeoceanography during the Late Eocene (ca. 36 Ma).
Marci M. Robinson, Kenneth G. Miller, Tali L. Babila, Timothy J. Bralower, James V. Browning, Marlow J. Cramwinckel, Monika Doubrawa, Gavin L. Foster, Megan K. Fung, Sean Kinney, Maria Makarova, Peter P. McLaughlin, Paul N. Pearson, Ursula Röhl, Morgan F. Schaller, Jean M. Self-Trail, Appy Sluijs, Thomas Westerhold, James D. Wright, and James C. Zachos
Sci. Dril., 33, 47–65, https://doi.org/10.5194/sd-33-47-2024, https://doi.org/10.5194/sd-33-47-2024, 2024
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern anthropogenic CO2 emissions, but its causes and the responses remain enigmatic. Coastal plain sediments can resolve this uncertainty, but their discontinuous nature requires numerous sites to constrain events. Workshop participants identified 10 drill sites that target the PETM and other interesting intervals. Our post-drilling research will provide valuable insights into Earth system responses.
Heather M. Stoll, Leopoldo D. Pena, Ivan Hernandez-Almeida, José Guitián, Thomas Tanner, and Heiko Pälike
Clim. Past, 20, 25–36, https://doi.org/10.5194/cp-20-25-2024, https://doi.org/10.5194/cp-20-25-2024, 2024
Short summary
Short summary
The Oligocene and early Miocene periods featured dynamic glacial cycles on Antarctica. In this paper, we use Sr isotopes in marine carbonate sediments to document a change in the location and intensity of continental weathering during short periods of very intense Antarctic glaciation. Potentially, the weathering intensity of old continental rocks on Antarctica was reduced during glaciation. We also show improved age models for correlation of Southern Ocean and North Atlantic sediments.
Sabrina Hohmann, Michal Kucera, and Anne de Vernal
Clim. Past, 19, 2027–2051, https://doi.org/10.5194/cp-19-2027-2023, https://doi.org/10.5194/cp-19-2027-2023, 2023
Short summary
Short summary
Drivers for dinocyst assemblage compositions differ regionally and through time. Shifts in the assemblages can sometimes only be interpreted robustly by locally and sometimes globally calibrated transfer functions, questioning the reliability of environmental reconstructions. We suggest the necessity of a thorough evaluation of transfer function performance and significance for downcore applications to disclose the drivers for present and fossil dinocyst assemblages in a studied core location.
Michal Kučera and Geert-Jan A. Brummer
J. Micropalaeontol., 42, 33–34, https://doi.org/10.5194/jm-42-33-2023, https://doi.org/10.5194/jm-42-33-2023, 2023
Ji-Eun Kim, Thomas Westerhold, Laia Alegret, Anna Joy Drury, Ursula Röhl, and Elizabeth M. Griffith
Clim. Past, 18, 2631–2641, https://doi.org/10.5194/cp-18-2631-2022, https://doi.org/10.5194/cp-18-2631-2022, 2022
Short summary
Short summary
This study attempts to gain a better understanding of the marine biological carbon pump and ecosystem functioning under warmer-than-today conditions. Our records from marine sediments show the Pacific tropical marine biological carbon pump was driven by variations in seasonal insolation in the tropics during the Late Cretaceous and may play a key role in modulating climate and the carbon cycle globally in the future.
Franziska Tell, Lukas Jonkers, Julie Meilland, and Michal Kucera
Biogeosciences, 19, 4903–4927, https://doi.org/10.5194/bg-19-4903-2022, https://doi.org/10.5194/bg-19-4903-2022, 2022
Short summary
Short summary
This study analyses the production of calcite shells formed by one of the main Arctic pelagic calcifiers, the foraminifera N. pachyderma. Using vertically resolved profiles of shell concentration, size and weight, we show that calcification occurs throughout the upper 300 m with an average production flux below the calcification zone of 8 mg CaCO3 m−2 d−1 representing 23 % of the total pelagic biogenic carbonate production. The production flux is attenuated in the twilight zone by dissolution.
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
David De Vleeschouwer, Marion Peral, Marta Marchegiano, Angelina Füllberg, Niklas Meinicke, Heiko Pälike, Gerald Auer, Benjamin Petrick, Christophe Snoeck, Steven Goderis, and Philippe Claeys
Clim. Past, 18, 1231–1253, https://doi.org/10.5194/cp-18-1231-2022, https://doi.org/10.5194/cp-18-1231-2022, 2022
Short summary
Short summary
The Leeuwin Current transports warm water along the western coast of Australia: from the tropics to the Southern Hemisphere midlatitudes. Therewith, the current influences climate in two ways: first, as a moisture source for precipitation in southwestern Australia; second, as a vehicle for Equator-to-pole heat transport. In this study, we study sediment cores along the Leeuwin Current pathway to understand its ocean–climate interactions between 4 and 2 Ma.
Geert-Jan A. Brummer and Michal Kučera
J. Micropalaeontol., 41, 29–74, https://doi.org/10.5194/jm-41-29-2022, https://doi.org/10.5194/jm-41-29-2022, 2022
Short summary
Short summary
To aid researchers working with living planktonic foraminifera, we provide a comprehensive review of names that we consider appropriate for extant species. We discuss the reasons for the decisions we made and provide a list of species and genus-level names as well as other names that have been used in the past but are considered inappropriate for living taxa, stating the reasons.
