Articles | Volume 20, issue 3
https://doi.org/10.5194/bg-20-695-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-695-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Faded landscape: unravelling peat initiation and lateral expansion at one of northwest Europe's largest bog remnants
Soil Geography and Landscape Group, Wageningen University and Research,
Wageningen, the Netherlands
Ype van der Velde
Faculty of Science, Earth and Climate, Vrije Universiteit Amsterdam,
Amsterdam, the Netherlands
Jasper H. J. Candel
Soil Geography and Landscape Group, Wageningen University and Research,
Wageningen, the Netherlands
Luc Steinbuch
Soil Geography and Landscape Group, Wageningen University and Research,
Wageningen, the Netherlands
Roy van Beek
Soil Geography and Landscape Group, Wageningen University and Research,
Wageningen, the Netherlands
Cultural Geography Group, Wageningen University and Research, Wageningen, the
Netherlands
Jakob Wallinga
Soil Geography and Landscape Group, Wageningen University and Research,
Wageningen, the Netherlands
Related authors
No articles found.
Anna Luisa Hemshorn de Sánchez, Wouter R. Berghuijs, Anne F. Van Loon, Dimmie Hendriks, and Ype van der Velde
EGUsphere, https://doi.org/10.5194/egusphere-2025-5139, https://doi.org/10.5194/egusphere-2025-5139, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study explores how mean and extreme river flows respond to annual climate variability. Maps show where river flow is more sensitive to climate in Europe. Maximum flows are generally the most sensitive and minimum flows the least sensitive to precipitation changes. Sensitivities are influenced by many factors like climate, soil, and terrain. These findings improve our understanding of how rivers respond to climate and can support water management and disaster risk reduction across Europe.
Laura M. van der Poel, Laurent V. Bataille, Bart Kruijt, Wietse Franssen, Wilma Jans, Jan Biermann, Anne Rietman, Alex J. V. Buzacott, Ype van der Velde, Ruben Boelens, and Ronald W. A. Hutjes
Biogeosciences, 22, 3867–3898, https://doi.org/10.5194/bg-22-3867-2025, https://doi.org/10.5194/bg-22-3867-2025, 2025
Short summary
Short summary
We combine two types of carbon dioxide (CO2) data from Dutch peatlands in a machine learning model: from fixed measurement towers and from a light research aircraft. We find that emissions increase with deeper water table depths (WTDs) by 4.6 tons of CO2 per hectare per year for each 10 cm deeper WTD on average. The effect is stronger in winter than in summer and varies between locations. This variability should be taken into account when developing mitigation measures.
Ralf C. H. Aben, Daniël van de Craats, Jim Boonman, Stijn H. Peeters, Bart Vriend, Coline C. F. Boonman, Ype van der Velde, Gilles Erkens, and Merit van den Berg
Biogeosciences, 21, 4099–4118, https://doi.org/10.5194/bg-21-4099-2024, https://doi.org/10.5194/bg-21-4099-2024, 2024
Short summary
Short summary
Drained peatlands cause high CO2 emissions. We assessed the effectiveness of subsurface water infiltration systems (WISs) in reducing CO2 emissions related to increases in water table depth (WTD) on 12 sites for up to 4 years. Results show WISs markedly reduced emissions by 2.1 t CO2-C ha-1 yr-1. The relationship between the amount of carbon above the WTD and CO2 emission was stronger than the relationship between WTD and emission. Long-term monitoring is crucial for accurate emission estimates.
Jungyu Choi, Roy van Beek, Elizabeth L. Chamberlain, Tony Reimann, Harm Smeenge, Annika van Oorschot, and Jakob Wallinga
SOIL, 10, 567–586, https://doi.org/10.5194/soil-10-567-2024, https://doi.org/10.5194/soil-10-567-2024, 2024
Short summary
Short summary
This research applies luminescence dating methods to a plaggic anthrosol in the eastern Netherlands to understand the formation history of the soil. To achieve this, we combined both quartz and feldspar luminescence dating methods. We developed a new method for feldspar to largely avoid the problem occurring from poorly bleached grains by examining two different signals from a single grain. Through our research, we were able to reconstruct the timing and processes of plaggic anthrosol formation.
Merit van den Berg, Thomas M. Gremmen, Renske J. E. Vroom, Jacobus van Huissteden, Jim Boonman, Corine J. A. van Huissteden, Ype van der Velde, Alfons J. P. Smolders, and Bas P. van de Riet
Biogeosciences, 21, 2669–2690, https://doi.org/10.5194/bg-21-2669-2024, https://doi.org/10.5194/bg-21-2669-2024, 2024
Short summary
Short summary
Drained peatlands emit 3 % of the global greenhouse gas emissions. Paludiculture is a way to reduce CO2 emissions while at the same time generating an income for landowners. The side effect is the potentially high methane emissions. We found very high methane emissions for broadleaf cattail compared with narrowleaf cattail and water fern. The rewetting was, however, effective to stop CO2 emissions for all species. The highest potential to reduce greenhouse gas emissions had narrowleaf cattail.
Tanya J. R. Lippmann, Ype van der Velde, Monique M. P. D. Heijmans, Han Dolman, Dimmie M. D. Hendriks, and Ko van Huissteden
Geosci. Model Dev., 16, 6773–6804, https://doi.org/10.5194/gmd-16-6773-2023, https://doi.org/10.5194/gmd-16-6773-2023, 2023
Short summary
Short summary
Vegetation is a critical component of carbon storage in peatlands but an often-overlooked concept in many peatland models. We developed a new model capable of simulating the response of vegetation to changing environments and management regimes. We evaluated the model against observed chamber data collected at two peatland sites. We found that daily air temperature, water level, harvest frequency and height, and vegetation composition drive methane and carbon dioxide emissions.
