Articles | Volume 21, issue 1
https://doi.org/10.5194/bg-21-241-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-241-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Coupling numerical models of deltaic wetlands with AirSWOT, UAVSAR, and AVIRIS-NG remote sensing data
Department of Earth and Environment, Boston University, Boston, 02215, MA, USA
Carmine Donatelli
Department of Earth and Environment, Boston University, Boston, 02215, MA, USA
Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, 78712, TX, USA
Xiaohe Zhang
CORRESPONDING AUTHOR
Department of Earth and Environment, Boston University, Boston, 02215, MA, USA
Justin A. Nghiem
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, 91125, CA, USA
Marc Simard
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 91011, CA, USA
Cathleen E. Jones
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 91011, CA, USA
Michael Denbina
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 91011, CA, USA
Cédric G. Fichot
Department of Earth and Environment, Boston University, Boston, 02215, MA, USA
Joshua P. Harringmeyer
Department of Earth and Environment, Boston University, Boston, 02215, MA, USA
Sergio Fagherazzi
Department of Earth and Environment, Boston University, Boston, 02215, MA, USA
Related authors
Justin A. Nghiem, Gen K. Li, Joshua P. Harringmeyer, Gerard Salter, Cédric G. Fichot, Luca Cortese, and Michael P. Lamb
Earth Surf. Dynam., 12, 1267–1294, https://doi.org/10.5194/esurf-12-1267-2024, https://doi.org/10.5194/esurf-12-1267-2024, 2024
Short summary
Short summary
Fine sediment grains in freshwater can cohere into faster-settling particles called flocs, but floc settling velocity theory has not been fully validated. Combining three data sources in novel ways in the Wax Lake Delta, we verified a semi-empirical model relying on turbulence and geochemical factors. For a physics-based model, we showed that the representative grain diameter within flocs relies on floc structure and that heterogeneous flow paths inside flocs increase floc settling velocity.
Marco Toffolon, Luca Cortese, and Damien Bouffard
Geosci. Model Dev., 14, 7527–7543, https://doi.org/10.5194/gmd-14-7527-2021, https://doi.org/10.5194/gmd-14-7527-2021, 2021
Short summary
Short summary
The time when lakes freeze varies considerably from year to year. A common way to predict it is to use negative degree days, i.e., the sum of air temperatures below 0 °C, a proxy for the heat lost to the atmosphere. Here, we show that this is insufficient as the mixing of the surface layer induced by wind tends to delay the formation of ice. To do so, we developed a minimal model based on a simplified energy balance, which can be used both for large-scale analyses and short-term predictions.
Justin A. Nghiem, Gen K. Li, Joshua P. Harringmeyer, Gerard Salter, Cédric G. Fichot, Luca Cortese, and Michael P. Lamb
Earth Surf. Dynam., 12, 1267–1294, https://doi.org/10.5194/esurf-12-1267-2024, https://doi.org/10.5194/esurf-12-1267-2024, 2024
Short summary
Short summary
Fine sediment grains in freshwater can cohere into faster-settling particles called flocs, but floc settling velocity theory has not been fully validated. Combining three data sources in novel ways in the Wax Lake Delta, we verified a semi-empirical model relying on turbulence and geochemical factors. For a physics-based model, we showed that the representative grain diameter within flocs relies on floc structure and that heterogeneous flow paths inside flocs increase floc settling velocity.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Olivier Gourgue, Jim van Belzen, Christian Schwarz, Wouter Vandenbruwaene, Joris Vanlede, Jean-Philippe Belliard, Sergio Fagherazzi, Tjeerd J. Bouma, Johan van de Koppel, and Stijn Temmerman
Earth Surf. Dynam., 10, 531–553, https://doi.org/10.5194/esurf-10-531-2022, https://doi.org/10.5194/esurf-10-531-2022, 2022
Short summary
Short summary
There is an increasing demand for tidal-marsh restoration around the world. We have developed a new modeling approach to reduce the uncertainty associated with this development. Its application to a real tidal-marsh restoration project in northwestern Europe illustrates how the rate of landscape development can be steered by restoration design, with important consequences for restored tidal-marsh resilience to increasing sea level rise and decreasing sediment supply.