Nele Manon Vollmar, Karl-Heinz Baumann, Mariem Saavedra-Pellitero, and Iván Hernández-Almeida
Biogeosciences, 19, 585–612, https://doi.org/10.5194/bg-19-585-2022, https://doi.org/10.5194/bg-19-585-2022, 2022
Short summary
Short summary
We studied recent (sub-)fossil remains of a type of algae (coccolithophores) off southernmost Chile and across the Drake Passage, adding to the scarce knowledge that exists in the Southern Ocean, a rapidly changing environment. We found that those can be used to reconstruct the surface ocean conditions in the north but not in the south. We also found variations in shape in the dominant species Emiliania huxleyi depending on the location, indicating subtle adaptations to environmental conditions.
Lukas Jonkers, Geert-Jan A. Brummer, Julie Meilland, Jeroen Groeneveld, and Michal Kucera
Clim. Past, 18, 89–101, https://doi.org/10.5194/cp-18-89-2022, https://doi.org/10.5194/cp-18-89-2022, 2022
Short summary
Short summary
The variability in the geochemistry among individual foraminifera is used to reconstruct seasonal to interannual climate variability. This method requires that each foraminifera shell accurately records environmental conditions, which we test here using a sediment trap time series. Even in the absence of environmental variability, planktonic foraminifera display variability in their stable isotope ratios that needs to be considered in the interpretation of individual foraminifera data.
Gerhard Fischer, Oscar E. Romero, Johannes Karstensen, Karl-Heinz Baumann, Nasrollah Moradi, Morten Iversen, Götz Ruhland, Marco Klann, and Arne Körtzinger
Biogeosciences, 18, 6479–6500, https://doi.org/10.5194/bg-18-6479-2021, https://doi.org/10.5194/bg-18-6479-2021, 2021
Short summary
Short summary
Low-oxygen eddies in the eastern subtropical North Atlantic can form an oasis for phytoplankton growth. Here we report on particle flux dynamics at the oligotrophic Cape Verde Ocean Observatory. We observed consistent flux patterns during the passages of low-oxygen eddies. We found distinct flux peaks in late winter, clearly exceeding background fluxes. Our findings suggest that the low-oxygen eddies sequester higher organic carbon than expected for oligotrophic settings.
Lukas Jonkers, Oliver Bothe, and Michal Kucera
Clim. Past, 17, 2577–2581, https://doi.org/10.5194/cp-17-2577-2021, https://doi.org/10.5194/cp-17-2577-2021, 2021
Julie Meilland, Michael Siccha, Maike Kaffenberger, Jelle Bijma, and Michal Kucera
Biogeosciences, 18, 5789–5809, https://doi.org/10.5194/bg-18-5789-2021, https://doi.org/10.5194/bg-18-5789-2021, 2021
Short summary
Short summary
Planktonic foraminifera population dynamics has long been assumed to be controlled by synchronous reproduction and ontogenetic vertical migration (OVM). Due to contradictory observations, this concept became controversial. We here test it in the Atlantic ocean for four species of foraminifera representing the main clades. Our observations support the existence of synchronised reproduction and OVM but show that more than half of the population does not follow the canonical trajectory.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
Charlotte L. Spencer-Jones, Erin L. McClymont, Nicole J. Bale, Ellen C. Hopmans, Stefan Schouten, Juliane Müller, E. Povl Abrahamsen, Claire Allen, Torsten Bickert, Claus-Dieter Hillenbrand, Elaine Mawbey, Victoria Peck, Aleksandra Svalova, and James A. Smith
Biogeosciences, 18, 3485–3504, https://doi.org/10.5194/bg-18-3485-2021, https://doi.org/10.5194/bg-18-3485-2021, 2021
Short summary
Short summary
Long-term ocean temperature records are needed to fully understand the impact of West Antarctic Ice Sheet collapse. Glycerol dialkyl glycerol tetraethers (GDGTs) are powerful tools for reconstructing ocean temperature but can be difficult to apply to the Southern Ocean. Our results show active GDGT synthesis in relatively warm depths of the ocean. This research improves the application of GDGT palaeoceanographic proxies in the Southern Ocean.
Markus Raitzsch, Jelle Bijma, Torsten Bickert, Michael Schulz, Ann Holbourn, and Michal Kučera
Clim. Past, 17, 703–719, https://doi.org/10.5194/cp-17-703-2021, https://doi.org/10.5194/cp-17-703-2021, 2021
Short summary
Short summary
At approximately 14 Ma, the East Antarctic Ice Sheet expanded to almost its current extent, but the role of CO2 in this major climate transition is not entirely known. We show that atmospheric CO2 might have varied on 400 kyr cycles linked to the eccentricity of the Earth’s orbit. The resulting change in weathering and ocean carbon cycle affected atmospheric CO2 in a way that CO2 rose after Antarctica glaciated, helping to stabilize the climate system on its way to the “ice-house” world.
Catarina Cavaleiro, Antje H. L. Voelker, Heather Stoll, Karl-Heinz Baumann, and Michal Kucera
Clim. Past, 16, 2017–2037, https://doi.org/10.5194/cp-16-2017-2020, https://doi.org/10.5194/cp-16-2017-2020, 2020
Cited articles
Beerling, D. J. and Royer, D. L.: Reconstructions of atmospheric carbon
dioxide concentrations over the past 65 million years are heading towards
consensus. It is time for systematic testing of the proxies, against
measurements and against each other, Nat. Geosci., 4, 418–420,
https://doi.org/10.1038/ngeo1186, 2011.
Bell, D. B., Jung, S. J. A., and Kroon, D.: The Plio-Pleistocene development
of Atlantic deep-water circulation and its influence on climate trends,
Quaternary Sci. Rev., 123, 265–282,
https://doi.org/10.1016/j.quascirev.2015.06.026, 2015.