Alexa Marion Hinzman, Ylva Sjöberg, Steve W. Lyon, Wouter R. Berghuijs, and Ype van der Velde
EGUsphere, https://doi.org/10.5194/egusphere-2023-2391, https://doi.org/10.5194/egusphere-2023-2391, 2023
Preprint archived
Short summary
Short summary
An Arctic catchment with permafrost responds in a linear fashion: water in=water out. As permafrost thaws, 9 of 10 nested catchments become more non-linear over time. We find upstream catchments have stronger streamflow seasonality and exhibit the most nonlinear storage-discharge relationships. Downstream catchments have the greatest increases in non-linearity over time. These long-term shifts in the storage-discharge relationship are not typically seen in current hydrological models.
Jim Boonman, Mariet M. Hefting, Corine J. A. van Huissteden, Merit van den Berg, Jacobus (Ko) van Huissteden, Gilles Erkens, Roel Melman, and Ype van der Velde
Biogeosciences, 19, 5707–5727, https://doi.org/10.5194/bg-19-5707-2022, https://doi.org/10.5194/bg-19-5707-2022, 2022
Short summary
Short summary
Draining peat causes high CO2 emissions, and rewetting could potentially help solve this problem. In the dry year 2020 we measured that subsurface irrigation reduced CO2 emissions by 28 % and 83 % on two research sites. We modelled a peat parcel and found that the reduction depends on seepage and weather conditions and increases when using pressurized irrigation or maintaining high ditchwater levels. We found that soil temperature and moisture are suitable as indicators of peat CO2 emissions.
Tanya Juliette Rebecca Lippmann, Monique Heijmans, Han Dolman, Ype van der Velde, Dimmie Hendriks, and Ko van Huissteden
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-143, https://doi.org/10.5194/gmd-2022-143, 2022
Preprint withdrawn
Short summary
Short summary
To assess the impact of vegetation on GHG fluxes in peatlands, we developed a new model, Peatland-VU-NUCOM (PVN). These results showed that plant communities impact GHG emissions, indicating that plant community re-establishment is a critical component of peatland restoration. This is the first time that a peatland emissions model investigated the role of re-introducing peat forming vegetation on GHG emissions.
Yousef Albuhaisi, Ype van der Velde, and Sander Houweling
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-55, https://doi.org/10.5194/bg-2022-55, 2022
Manuscript not accepted for further review
Short summary
Short summary
An important uncertainty in the modelling of methane emissions from natural wetlands is the wetland area. It is important to get the spatiotemporal covariance between the variables that drive methane emissions right for accurate quantification. Using high-resolution wetland and soil carbon maps, in combination with a simplified methane emission model that is coarsened in six steps from 0.005° to 1°, we find a strong relation between wetland emissions and the model resolution.
Thomas Janssen, Ype van der Velde, Florian Hofhansl, Sebastiaan Luyssaert, Kim Naudts, Bart Driessen, Katrin Fleischer, and Han Dolman
Biogeosciences, 18, 4445–4472, https://doi.org/10.5194/bg-18-4445-2021, https://doi.org/10.5194/bg-18-4445-2021, 2021
Short summary
Short summary
Satellite images show that the Amazon forest has greened up during past droughts. Measurements of tree stem growth and leaf litterfall upscaled using machine-learning algorithms show that leaf flushing at the onset of a drought results in canopy rejuvenation and green-up during drought while simultaneously trees excessively shed older leaves and tree stem growth declines. Canopy green-up during drought therefore does not necessarily point to enhanced tree growth and improved forest health.
Vince P. Kaandorp, Hans Peter Broers, Ype van der Velde, Joachim Rozemeijer, and Perry G. B. de Louw
Hydrol. Earth Syst. Sci., 25, 3691–3711, https://doi.org/10.5194/hess-25-3691-2021, https://doi.org/10.5194/hess-25-3691-2021, 2021
Short summary
Short summary
We reconstructed historical and present-day tritium, chloride, and nitrate concentrations in stream water of a catchment using
land-use-based input curves and calculated travel times of groundwater. Parameters such as the unsaturated zone thickness, mean travel time, and input patterns determine time lags between inputs and in-stream concentrations. The timescale of the breakthrough of pollutants in streams is dependent on the location of pollution in a catchment.
Liang Yu, Joachim C. Rozemeijer, Hans Peter Broers, Boris M. van Breukelen, Jack J. Middelburg, Maarten Ouboter, and Ype van der Velde
Hydrol. Earth Syst. Sci., 25, 69–87, https://doi.org/10.5194/hess-25-69-2021, https://doi.org/10.5194/hess-25-69-2021, 2021
Short summary
Short summary
The assessment of the collected water quality information is for the managers to find a way to improve the water environment to satisfy human uses and environmental needs. We found groundwater containing high concentrations of nutrient mixes with rain water in the ditches. The stable solutes are diluted during rain. The change in nutrients over time is determined by and uptaken by organisms and chemical processes. The water is more enriched with nutrients and looked
dirtierduring winter.
Cited articles
AHN: De details van het Actueel Hoogtebestand Nederland [Details of the
Digital Elevation Model of The Netherlands], https://ahn.maps.arcgis.com/apps/Cascade/index.html?appid=75245be5e0384d47856d2b912fc1b7ed, last access: 11 October 2021a (in Dutch).