Marco Toffolon, Luca Cortese, and Damien Bouffard
Geosci. Model Dev., 14, 7527–7543, https://doi.org/10.5194/gmd-14-7527-2021, https://doi.org/10.5194/gmd-14-7527-2021, 2021
Short summary
Short summary
The time when lakes freeze varies considerably from year to year. A common way to predict it is to use negative degree days, i.e., the sum of air temperatures below 0 °C, a proxy for the heat lost to the atmosphere. Here, we show that this is insufficient as the mixing of the surface layer induced by wind tends to delay the formation of ice. To do so, we developed a minimal model based on a simplified energy balance, which can be used both for large-scale analyses and short-term predictions.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Johannes Röhrs, Knut-Frode Dagestad, Helene Asbjørnsen, Tor Nordam, Jørgen Skancke, Cathleen E. Jones, and Camilla Brekke
Ocean Sci., 14, 1581–1601, https://doi.org/10.5194/os-14-1581-2018, https://doi.org/10.5194/os-14-1581-2018, 2018
Short summary
Short summary
Simulations of hypothetical oil spills are presented to investigate how the vertical mixing of oil affects transport towards various directions. It is shown that the horizontal transport of oil greatly varies for different oil types and weather conditions. These differences are a consequence of the entrainment of oil from the surface into the ocean. While oil spills often get entrained into the water by waves, we show that submerged oil typically resurfaces after a few hours or days.
Mary E. Whelan, Sinikka T. Lennartz, Teresa E. Gimeno, Richard Wehr, Georg Wohlfahrt, Yuting Wang, Linda M. J. Kooijmans, Timothy W. Hilton, Sauveur Belviso, Philippe Peylin, Róisín Commane, Wu Sun, Huilin Chen, Le Kuai, Ivan Mammarella, Kadmiel Maseyk, Max Berkelhammer, King-Fai Li, Dan Yakir, Andrew Zumkehr, Yoko Katayama, Jérôme Ogée, Felix M. Spielmann, Florian Kitz, Bharat Rastogi, Jürgen Kesselmeier, Julia Marshall, Kukka-Maaria Erkkilä, Lisa Wingate, Laura K. Meredith, Wei He, Rüdiger Bunk, Thomas Launois, Timo Vesala, Johan A. Schmidt, Cédric G. Fichot, Ulli Seibt, Scott Saleska, Eric S. Saltzman, Stephen A. Montzka, Joseph A. Berry, and J. Elliott Campbell
Biogeosciences, 15, 3625–3657, https://doi.org/10.5194/bg-15-3625-2018, https://doi.org/10.5194/bg-15-3625-2018, 2018
Short summary
Short summary
Measurements of the trace gas carbonyl sulfide (OCS) are helpful in quantifying photosynthesis at previously unknowable temporal and spatial scales. While CO2 is both consumed and produced within ecosystems, OCS is mostly produced in the oceans or from specific industries, and destroyed in plant leaves in proportion to CO2. This review summarizes the advancements we have made in the understanding of OCS exchange and applications to vital ecosystem water and carbon cycle questions.