Berger, W. H., Bonneau, M. C., and Parker, F. L.: Foraminifera on the
deep-sea floor – lysocline and dissolution rate, Oceanol. Ac., 5, 249–258, 1982.
Bickert, T., Cordes, R., and Wefer, G.: Late Pliocene to mid-Pleistocene
(2.6–1.0 My) carbonate dissolution in the western equatorial Atlantic:
results of leg 154, Ceara Rise, in: Proceedings of the Ocean Drilling
Program, Sci. Res., 154, 229–237, 1997.
Bickert, T., Haug, G. H., and Tiedemann, R.: Late Neogene benthic stable
isotope record of Ocean Drilling Program Site 999: Implications for
Caribbean paleoceanography, organic carbon burial, and the Messinian
Salinity Crisis, Paleoceanography, 19, PA1023,
https://doi.org/10.1029/2002PA000799, 2004.
Boudreau, B. P., Middelburg, J. J., and Luo, Y.: The role of calcification
in carbonate compensation, Nat. Geosci., 11, 894–900,
https://doi.org/10.1038/s41561-018-0259-5, 2018.
Brummer, G. J. A. and van Eijden, A. J. M.: “Blue-ocean” paleoproductivity
estimates from pelagic carbonate mass accumulation rates, Mar.
Micropaleontol., 19, 99–117,
https://doi.org/10.1016/0377-8398(92)90023-D, 1992.
Cavaleiro, C., Voelker, A. H. L., Stoll, H., Baumann, K.-H., Kulhanek, D.
K., Naafs, B. D. A., Stein, R., Grützner, J., Ventura, C., and Kucera,
M.: Insolation forcing of coccolithophore productivity in the North Atlantic
during the Middle Pleistocene, Quaternary Sci. Rev., 191, 318–336,
https://doi.org/10.1016/j.quascirev.2018.05.027, 2018.
Cavaleiro, C., Voelker, A. H. L., Stoll, H., Baumann, K.-H., and Kucera, M.:
Coccolithophore productivity at the western Iberian Margin during the Middle
Pleistocene (310–455 ka) – evidence from coccolith Sr Ca data, Clim. Past, 16, 2017–2037, https://doi.org/10.5194/cp-16-2017-2020, 2020.
Chalk, T. B., Foster, G. L., and Wilson, P. A.: Dynamic storage of glacial
CO2 in the Atlantic Ocean revealed by boron [CO ] and pH
records, Earth Pl. Sc. Lett., 510, 1–11,
https://doi.org/10.1016/j.epsl.2018.12.022, 2019.
Clark, P. U. and Huybers, P.: Interglacial and future sea level: Global
change, Nature, 462, 856–857, https://doi.org/10.1038/462856a, 2009.
Cornuault, P., Westerhold, T., Pälike, H., Bickert, T., Baumann, K.-H., and Kucera, M.: Carbonate accumulation rate calculation derived from previously published carbonate content data, for the five sites of the Leg 154, Ceara Rise, tropical Atlantic from 0 to 16 Ma, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.945848, 2022a.
Cornuault, P., Westerhold, T., Pälike, H., Bickert, T., Baumann, K. H., and Kucera, M.: Magnetic susceptibility of ODP Site 154-927, Pliocene Warm Period (3095 to 3307 ka) interval, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.945773, 2022b
Cornuault, P., Westerhold, T., Pälike, H., Bickert, T., Baumann, K.-H., and Kucera, M.: Oxygen and carbon stable isotopes ratios from benthic foraminifera from Miocene Climatic Optimum (MCO) (15589 to 15964 ka) time interval, ODP Hole 154-927A, Ceara Rise, tropical Atlantic Ocean, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.945812, 2022c.
Cornuault, P., Westerhold, T., Pälike, H., Bickert, T., Baumann, K.-H., and Kucera, M.:
Carbonate content analyses and accumulation rate data for the marine isotopic stage (MIS) 5, MIS 9, MIS KM5 and MCO, ODP Site 154-927, Ceara Rise, tropical Atlantic Ocean, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.945789, 2022d.
Cornuault, P., Westerhold, T., Pälike, H., Bickert, T., Baumann, K.-H., and Kucera, M.: Splice composition of ODP Site 154-927, 110.43 mcd to 119.79 mcd interval, Ceara Rise, tropical Atlantic, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.945707, 2022e.
Cullen, J. L. and Curry, W. B.: Variations in planktonic foraminifer faunas
and carbonate preservation at site 927: Evidence for changing surface water
conditions in the western tropical Atlantic ocean during the middle
Pleistocene, in: Proceedings of the Ocean Drilling Program, edited by: Shackleton, N. J., Curry, W. B., Richter, C., and Bralower, T. J., Sci. Results, Vol. 154, College Station, TX, Ocean Drilling Program, 207–228, https://doi.org/10.2973/odp.proc.sr.154.111.1997, 1997.
Curry, W. B. and Cullen, J. L.: Carbonate production and dissolution in the
western equatorial Atlantic during the last 1 My, in: Proceedings of the
Ocean Drilling Program, edited by: Shackleton, N. J., Curry, W. B., Richter, C., and Bralower, T. J., Scientific Results, Vol. 154, College Station, TX, Ocean Drilling Program, 189–199, https://doi.org/10.2973/odp.proc.sr.154.112.1997, 1997.