AHN: Kwaliteitsbeschrijving Actueel Hoogtebestand Nederland [Quality
description Digital Elevation Model of The Netherlands],
https://www.ahn.nl/kwaliteitsbeschrijving, last access: 11 October 2021b (in Dutch).
Almquist-Jacobson, H. and Foster, D. R.: Toward an integrated model for
raised-bog development: Theory and field evidence, Ecology, 76, 2503–2516,
https://doi.org/10.2307/2265824, 1995.
Altenburg, W., Bijkerk, W., Douwes, R., and Straathof, N.: Neergang en opkomst van het
Fochteloërveen: resultaten van 30 jaar hoogveenherstel, De Levende Natuur, 118, 79–84, 2017.
Anderson, R. L., Foster, D. R., and Motzkin, G.: Integrating lateral
expansion into models of peatland development in temperate New England, J.
Ecol., 91, 68–76, 2003.
Archis: Archeologisch Informatiesysteem,
https://archis.cultureelerfgoed.nl/, last access: 8 November 2019 (in Dutch).
Baird, A., Morris, P., and Belyea, L.: The DigiBog peatland development
model 1: rationale, conceptual model, and hydrological basis, Ecohydrology,
5, 242–255, https://doi.org/10.1002/eco.230, 2012.
Bauer, I. E., Gignac, L. D., and Vitt, D. H.: Development of a peatland
complex in boreal western Canada: Lateral site expansion and local
variability in vegetation succession and long-term peat accumulation, Can.
J. Bot., 81, 833–847, https://doi.org/10.1139/b03-076, 2003.
Berendsen, H. J. A. and Stouthamer, E.: Late Weichselian and Holocene palaeogeography of the
Rhine-Meuse delta, the Netherlands, Palaeogeogr. Palaeocl., 161, 311–335, https://doi.org/10.1016/S0031-0182(00)00073-0, 2000.
Berendsen, H. and Stouthamer, E.: Palaeogeographic development of the Rhine-Meuse delta, the Netherlands, Van Gorcum, Assen, 2001.
Berendsen, H. J. A., Makaske, B., Van de Plassche, O., Van Ree, M. H. M.,
Das, S., Van Dongen, M., Ploumen, S., and Schoenmakers, W.: New
groundwater-level rise data from the Rhine-Meuse delta – Implications for
the reconstruction of Holocene relative mean sea-level rise and differential
land-level movements, Geol, Mijnbouw-N. J. G., 86,
333–354, https://doi.org/10.1017/s0016774600023568, 2007.
Bos, I. J.: Architecture and facies distribution of organic-clastic lake
fills in the fluvio-deltaic Rhine-Meuse system, The Netherlands, J.
Sediment. Res., 80, 339–356, https://doi.org/10.2110/jsr.2010.035, 2010.
Bos, I. J., Busschers, F. S., and Hoek, W. Z.: Organic-facies determination:
A key for understanding facies distribution in the basal peat layer of the
Holocene Rhine-Meuse delta, The Netherlands, Sedimentology, 59, 676–703,
https://doi.org/10.1111/j.1365-3091.2011.01271.x, 2012.
Bosch, J. H. A.: Assen West (12W), Assen Oost (12O). Toelichtingen bij de
geologische kaart van Nederland 1 : 50.000, Rijks Geologische Dienst, Haarlem,
188 pp., ISBN: 9789012063241, 1990.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.
Breuning-Madsen, H., Bird, K. L., Balstrøm, T., Elberling, B., Kroon, A.,
and Lei, E. B.: Development of plateau dunes controlled by iron pan
formation and changes in land use and climate, Catena, 171, 580–587,
https://doi.org/10.1016/j.catena.2018.07.011, 2018.
Bronk Ramsey, C.: Radiocarbon Calibration and Analysis of Stratigraphy: The
OxCal Program, Radiocarbon, 37, 425–430,
https://doi.org/10.1017/s0033822200030903, 1995.
Casparie, W. A.: De twee IJzertijd houten veenwegen I(SM) en II(SM) bij de
Suermondswijk te Smilde, Nieuwe Drentse Volksalm, 102, 145–169, 1985.
Casparie, W. A.: The Bourtanger Moor: endurance and vulnerability of a
raised bog system, Hydrobiologia, 265, 203–215,
https://doi.org/10.1007/BF00007269, 1993.
Chapman, H., Gearey, B. R., Bamforth, M., Bermingham, N., Marshall, P.,
Powlesland, I., Taylor, M., and Whitehoude, N.: Modelling archaeology and
palaeoenvironments in wetlands: the hidden landscape archaeology of Hatfield
and Thorne Moors, eastern England, edited by: Chapman, H. P. and Gearey, B. R., 205 pp., ISBN 978-1-78297-174-0, 2013.
Charman, D.: Origins and Peat Initiation, in: Peatlands and Environmental
Change, edited by: Charman, D., John Wiley & Sons, Ltd, Chichester,
73–91, ISBN 9780470844106, 2002a.
Charman, D.: Peat and peatlands, in: Peatlands and Environmental Change,
edited by: Charman, D., John Wiley & Sons, Ltd, Chichester, 3–23, ISBN 9780470844106, 2002b.
Cohen, K. M., Gibbard, P. L., and Weerts, H. J.: North sea palaeogeographical reconstructions
for the last 1 Ma, Geologie en Mijnbouw/Netherlands Journal of Geosciences, 93, 7–29, https://doi.org/10.1017/njg.2014.12, 2014.