Curry, W. B., Shackleton, N. J., Richter, C., and et al. (Eds.): Proceedings
of the Ocean Drilling Program, 154 Initial Reports, Ocean Drilling Program,
https://doi.org/10.2973/odp.proc.ir.154.1995, 1995.
De Vleeschouwer, D., Vahlenkamp, M., Crucifix, M., and Pälike, H.:
Alternating Southern and Northern Hemisphere climate response to
astronomical forcing during the past 35 My, Geology, 45, 375–378,
https://doi.org/10.1130/G38663.1, 2017.
De Vleeschouwer, D., Drury, A. J., Vahlenkamp, M., Rochholz, F., Liebrand,
D., and Pälike, H.: High-latitude biomes and rock weathering mediate
climate–carbon cycle feedbacks on eccentricity timescales, Nat.
Commun., 11, 5013, https://doi.org/10.1038/s41467-020-18733-w, 2020.
Dodson, J. and Macphail, M. K.: Palynological evidence for aridity events
and vegetation change during the Middle Pliocene, a warm period in
Southwestern Australia, Glob. Planet. Change, 41, 285–307,
https://doi.org/10.1016/j.gloplacha.2004.01.013, 2004.
Drury, A. J., Liebrand, D., Westerhold, T., Beddow, H. M., Hodell, D. A., Rohlfs, N., Wilkens, R. H., Lyle, M., Bell, D. B., Kroon, D., Pälike, H., and Lourens, L. J.: Climate, cryosphere and carbon cycle controls on Southeast Atlantic orbital-scale carbonate deposition since the Oligocene (30–0 Ma), Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, 2021.
Feely, R. A.: Impact of Anthropogenic CO2 on the CaCO3 System in
the Oceans, Science, 305, 362–366, https://doi.org/10.1126/science.1097329,
2004.
Foster, G. L., Lear, C. H., and Rae, J. W. B.: The evolution of pCO2,
ice volume and climate during the middle Miocene, Earth Pl.
Sc. Lett., 341, 243–254,
https://doi.org/10.1016/j.epsl.2012.06.007, 2012.
Frenz, M., Baumann, K.-H., Boeckel, B., Hoppner, R., and Henrich, R.:
Quantification of Foraminifer and Coccolith Carbonate in South Atlantic
Surface Sediments by Means of Carbonate Grain-Size Distributions, J.
Sediment. Res., 75, 464–475, https://doi.org/10.2110/jsr.2005.036,
2005.
Frenz, M., Henrich, R., and Zychla, B.: Carbonate preservation patterns at
the Ceará Rise – Evidence for the Pliocene super conveyor, Mar.
Geol., 232, 173–180, https://doi.org/10.1016/j.margeo.2006.07.006, 2006.
Gehlen, M., Gangstø, R., Schneider, B., Bopp, L., Aumont, O., and Ethe, C.: The fate of pelagic CaCO3 production in a high CO2 ocean: a model study, Biogeosciences, 4, 505–519, https://doi.org/10.5194/bg-4-505-2007, 2007.
Gouveia, N. A., Gherardi, D. F. M., and Aragão, L. E. O. C.: The Role of
the Amazon River Plume on the Intensification of the Hydrological Cycle,
Geophys. Res. Lett., 9, 12221–12229, https://doi.org/10.1029/2019GL084302, 2019.
Gröger, M., Henrich, R., and Bickert, T.: Glacial–interglacial
variability in lower North Atlantic deep water: inference from silt
grain-size analysis and carbonate preservation in the western equatorial
Atlantic, Mar. Geol., 201, 321–332,
https://doi.org/10.1016/S0025-3227(03)00263-9, 2003a.
Gröger, M., Henrich, R., and Bickert, T.: Variability of silt grain size
and planktonic foraminiferal preservation in Plio/Pleistocene sediments from
the western equatorial Atlantic and Caribbean, Mar. Geol., 201,
307–320, https://doi.org/10.1016/S0025-3227(03)00264-0, 2003b.
Haq, B. U., Hardenbol, J., and Vail, P. R.: Chronology of Fluctuating Sea
Levels Since the Triassic, Science, 235, 1156–1167,
https://doi.org/10.1126/science.235.4793.1156, 1987.
Harris, S. E., Mix, A. C., and King, T.: Biogenic and terrigenous
sedimentation at Ceara Rise, western tropical Atlantic, supports
Pliocene–Pleistocene deep-water linkage between hemispheres, in:
Proceedings of the Ocean Drilling Program, edited by: Shackleton, N. J., Curry, W. B., Richter, C., and Bralower, T. J., Proc. ODP, Sci. Results, Vol. 154, College Station, TX, Ocean Drilling Program, 331–345, https://doi.org/10.2973/odp.proc.sr.154.114.1997, 1997.
Haywood, A. M., Valdes, P. J., and Sellwood, B. W.: Global scale
palaeoclimate reconstruction of the middle Pliocene climate using the UKMO
GCM: initial results, Glob. Planet. Change, 25, 239–256,
https://doi.org/10.1016/S0921-8181(00)00028-X, 2000.
Haywood, A. M., Dolan, A. M., Pickering, S. J., Dowsett, H. J., McClymont,
E. L., Prescott, C. L., Salzmann, U., Hill, D. J., Hunter, S. J., Lunt, D.
J., Pope, J. O., and Valdes, P. J.: On the identification of a Pliocene time
slice for data-model comparison, Philos. T. R.
Soc. A, 371,
20120515, https://doi.org/10.1098/rsta.2012.0515, 2013.
Henson, S. A., Sanders, R., and Madsen, E.: Global patterns in efficiency of
particulate organic carbon export and transfer to the deep ocean, Global
Biogeochem. Cy., 26, GB1028, https://doi.org/10.1029/2011GB004099,
2012.
Herbert, T. D., Lawrence, K. T., Tzanova, A., Peterson, L. C.,
Caballero-Gill, R., and Kelly, C. S.: Late Miocene global cooling and the
rise of modern ecosystems, Nat. Geosci., 9, 843–847,
https://doi.org/10.1038/ngeo2813, 2016.
Herrford, J., Brandt, P., and Zenk, W.: Property changes of deep and bottom
waters in the Western Tropical Atlantic, Deep-Sea Res. Pt. I, 124, 103–125,
https://doi.org/10.1016/j.dsr.2017.04.007, 2017.
Holbourn, A., Kuhnt, W., Schulz, M., Flores, J.-A., and Andersen, N.:
Orbitally-paced climate evolution during the middle Miocene “Monterey”
carbon-isotope excursion, Earth Pl. Sc. Lett., 261,
534–550, https://doi.org/10.1016/j.epsl.2007.07.026, 2007.
Holbourn, A., Kuhnt, W., Kochhann, K. G. D., Andersen, N., and Sebastian
Meier, K. J.: Global perturbation of the carbon cycle at the onset of the
Miocene Climatic Optimum, Geology, 43, 123–126,
https://doi.org/10.1130/G36317.1, 2015.
Holbourn, A. E., Kuhnt, W., Clemens, S. C., Kochhann, K. G. D., Jöhnck,
J., Lübbers, J., and Andersen, N.: Late Miocene climate cooling and
intensification of southeast Asian winter monsoon, Nat. Commun., 9, 1584,
https://doi.org/10.1038/s41467-018-03950-1, 2018.
Howard, W. R.: A warm future in the past, Nature, 388, 418–419,
https://doi.org/10.1038/41201, 1997.
Katz, M. E., Katz, D. R., Wright, J. D., Miller, K. G., Pak, D. K.,
Shackleton, N. J., and Thomas, E.: Early Cenozoic benthic foraminiferal
isotopes: Species reliability and interspecies correction factors,
Paleoceanography, 18, 1024, https://doi.org/10.1029/2002PA000798, 2003.
King, T. A., Ellis, W. G., Murray, D. W., Shackleton, N. J., and Harris, S.:
23. Miocene evolution of carbonate sedimentation at the Ceara Rise: A
multivariate data/proxy approach, edited by: Shackleton, N. J., Curry, W. B., Richter, C., and Bralower, T. J., Proc. ODP, Sci. Results, Vol. 154, College Station, TX, Ocean Drilling Program, 349–365, https://doi.org/10.2973/odp.proc.sr.154.116.1997,
1997.
Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C., and
Oppenheimer, M.: Probabilistic assessment of sea level during the last
interglacial stage, Nature, 462, 863–868, https://doi.org/10.1038/nature08686,
2009.
Kukla, G.: How long and how stable was the last interglacial?, Quaternary
Sci. Rev., 16, 605–612,
https://doi.org/10.1016/S0277-3791(96)00114-X, 1997.
Kurschner, W. M., Kvacek, Z., and Dilcher, D. L.: The impact of Miocene
atmospheric carbon dioxide fluctuations on climate and the evolution of
terrestrial ecosystems, P. Natl. Acad. Sci. USA,
105, 449–453, https://doi.org/10.1073/pnas.0708588105, 2008.
Landschützer, P., Gruber, N., Bakker, D. C. E., and Schuster, U.: Recent
variability of the global ocean carbon sink, Global Biogeochem. Cy.,
28, 927–949, https://doi.org/10.1002/2014GB004853, 2014.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and
Levrard, B.: A long-term numerical solution for the insolation quantities of
the Earth, Astron. Astrophys., 428, 261–285,
https://doi.org/10.1051/0004-6361:20041335, 2004.
Leroy, S. and Dupont, L.: Development of vegetation and continental aridity
in northwestern Africa during the Late Pliocene: the pollen record of ODP
site 658, Palaeogeogr. Palaeocl., 109, 295–316,
https://doi.org/10.1016/0031-0182(94)90181-3, 1994.
Liebrand, D., Beddow, H. M., Lourens, L. J., Pälike, H., Raffi, I.,
Bohaty, S. M., Hilgen, F. J., Saes, M. J. M., Wilson, P. A., van Dijk, A.
E., Hodell, D. A., Kroon, D., Huck, C. E., and Batenburg, S. J.:
Cyclostratigraphy and eccentricity tuning of the early Oligocene through
early Miocene (30.1–17.1 Ma): Cibicides mundulus stable oxygen and carbon isotope records
from Walvis Ridge Site 1264, Earth Pl. Sc. Lett., 450,
392–405, https://doi.org/10.1016/j.epsl.2016.06.007, 2016.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic δ18O records, Paleoceanography,
20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Lunt, D. J., Foster, G. L., Haywood, A. M., and Stone, E. J.: Late Pliocene
Greenland glaciation controlled by a decline in atmospheric CO2 levels,
Nature, 454, 1102–1105, https://doi.org/10.1038/nature07223, 2008.
Lunt, D. J., Haywood, A. M., Schmidt, G. A., Salzmann, U., Valdes, P. J.,
and Dowsett, H. J.: Earth system sensitivity inferred from Pliocene
modelling and data, Nat. Geosci., 3, 60–64,
https://doi.org/10.1038/ngeo706, 2010.