Crawford, R. M. M., Jeffree, C. E., and Rees, W. G.: Paludification and
forest retreat in northern oceanic environments, Ann. Bot., 91, 213–226,
https://doi.org/10.1093/aob/mcf185, 2003.
Crushell, P., Connolly, A., Schouten, M., and Mitchell, F. J. G.: The
changing landscape of Clara Bog: The history of an Irish raised bog, Irish
Geogr., 41, 89–111, https://doi.org/10.1080/00750770801915596, 2008.
Dee, M. W., Palstra, S. W. L., Aerts-Bijma, A. T., Bleeker, M. O., De
Bruijn, S., Ghebru, F., Jansen, H. G., Kuitems, M., Paul, D., Richie, R. R.,
Spriensma, J. J., Scifo, A., Van Zonneveld, D., Verstappen-Dumoulin, B. M.
A. A., Wietzes-Land, P., and Meijer, H. A. J.: Radiocarbon dating at
Groningen: New and updated chemical pretreatment procedures, Radiocarbon,
62, 63–74, https://doi.org/10.1017/RDC.2019.101, 2020.
DINOloket – TNO: Ondergrondgegevens, Geologisch Booronderzoek, https://www.dinoloket.nl/, last access: 19 April 2022 (in Dutch).
Douwes, R. and Straathof, N.: 14. Het Fochteloërveen, in: Hoogvenen:
Landschapsecologie, behoud, beheer, herstel, edited by: Jansen, A. and
Grootjans, A., Noordboek Natuur, Gorredijk, 133–147, ISBN 9789056155520, 2019 (in Dutch).
Edvardsson, J., Poska, A., Van der Putten, N., Rundgren, M., Linderson, H.,
and Hammarlund, D.: Late-Holocene expansion of a south Swedish peatland and
its impact on marginal ecosystems: Evidence from dendrochronology, peat
stratigraphy and palaeobotanical data, Holocene, 24, 466–476,
https://doi.org/10.1177/0959683613520255, 2014.
Eijkelkamp Soil & Water: Peat sampler, Eijkelkamp Soil & Water,
Giesbeek, 1–7, 2018.
ESRI: Charted Territory Map, https://www.arcgis.com/home/item.html?id=d582a9e953c44c09bb998c7d9b66f8d4 (last access: 10 June 2022),
2022.
Fokkens, H.: Drowned landscape – The occupation of the western part of the
Frisian-Drentian Plateau, 4400 BC–AD 500, edited by: van Regteren Altena, J. F., Van Gorcum & Comp. BV and
Rijksdienst voor het Oudheidkundig Bodemonderzoek (ROB), Assen, 183 pp., ISBN 9789023233053,
1998.
Foster, D., Wright, H., Thelaus, M., and King, G.: Bog development and
landform dynamics in Central Sweden and South-Eastern Labrador, Canada, J.
Ecol., 76, 1164–1185, 1988.
Frolking, S., Roulet, N. T., Tuittila, E., Bubier, J. L., Quillet, A., Talbot, J., and Richard, P. J. H.: A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation, Earth Syst. Dynam., 1, 1–21, https://doi.org/10.5194/esd-1-1-2010, 2010.
Gerding, M.: Vier eeuwen turfwinning, De verveningen in Groningen,
Friesland, Drenthe en Overijssel tussen 1550 en 1950, Wageningen University,
Wageningen, 533 pp., 1995 (in Dutch).
Grondwatertools – TNO: LHM laag 1, berekeningswijze: LHM, https://www.grondwatertools.nl/gwsinbeeld/ (last access: 24 January 2022), 2022 (in Dutch).
Hijma, M.: From river valley to estuary, PhD thesis, Netherlands Geographical Studies 389,
Koninklijk Nederlands Aardrijkskundig Genootschap, Faculteit Geowetenschappen Universiteit Utrecht, 2009.
International Peatland Society: Types of peatlands, https://peatlands.org/peatlands/types-of-peatlands/#:~:text=Geogenous%20peatlands%2C%20i.e.%20fens%2C%20are%20nutrient-rich%20%28minerotrophic%29%20and,Vegetation%20is%20dominated%20by%20grasses%2C%20sedges%2C%20and%20rushes, last access: 16 June 2022.
IUSS Working Group WRB: World Reference Base for Soil Resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106, 192 pp., FAO, Rome,
E-ISBN 978-92-5-108370-3, 2015.
Jones, M. C. and Yu, Z.: Rapid deglacial and early Holocene expansion of
peatlands in Alaska, P. Natl. Acad. Sci. USA, 107, 7347–7352,
https://doi.org/10.1073/pnas.0911387107, 2010.
Jongmans, A. G., Van den Berg, M. W., Sonneveld, M. P. W., Peek, G. J. W. C., and Van
den Berg van Saparoea, R. M. (Eds.): Deel V: Veen, in: Landschappen van Nederland –
Geologie, Bodem en Landgebruik,
Wageningen Academic Publishers, Wageningen, 942 pp., ISBN 9789086862139, 2013 (in Dutch).
Joosten, H. and Clarke, D.: Wise use of mires and peatlands – Background and
principles including a framework for decision-making, International Mire
Conservation Group (IMCG) & International Peatland Society (IPS), 304
pp., ISBN 951-97744-8-3, 2002.