Lyle, M.: Neogene carbonate burial in the Pacific Ocean, Paleoceanography,
18, 1059, https://doi.org/10.1029/2002PA000777, 2003.
Lyle, M., Drury, A. J., Tian, J., Wilkens, R., and Westerhold, T.: Late
Miocene to Holocene high-resolution eastern equatorial Pacific carbonate
records: stratigraphy linked by dissolution and paleoproductivity, Clim. Past, 15, 1715–1739, https://doi.org/10.5194/cp-15-1715-2019, 2019.
Marino, M., Maiorano, P., Tarantino, F., Voelker, A., Capotondi, L., Girone,
A., Lirer, F., Flores, J.-A., and Naafs, B. D. A.: Coccolithophores as proxy
of seawater changes at orbital-to-millennial scale during middle Pleistocene
Marine Isotope Stages 14-9 in North Atlantic core MD01-2446,
Paleoceanography, 29, 518–532, https://doi.org/10.1002/2013PA002574, 2014.
Mejía, L. M., Méndez-Vicente, A., Abrevaya, L., Lawrence, K. T.,
Ladlow, C., Bolton, C., Cacho, I., and Stoll, H.: A diatom record of
CO2 decline since the late Miocene, Earth Pl. Sc.
Lett., 479, 18–33, https://doi.org/10.1016/j.epsl.2017.08.034, 2017.
Meyers, S. R.: Astrochron: An R package for astrochronology, https://cran.r-project.org/package=astrochron (last access: 18 January 2023). 2014.
Miller, K. G., Wright, J. D., Browning, J. V., Kulpecz, A., Kominz, M.,
Naish, T. R., Cramer, B. S., Rosenthal, Y., Peltier, W. R., and Sosdian, S.:
High tide of the warm Pliocene: Implications of global sea level for
Antarctic deglaciation, Geology, 40, 407–410,
https://doi.org/10.1130/G32869.1, 2012.
Milliman, J. D.: Production and accumulation of calcium carbonate in the
ocean: budget of a nonsteady state, Global Biogeochem. Cy., 7,
927–957, 1993.
Müller, U. C. and Kukla, G. J.: North Atlantic Current and European
environments during the declining stage of the last interglacial, Geology,
32, 1009, https://doi.org/10.1130/G20901.1, 2004.
Naish, T., Powell, R., Levy, R., Wilson, G., Scherer, R., Talarico, F.,
Krissek, L., Niessen, F., Pompilio, M., Wilson, T., Carter, L., DeConto, R.,
Huybers, P., McKay, R., Pollard, D., Ross, J., Winter, D., Barrett, P.,
Browne, G., Cody, R., Cowan, E., Crampton, J., Dunbar, G., Dunbar, N.,
Florindo, F., Gebhardt, C., Graham, I., Hannah, M., Hansaraj, D., Harwood,
D., Helling, D., Henrys, S., Hinnov, L., Kuhn, G., Kyle, P., Läufer, A.,
Maffioli, P., Magens, D., Mandernack, K., McIntosh, W., Millan, C., Morin,
R., Ohneiser, C., Paulsen, T., Persico, D., Raine, I., Reed, J., Riesselman,
C., Sagnotti, L., Schmitt, D., Sjunneskog, C., Strong, P., Taviani, M.,
Vogel, S., Wilch, T., and Williams, T.: Obliquity-paced Pliocene West
Antarctic ice sheet oscillations, Nature, 458, 322–328,
https://doi.org/10.1038/nature07867, 2009.
Pagani, M., Liu, Z., LaRiviere, J., and Ravelo, A. C.: High Earth-system
climate sensitivity determined from Pliocene carbon dioxide concentrations,
Nat. Geosci., 3, 27–30, https://doi.org/10.1038/ngeo724, 2010.
Paillard, D., Labeyrie, L., and Yiou, P.: Macintosh Program performs
time-series analysis, Eos Trans. AGU, 77, 379–379,
https://doi.org/10.1029/96EO00259, 1996.
Pälike, H., Frazier, J., and Zachos, J. C.: Extended orbitally forced
palaeoclimatic records from the equatorial Atlantic Ceara Rise, Quaternary
Sci. Rev., 25, 3138–3149,
https://doi.org/10.1016/j.quascirev.2006.02.011, 2006a.
Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H. K.,
Lear, C. H., Shackleton, N. J., Tripati, A. K., and Wade, B. S.: The
Heartbeat of the Oligocene Climate System, Science, 314, 1894–1898,
https://doi.org/10.1126/science.1133822, 2006b.
Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and
Expedition 320/321 Scientists (Eds.): Proceedings of the Integrated Ocean
Drilling Program, 320/321, International Ocean Discovery Program,
https://doi.org/10.2204/iodp.proc.320321.2010, 2010.
Passow, U. and Carlson, C.: The biological pump in a high CO2 world,
Mar. Ecol. Prog. Ser., 470, 249–271,
https://doi.org/10.3354/meps09985, 2012.
Past Interglacials Working Group of PAGES: Interglacials of the last 800,000
years, Rev. Geophys., 54, 162–219,
https://doi.org/10.1002/2015RG000482, 2016.
Paul, H. A., Zachos, J. C., Flower, B. P., and Tripati, A.: Orbitally
induced climate and geochemical variability across the Oligocene/Miocene
boundary, Paleoceanography, 15, 471–485,
https://doi.org/10.1029/1999PA000443, 2000.
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M.,
Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte,
M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., PÉpin,
L., Ritz, C., Saltzman, E., and Stievenard, M.: Climate and atmospheric
history of the past 420,000 years from the Vostok ice core, Antarctica,
Nature, 399, 429–436, https://doi.org/10.1038/20859, 1999.
Pollard, D. and DeConto, R. M.: Modelling West Antarctic ice sheet growth
and collapse through the past five million years, Nature, 458, 329–332,
https://doi.org/10.1038/nature07809, 2009.
Pound, M. J., Haywood, A. M., Salzmann, U., and Riding, J. B.: Global
vegetation dynamics and latitudinal temperature gradients during the Mid to
Late Miocene (15.97–5.33 Ma), Earth-Sci. Rev., 112, 1–22,
https://doi.org/10.1016/j.earscirev.2012.02.005, 2012.
Preiss-Daimler, I. V., Henrich, R., and Bickert, T.: The final Miocene
carbonate crash in the Atlantic: Assessing carbonate accumulation,
preservation and production, Mar. Geol., 343, 39–46,
https://doi.org/10.1016/j.margeo.2013.06.010, 2013.
R Core Team: R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria, 2021.
Raffi, I., Wade, B. S., Pälike, H., Beu, A. G., Cooper, R., Crundwell,
M. P., Krijgsman, W., Moore, T., Raine, I., Sardella, R., and Vernyhorova,
Y. V.: The Neogene Period, in: Geologic Time Scale 2020, Elsevier,
1141–1215, https://doi.org/10.1016/B978-0-12-824360-2.00029-2, 2020.
Raitzsch, M., Bijma, J., Bickert, T., Schulz, M., Holbourn, A., and Kučera, M.: Atmospheric carbon dioxide variations across the middle Miocene climate transition, Clim. Past, 17, 703–719, https://doi.org/10.5194/cp-17-703-2021, 2021.
Rasband, W. S.: ImageJ, https://imagej.net/ij/index.html (last access: 18 January 2023), 1997.
Rathmann, S. and Kuhnert, H.: Carbonate ion effect on Mg/Ca, Sr/Ca and
stable isotopes on the benthic foraminifera Oridorsalis umbonatus off Namibia, Mar.
Micropaleontol., 66, 120–133,
https://doi.org/10.1016/j.marmicro.2007.08.001, 2008.
Ravelo, A. C. and Wara, M. W.: The Role of the Tropical Oceans on Global
Climate During a Warm Period and a Major Climate Transition, Oceanography,
17, 32–41, https://doi.org/10.5670/oceanog.2004.28, 2004.
Ruddiman, W. F.: A Paleoclimatic Enigma?, Science, 328, 838–839,
https://doi.org/10.1126/science.1188292, 2010.
Rühlemann, C., Diekmann, B., Mulitza, S., and Frank, M.: Late Quaternary
changes of western equatorial Atlantic surface circulation and Amazon
lowland climate recorded in Ceará Rise deep-sea sediments,
Paleoceanography, 16, 293–305, https://doi.org/10.1029/1999PA000474, 2001.
Salzmann, U., Williams, M., Haywood, A. M., Johnson, A. L. A., Kender, S.,
and Zalasiewicz, J.: Climate and environment of a Pliocene warm world,
Palaeogeogr. Palaeocl., 309, 1–8,
https://doi.org/10.1016/j.palaeo.2011.05.044, 2011.
Sarmiento, J. L. and Gruber, N.: Ocean biogeochemical dynamics, Princeton
University Press, Princeton, 503 pp., ISBN: 978-0-691-01707-5, 2006.
Sarmiento, J. L., Gruber, N., Brzezinski, M. A., and Dunne, J. P.:
High-latitude controls of thermocline nutrients and low latitude biological
productivity, Nature, 427, 56–60, https://doi.org/10.1038/nature02127,
2004.
Schlitzer, R.: Ocean Data View, version 5.1.7, https://odv.awi.de (last access: 18 January 2023), 2018.
Seki, O., Foster, G. L., Schmidt, D. N., Mackensen, A., Kawamura, K., and
Pancost, R. D.: Alkenone and boron-based Pliocene pCO2 records, Earth
Pl. Sc. Lett., 292, 201–211,
https://doi.org/10.1016/j.epsl.2010.01.037, 2010.
Shackleton, N. J. and Crowhurst, S.: Sediment fluxes based on an orbitally
tuned time scale 5 Ma to 14 Ma, Site 926, in: Proceedings of the Ocean
Drilling Program, edited by: Shackleton, N. J., Curry, W. B., Richter, C., and Bralower, T. J., Proc. ODP, Sci. Results, Vol. 154, College Station, TX, Ocean Drilling Program, 69–82, https://doi.org/10.2973/odp.proc.sr.154.102.1997, 1997.
Shackleton, N. J., Crowhurst, S. J., Weedon, G. P., and Laskar, J.:
Astronomical calibration of Oligocene–Miocene time, Philos.
T. R. Soc. Lond. Ser. A, 357, 1907–1929,
https://doi.org/10.1098/rsta.1999.0407, 1999.
Sirocko, F., Seelos, K., Schaber, K., Rein, B., Dreher, F., Diehl, M.,
Lehne, R., Jäger, K., Krbetschek, M., and Degering, D.: A late Eemian
aridity pulse in central Europe during the last glacial inception, Nature,
436, 833–836, https://doi.org/10.1038/nature03905, 2005.
Stap, L. B., de Boer, B., Ziegler, M., Bintanja, R., Lourens, L. J., and van
de Wal, R. S. W.: CO2 over the past 5 million years: Continuous
simulation and new δ11B-based proxy data, Earth Pl.