Joosten, H., Grootjans, A., Schouten, M., and Jansen, A.: Netherlands, in:
Mires and peatlands in Europe: Status, distribution and conservation, edited
by: Joosten, H., Tanneberger, F., and Moen, A., Schweizerbart Science
Publishers, Stuttgart, 523–535, ISBN 9783510653836, 2017.
Klaver, E.: Een Holocene vegetatie successie in het Fochtelooerveen,
Universiteit van Amsterdam, Amsterdam, 48 pp., 1981 (in Dutch).
KNMI: Klimaattabel Station Eelde, periode 1991–2020, 2021 (in Dutch).
Korhola, A.: Radiocarbon evidence for rates of lateral expansion in raised
mires in southern Finland, Quaternary Res., 42, 299–307, 1994.
Korhola, A.: Initiation of a sloping mire complex in southwestern Finland:
Autogenic versus allogenic controls, Ecoscience, 3, 216–222, 1996.
Korhola, A., Ruppel, M., Seppä, H., Väliranta, M., Virtanen, T., and
Weckström, J.: The importance of northern peatland expansion to the
late-Holocene rise of atmospheric methane, Quaternary Sci. Rev., 29, 611–617,
https://doi.org/10.1016/j.quascirev.2009.12.010, 2010.
Koster, E.: Aeolian Environments, in: Physical Geography of Western Europe,
edited by: Koster, E. A., Oxford University Press, Oxford, 139–160, 2005.
Koster, E. A.: Ancient and modern cold-climate aeolian sand deposition: a
review, J. Quaternary Sci., 3, 69–83, 1988.
Limpens, J.: Prospects for Sphagnum bogs subject to high nitrogen
deposition, PhD thesis, Wageningen University, Wageningen, 140 pp., 2003.
Loisel, J., Yu, Z., Parsekian, A., Nolan, J., and Slater, L.: Quantifying
landscape morphology influence on peatland lateral expansion using
ground-penetrating radar (GPR) and peat core analysis, J. Geophys. Res.-Biogeo., 118, 373–384, https://doi.org/10.1002/jgrg.20029, 2013.
Macdonald, G. M., Beilman, D. W., Kremenetski, K. V., Sheng, Y., Smith, L.
C., and Velichko, A. A.: Rapid early development of circumarctic peatlands
and atmospheric CH4 and CO2 variations, Science, 314, 285–288,
https://doi.org/10.1126/science.1131722, 2006.
Mäkilä, M.: Holocene lateral expansion, peat growth and carbon
accumulation on Haukkasuo, a raised bog in southeastern Finland, Boreas, 26,
1–14, https://doi.org/10.1111/j.1502-3885.1997.tb00647.x, 1997.
Mäkilä, M. and Moisanen, M.: Holocene lateral expansion and carbon
accumulation of Luovuoma, a northern fen in finnish Lapland, Boreas, 36,
198–210, https://doi.org/10.1111/j.1502-3885.2007.tb01192.x, 2007.
Meijles, E. W., Kiden, P., Streurman, H. J., van der Plicht, J., Vos, P. C.,
Gehrels, W. R., and Kopp, R. E.: Holocene relative mean sea-level changes in
the Wadden Sea area, northern Netherlands, J. Quaternary Sci., 33, 905–923,
https://doi.org/10.1002/jqs.3068, 2018.
Ministerie van Economische Zaken: Natura 2000-gebieden peildatum 27 augustus
2018, Ministerie van Economische Zaken [data set], 2018 (in Dutch).
Ministerie van Verkeer en Waterstaat: Landelijke CONCEPT dataset lijnvormige
waterlichamen status mrt 2007, Ministerie van Verkeer en Waterstaat [data set], 2007 (in Dutch).
Moore, P.: The origin of blanket mire, revisited, in: Climate change and
human impact on the landscape, edited by: Chambers, F., Chapman and Hal,
London, 217–224, ISBN
9780412462009, 1993.
Moore, P. D.: Origin of blanket mires, Nature, 256, 267–269,
https://doi.org/10.1038/256267a0, 1975.
Morris, P., Baird, A., and Belyea, L.: The DigiBog peatland development
model 2: ecohydrological simulations in 2D, Ecohydrology, 5, 256–268,
https://doi.org/10.1002/eco.229, 2012.
Morris, P. J., Swindles, G. T., Valdes, P. J., Ivanovic, R. F., Gregoire, L.
J., Smith, M. W., Tarasov, L., Haywood, A. M., and Bacon, K. L.: Global
peatland initiation driven by regionally asynchronous warming, P. Natl.
Acad. Sci. USA, 115, 4851–4856,
https://doi.org/10.1073/pnas.1717838115, 2018.
Oliver, M. A. and Webster, R.: A tutorial guide to geostatistics: Computing
and modelling variograms and kriging, Catena, 113, 56–69,
https://doi.org/10.1016/j.catena.2013.09.006, 2014.
Peregon, A., Uchida, M., and Yamagata, Y.: Lateral extension in Sphagnum
mires along the southern margin of the boreal region, Western Siberia,
Environ. Res. Lett., 4, 045028, https://doi.org/10.1088/1748-9326/4/4/045028, 2009.
Pierik, H. J., Cohen, K. M., Vos, P. C., Van der Spek, A. J. F., and Stouthamer, E.: Late Holocene
coastal-plain evolution of the Netherlands: the role of natural preconditions in human-induced sea
ingressions, P. Geologists' Assoc., 128, 180–197, https://doi.org/10.1016/j.pgeola.2016.12.002, 2017.