Sci. Lett., 439, 1–10, https://doi.org/10.1016/j.epsl.2016.01.022,
2016.
Stolz, K. and Baumann, K.-H.: Changes in palaeoceanography and palaeoecology
during Marine Isotope Stage (MIS) 5 in the eastern North Atlantic (ODP Site
980) deduced from calcareous nannoplankton observations, Palaeogeogr.
Palaeocl., 292, 295–305,
https://doi.org/10.1016/j.palaeo.2010.04.002, 2010.
Sutherland, R., Dos Santos, Z., Agnini, C., Alegret, L., Lam, A. R.,
Westerhold, T., Drake, M. K., Harper, D. T., Dallanave, E., Newsam, C.,
Cramwinckel, M. J., Dickens, G. R., Collot, J., Etienne, S. J. G.,
Bordenave, A., Stratford, W. R., Zhou, X., Li, H., and Asatryan, G.: Neogene
Mass Accumulation Rate of Carbonate Sediment Across Northern Zealandia,
Tasman Sea, Southwest Pacific, Paleoceanogr. Paleocl., 37, e2021PA004294,
https://doi.org/10.1029/2021PA004294, 2022.
Tiedemann, R. and Franz, S. O.: Deep-water circulation, chemistry, and
terrigenous sediment supply in the equatorial Atlantic during the Pliocene,
3.3–2.6 Ma and 5–4.5 Ma, in: Proceedings of the Ocean Drilling
Program, edited by: Shackleton, N. J., Curry, W. B., Richter, C., and Bralower, T. J., Proc. ODP, Sci. Results, Vol. 154, College Station, TX, Ocean Drilling Program, 299–318, https://doi.org/10.2973/odp.proc.sr.154.120.1997,
1997.
Vervoort, P., Kirtland Turner, S., Rochholz, F., and Ridgwell, A.: Earth
System Model Analysis of How Astronomical Forcing Is Imprinted Onto the
Marine Geological Record: The Role of the Inorganic (Carbonate) Carbon Cycle
and Feedbacks, Paleoceanogr. Paleocl., 36, e2020PA004090,
https://doi.org/10.1029/2020PA004090, 2021.
Voelker, A. H. L., Rodrigues, T., Billups, K., Oppo, D., McManus, J., Stein,
R., Hefter, J., and Grimalt, J. O.: Variations in mid-latitude North
Atlantic surface water properties during the mid-Brunhes (MIS 9–14) and
their implications for the thermohaline circulation, Clim. Past, 6,
531–552, https://doi.org/10.5194/cp-6-531-2010, 2010.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C.,
Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D.,
Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D.,
Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H.,
Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An
astronomically dated record of Earth's climate and its predictability over
the last 66 million years, Science, 369, 1383–1387,
https://doi.org/10.1126/science.aba6853, 2020.
Wilkens, R. H., Westerhold, T., Drury, A. J., Lyle, M., Gorgas, T., and
Tian, J.: Revisiting the Ceara Rise, equatorial Atlantic Ocean: isotope
stratigraphy of ODP Leg 154 from 0 to 5 Ma, Clim. Past, 13,
779–793, https://doi.org/10.5194/cp-13-779-2017, 2017.
Yasuhara, M., Wei, C.-L., Kucera, M., Costello, M. J., Tittensor, D. P.,
Kiessling, W., Bonebrake, T. C., Tabor, C. R., Feng, R., Baselga, A.,
Kretschmer, K., Kusumoto, B., and Kubota, Y.: Past and future decline of
tropical pelagic biodiversity, P. Natl. Acad.
Sci. USA, 117, 12891–12896,
https://doi.org/10.1073/pnas.1916923117, 2020.
You, Y., Huber, M., Muller, R. D., Poulsen, C. J., and Ribbe, J.: Simulation
of the Middle Miocene Climate Optimum, Geophys. Res. Lett., 36,
L04702, https://doi.org/10.1029/2008GL036571, 2009.
Zachos, J.: Trends, Rhythms, and Aberrations in Global Climate 65 Ma to
Present, Science, 292, 686–693, https://doi.org/10.1126/science.1059412,
2001a.
Zachos, J. C.: Climate Response to Orbital Forcing Across the
Oligocene-Miocene Boundary, Science, 292, 274–278,
https://doi.org/10.1126/science.1058288, 2001b.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic
perspective on greenhouse warming and carbon-cycle dynamics, Nature, 451,
279–283, https://doi.org/10.1038/nature06588, 2008.
Zeeden, C., Hilgen, F., Westerhold, T., Lourens, L., Röhl, U., and
Bickert, T.: Revised Miocene splice, astronomical tuning and calcareous
plankton biochronology of ODP Site 926 between 5 and 14.4 Ma,
Palaeogeogr. Palaeocl., 369, 430–451,
https://doi.org/10.1016/j.palaeo.2012.11.009, 2013.
Zeeden, C., Meyers, S. R., Lourens, L. J., and Hilgen, F. J.: Testing
astronomically tuned age models, Paleoceanography, 30, 369–383,
https://doi.org/10.1002/2014PA002762, 2015.
Short summary
We generated high-resolution records of carbonate accumulation rate from the Miocene to the Quaternary in the tropical Atlantic Ocean to characterize the variability in pelagic carbonate production during warm climates. It follows orbital cycles, responding to local changes in tropical conditions, as well as to long-term shifts in climate and ocean chemistry. These changes were sufficiently large to play a role in the carbon cycle and global climate evolution.
We generated high-resolution records of carbonate accumulation rate from the Miocene to the...
Altmetrics
Final-revised paper
Preprint