Provincie Drenthe: Beheerplan Fochteloërveen – Op weg naar een levend
hoogveen, Provincie Drenthe, Assen, 188 pp., 2016 (in Dutch).
Provincie Drenthe: Dikte van het keileempakket in Drenthe, in meters, https://kaartportaal.drenthe.nl/portal/home/item.html?id=109e34c7141147178fbd523060170c42,
last access: 16 June 2022 (in Dutch).
Prummel, W. and Niekus, M. J. L. T.: Late Mesolithic hunting of a small
female aurochs in the valley of the River Tjonger (the Netherlands) in the
light of Mesolithic aurochs hunting in NW Europe, J. Archaeol. Sci., 38,
1456–1467, https://doi.org/10.1016/j.jas.2011.02.009, 2011.
Pynacker, C.: Drenthe – Drentia Comitatus – Transiselaniae Tabula II, https://commons.wikimedia.org/wiki/File:Drenthe_-_Drentia_Comitatus_-_ Transiselaniae_Tabula_II_(Cornelio_Pynacker,_1664).jpg (last access: 24 July 2022), 1664.
Quik, C., Velde, Y. van der, Harkema, T., Van der Plicht, H., Quik, J.,
Beek, R. van, and Wallinga, J.: Using legacy data to reconstruct the past?
Rescue, rigor and reuse in peatland geochronology, Earth Surf. Process., 46, 2607–2631, https://doi.org/10.1002/esp.5196, 2021.
Quik, C., Palstra, S. W. L., Van Beek, R., Van der Velde, Y., Candel, J. H.
J., Van der Linden, M., Kubiak-Martens, L., Swindles, G. T., Makaske, B.,
and Wallinga, J.: Dating basal peat: The geochronology of peat initiation
revisited, Quat. Geochronol., 72, 1–22,
https://doi.org/10.1016/j.quageo.2022.101278, 2022.
Quik, C., Van der Velde, Y., Candel, J., Steinbuch, L., Van Beek, R., and
Wallinga, J.: Data from: Faded landscape: unravelling peatland initiation
and lateral expansion at one of NW-Europe's largest bog remnants, 4TU.ResearchData [data set],
https://doi.org/10.4121/20237958, 2023.
Rappol, M.: Saalian till in the Netherlands: a review, in: INQUA Symposium
on the Genesis and Lithology of glacial deposits – Amsterdam, 1986, edited by: Van der Meer, J., Balkema, Rotterdam and Boston, 3–21,
1987.
Rappol, M., Haldorsen, S., Jørgensen, P., Van der Meer, J. J. M., and
Stoltenberg, H. M. P.: Composition and origin of petrographically stratified
thick till in the Northern Netherlands and a Saalian glaciation model for
the North Sea basin, Meded. van Werkgr. voor Tert. en Kwart. Geol., 26,
31–64, 1989.
RCE: Paleogeografische kaarten,
https://www.cultureelerfgoed.nl/onderwerpen/bronnen-en-kaarten/overzicht/paleografische-kaarten,
last access: 5 May 2022.
Reimer, P., Austin, W., Bard, E., Bayliss, A., Blackwell, P., Bronk Ramsey,
C., Butzin, M., Cheng, H., Edwards, R., Friedrich, M., Grootes, P.,
Guilderson, T., Hajdas, I., Heaton, T., Hogg, A., Hughen, K., Kromer, B.,
Manning, S., Muscheler, R., Palmer, J., Pearson, C., Van der Plicht, J.,
Reimer, R., Richards, D., Scott, E., Southon, J., Turney, C., Wacker, L.,
Adolphi, F., Büntgen, U., Capano, M., Fahrni, S., Fogtmann-Schulz, A.,
Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F.,
Sakamoto, M., Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere
radiocarbon age calibration curve (0–55 cal kBP), Radiocarbon, 62,
725–757, https://doi.org/10.1017/RDC.2020.41, 2020.
Robichaud, A. and Bégin, Y.: Development of a raised bog over 9000 years
in Atlantic Canada, Mires Peat, 5, 1–19, 2009.
Ruppel, M., Väliranta, M., Virtanen, T., and Korhola, A.: Postglacial
spatiotemporal peatland initiation and lateral expansion dynamics in North
America and northern Europe, Holocene, 23, 1596–1606,
https://doi.org/10.1177/0959683613499053, 2013.
Rydin, H. and Jeglum, J. K.: Peatland habitats, in: The Biology of
Peatlands, edited by: Rydin, H. and Jeglum, J. K., Oxford University Press,
Oxford, 1–20, ISBN 9780199602995, 2013a.
Rydin, H. and Jeglum, J. K.: Peatland succession and development, in: The
Biology of Peatlands, edited by: Rydin, H. and Jeglum, J. K., Oxford
University Press, Oxford, 127–147, ISBN 9780199602995, 2013b.
Spek: Het Drentse Esdorpenlandschap – Een historisch-geografische studie,
Uitgeverij Matrijs, Utrecht, in collaboration with Stichting Het Drentse Landschap, 1104 pp., ISBN 978-90-5345-254-7, 2004 (in Dutch).
Staring, W.: De wording van kienhout, Dekker & Huisman, Wildervank, 115
pp., 1983.
Stuiver, M. and Polach, H.: Discussion: Reporting of 14C data, Radiocarbon, 19, 355–363, 1977.
Swindles, G. T., Morris, P. J., Mullan, D. J., Payne, R. J., Roland, T. P.,
Amesbury, M. J., Lamentowicz, M., Turner, T. E., Gallego-Sala, A., Sim, T.,
Barr, I. D., Blaauw, M., Blundell, A., Chambers, F. M., Charman, D. J.,
Feurdean, A., Galloway, J. M., Gałka, M., Green, S. M., Kajukało, K.,
Karofeld, E., Korhola, A., Lamentowicz, Ł., Langdon, P., Marcisz, K.,
Mauquoy, D., Mazei, Y. A., McKeown, M. M., Mitchell, E. A. D., Novenko, E.,
Plunkett, G., Roe, H. M., Schoning, K., Sillasoo, Ü., Tsyganov, A. N.,
van der Linden, M., Väliranta, M., and Warner, B.: Widespread drying of
European peatlands in recent centuries, Nat. Geosci., 12, 922–928,
https://doi.org/10.1038/s41561-019-0462-z, 2019.
Swinnen, W., Broothaerts, N., and Verstraeten, G.: Modelling long-term alluvial-peatland dynamics in temperate river floodplains, Biogeosciences, 18, 6181–6212, https://doi.org/10.5194/bg-18-6181-2021, 2021.
Synal, H. A., Stocker, M., and Suter, M.: MICADAS: a new compact radiocarbon
AMS system, Nucl. Instrum. Meth. B, 259, 7–13, 2007.
Ter Wee, M.: Geologische opbouw van Drenthe, Rijks Geologische Dienst,
Haarlem, 1–24, 1972 (in Dutch).
Ter Wee, M.: Emmen West (17W), Emmen Oost (17O). Toelichtingen bij de
geologische kaart van Nederland 1 : 50.000, Rijks Geologische Dienst, Haarlem,
218 pp., 1979 (in Dutch).
TNO-GSN: Gieten Member, http://www.dinoloket.nl/en/stratigraphic-nomenclature/gieten-member, last
access: 1 April 2021a (in Dutch).
TNO-GSN: Laagpakket van Wierden, in: Stratigrafische Nomenclator van
Nederland, https://www.dinoloket.nl/en/stratigraphic-nomenclature/wierden-member, last
access: 16 March 2021b (in Dutch).
Tolonen, K. and Turunen, J.: Accumulation rates of carbon in mires in
Finland and implications for climate change, Holocene, 6, 171–178,
https://doi.org/10.1177/095968369600600204, 1996.
TOPCON: Hiper V Versatile Function GNSS Receiver, TOPCON Corporation, 4 pp.,
2017.
Törnqvist, T. E., Van Ree, M. H. M., Van 't Veer, R., and Van Geel, B.:
Improving Methodology for High-Resolution Reconstruction of Sea-Level Rise
and Neotectonics by Paleoecological Analysis and AMS 14C Dating of Basal
Peats, Quaternary Res., 49, 72–85, https://doi.org/10.1006/qres.1997.1938, 1998.
Turunen, C. and Turunen, J.: Development history and carbon accumulation of
a slope bog in oceanic British Columbia, Canada, Holocene, 13, 225–238,
https://doi.org/10.1191/0959683603hl609rp, 2003.
Turunen, J., Räty, A., Kuznetsov, O., Maksimov, A., Shevelin, P.,
Grabovik, S., Tolonen, K., Pitkänen, A., Turunen, C., Miriläinen,
J., and Jungner, H. (Eds.): Development history of Patvinsuo Mire, Eastern Finland,
1–72, 2002.
Van Aalst, J. W.: OpenTopo, 200 pixels per km, current release: 2021-R11,
Nov. 2021, map sheet used: 09, https://www.opentopo.nl, last access: 4 April 2022.
Van Asselen, S., Cohen, K. M., and Stouthamer, E.: The impact of avulsion on
groundwater level and peat formation in delta floodbasins during the
middle-Holocene transgression in the Rhine-Meuse delta, The Netherlands,
Holocene, 27, 1694–1706, https://doi.org/10.1177/0959683617702224, 2017.
Van Beek, R.: Reliëf in tijd en ruimte – Interdisciplinair onderzoek
naar bewoning en landschap van Oost-Nederland tussen vroege prehistorie en
middeleeuwen, PhD thesis, Wageningen Universiteit, Wageningen, 641 pp., ISBN 9789085854609,
2009 (in Dutch).
Van Beek, R.: An interdisciplinary approach to the long-term history of
raised bogs: A case study at Vriezenveen (the Netherlands), J. Wetl.
Archaeol., 15, 1–33, https://doi.org/10.1080/14732971.2015.1112591, 2015.
Van Beek, R., Maas, G. J., and Van Den Berg, E.: Home Turf: An
interdisciplinary exploration of the long-term development, use and
reclamation of raised bogs in the Netherlands, Landsc. Hist., 36, 5–34,
https://doi.org/10.1080/01433768.2015.1108024, 2015.
Van den Berg, M. W. and Beets, D. J.: Saalian glacial deposits and
morphology in The Netherlands, in: INQUA Symposium on the Genesis and
Lithology of glacial deposits – Amsterdam, 1986, edited by: Van der Meer, J., Balkema, Rotterdam and Boston, 235–251, 1987.
Van der Meij, W. M., Temme, A. J. A. M., Lin, H. S., Gerke, H. H., and
Sommer, M.: On the role of hydrologic processes in soil and landscape
evolution modeling: concepts, complications and partial solutions,
Earth-Sci. Rev., 185, 1088–1106,
https://doi.org/10.1016/j.earscirev.2018.09.001, 2018.
Van der Velde, Y., Temme, A. J. A. M., Nijp, J. J., Braakhekke, M. C., Van
Voorn, G. A. K., Dekker, S. C., Dolman, A. J., Wallinga, J., Devito, K. J.,
Kettridge, N., Mendoza, C. A., Kooistra, L., Soons, M. B., and Teuling, A.
J.: Emerging forest–peatland bistability and resilience of European
peatland carbon stores, P. Natl. Acad. Sci. USA, 118, 1–9,
https://doi.org/10.1073/pnas.2101742118, 2021.
Van Geel, B., Van der Plicht, J., Kilian, M., Klaver, E., Kouwenberg, J.,
Renssen, H., Reynaud-Farrera, I., and Waterbolk, H.: The sharp rise of delta
14C ca. 800 cal BC: Possible causes, related climatic teleconnections and
the impact on human environments, Radiocarbon, 40, 535–550, 1998.
Van Giffen, A. E.: Prähistorische Hausformen auf den Sandböden in
den Niederlanden, Germania, 36, 35–71, 1958 (in German).
Vos, P. (Ed.): Compilation of the Holocene palaeogeographical maps of the
Netherlands, in: Origin of the Dutch coastal landscape: Long-term landscape
evolution of the Netherlands during the Holocene, described and visualized
in national, regional and local palaeogeographical map series, Barkhuis,
Groningen, 50–79, ISBN 9789491431821, 2015a.
Vos, P. (Ed.): Origin of the Dutch coastal landscape: Long-term landscape
evolution of the Netherlands during the Holocene, described and visualized
in national, regional and local palaeogeographical map series, Barkhuis,
Groningen (also published as the author's PhD thesis, Utrecht University), 359 pp., ISBN 9789491431821, 2015b.
Vos, P., Van der Meulen, M., Weerts, H., and Bazelmans, J.: Atlas of the
Holocene Netherlands, landscape and habitation since the last ice age,
Amsterdam University Press, Amsterdam, 96 pp., ISBN 9463724435, 2020.
Walker, M., Johnsen, S., Rasmussen, S. O., Popp, T., Steffensen, J.-P.,
Gibbard, P., Hoek, W., Lowe, J., Andrews, J., Björck, S., Cwynar, L. c.,
Hughen, K., Kershaw, P., Kromer, B., Litt, T., Lowe, D. J., Nakagawa, T.,
Newnham, R., and Schwander, J.: Formal definition and dating of the GSSP
(Global Stratotype Section and Point) for the base of the Holocene using the
Greenland NGRIP ice core, and selected auxiliary records, J. Quaternary Sci., 24,
3–17, https://doi.org/10.1002/jqs.1227, 2009.
Walker, M., Gibbard, P., Head, M. J., Berkelhammer, M., Björck, S.,
Cheng, H., Cwynar, L. C., Fisher, D., Gkinis, V., Long, A., Lowe, J.,
Newnham, R., Rasmussen, S. O., and Weiss, H.: Formal Subdivision of
the Holocene Series/Epoch: A Summary, J. Geol. Soc.
India, 93, 135–141, https://doi.org/10.1007/s12594-019-1141-9, 2019.
Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U.,
Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O.,
Küttel, M., Müller, S. A., Prentice, I. C., Solomina, O., Stocker,
T. F., Tarasov, P., Wagner, M., and Widmann, M.: Mid- to Late Holocene
climate change: an overview, Quaternary Sci. Rev., 27, 1791–1828,
https://doi.org/10.1016/j.quascirev.2008.06.013, 2008.
Waterbolk, H. T.: Zwervend tussen de venen. Een poging tot reconstructie van
het woongebied van de hunebedbouwers op het centrale deel van het
Fries-Drents plateau, in:
Tussen D26 en P14: Jan Albert Bakker 65 jaar, edited by: Bloemers, J. H. F., Amsterdams Archeologisch Centrum, Universiteit van Amsterdam, Amsterdam, 181–208, ISBN 9789090219875, 2007 (in Dutch).
Weckström, J., Seppä, H., and Korhola, A.: Climatic influence on
peatland formation and lateral expansion in sub-arctic Fennoscandia, Boreas,
39, 761–769, https://doi.org/10.1111/j.1502-3885.2010.00168.x, 2010.
Zagwijn, W. H.: Nederland in het Holoceen – Geologie van Nederland Deel 1,
Rijks Geologische Dienst Haarlem, Staatsuitgeverij, 's Gravenhage, 46 pp., ISBN 9012052394,
1986 (in Dutch).
Zhao, Y., Tang, Y., Yu, Z., Li, H., Yang, B., Zhao, W., Li, F., and Li, Q.:
Holocene peatland initiation, lateral expansion, and carbon dynamics in the
Zoige Basin of the eastern Tibetan Plateau, Holocene, 24, 1137–1145,
https://doi.org/10.1177/0959683614538077, 2014.
Short summary
In NW Europe only parts of former peatlands remain. When these peatlands formed is not well known but relevant for questions on landscape, climate and archaeology. We investigated the age of Fochteloërveen, using radiocarbon dating and modelling. Results show that peat initiated at several sites 11 000–7000 years ago and expanded rapidly 5000 years ago. Our approach may ultimately be applied to model peat ages outside current remnants and provide a view of these lost landscapes.
In NW Europe only parts of former peatlands remain. When these peatlands formed is not well...
Altmetrics
Final-revised paper
Preprint