K. Valentine, G. Mariotti, and S. Fagherazzi
Adv. Geosci., 39, 9–14, https://doi.org/10.5194/adgeo-39-9-2014, https://doi.org/10.5194/adgeo-39-9-2014, 2014
S. Kedar, H. K. M. Tanaka, C. J. Naudet, C. E. Jones, J. P. Plaut, and F. H. Webb
Geosci. Instrum. Method. Data Syst., 2, 157–164, https://doi.org/10.5194/gi-2-157-2013, https://doi.org/10.5194/gi-2-157-2013, 2013
Related subject area
Earth System Science/Response to Global Change: Models, Holocene/Anthropocene
Frost matters: incorporating late-spring frost into a dynamic vegetation model regulates regional productivity dynamics in European beech forests
Meteorological history of low-forest-greenness events in Europe in 2002–2022
Modelling long-term alluvial-peatland dynamics in temperate river floodplains
Variable particle size distributions reduce the sensitivity of global export flux to climate change
Climate change will cause non-analog vegetation states in Africa and commit vegetation to long-term change
Uncertainties, sensitivities and robustness of simulated water erosion in an EPIC-based global gridded crop model
Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections
The capacity of northern peatlands for long-term carbon sequestration
Towards a more complete quantification of the global carbon cycle
Modeling seasonal and vertical habitats of planktonic foraminifera on a global scale
An enhanced forest classification scheme for modeling vegetation–climate interactions based on national forest inventory data
Sensitivity of woody carbon stocks to bark investment strategy in Neotropical savannas and forests
Modelling past, present and future peatland carbon accumulation across the pan-Arctic region
Biogenic sediments from coastal ecosystems to beach–dune systems: implications for the adaptation of mixed and carbonate beaches to future sea level rise
Modelling Holocene peatland dynamics with an individual-based dynamic vegetation model
Effects of climate change and land management on soil organic carbon dynamics and carbon leaching in northwestern Europe
Quantifying regional, time-varying effects of cropland and pasture on vegetation fire
HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers
Impact of human population density on fire frequency at the global scale
Evaluation of biospheric components in Earth system models using modern and palaeo-observations: the state-of-the-art
A high-resolution and harmonized model approach for reconstructing and analysing historic land changes in Europe
Analyzing precipitationsheds to understand the vulnerability of rainfall dependent regions
A new concept for simulation of vegetated land surface dynamics – Part 1: The event driven phenology model
Alternative methods to predict actual evapotranspiration illustrate the importance of accounting for phenology – Part 2: The event driven phenology model
The influence of land cover change in the Asian monsoon region on present-day and mid-Holocene climate
Sensitivity of Holocene atmospheric CO2 and the modern carbon budget to early human land use: analyses with a process-based model
Side effects and accounting aspects of hypothetical large-scale Southern Ocean iron fertilization
Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI earth system model
Projected 21st century decrease in marine productivity: a multi-model analysis
Impact of atmospheric and terrestrial CO2 feedbacks on fertilization-induced marine carbon uptake
Benjamin F. Meyer, Allan Buras, Konstantin Gregor, Lucia S. Layritz, Adriana Principe, Jürgen Kreyling, Anja Rammig, and Christian S. Zang
Biogeosciences, 21, 1355–1370, https://doi.org/10.5194/bg-21-1355-2024, https://doi.org/10.5194/bg-21-1355-2024, 2024
Short summary
Short summary
Late-spring frost (LSF), critically low temperatures when trees have already flushed their leaves, results in freezing damage leaving trees with reduced ability to perform photosynthesis. Forests with a high proportion of susceptible species like European beech are particularly vulnerable. However, this process is rarely included in dynamic vegetation models (DVMs). We show that the effect on simulated productivity and biomass is substantial, warranting more widespread inclusion of LSF in DVMs.
Mauro Hermann, Matthias Röthlisberger, Arthur Gessler, Andreas Rigling, Cornelius Senf, Thomas Wohlgemuth, and Heini Wernli
Biogeosciences, 20, 1155–1180, https://doi.org/10.5194/bg-20-1155-2023, https://doi.org/10.5194/bg-20-1155-2023, 2023
Short summary
Short summary
This study examines the multi-annual meteorological history of low-forest-greenness events in Europe's temperate and Mediterranean biome in 2002–2022. We systematically identify anomalies in temperature, precipitation, and weather systems as event precursors, with noteworthy differences between the two biomes. We also quantify the impact of the most extensive event in 2022 (37 % coverage), underlining the importance of understanding the forest–meteorology interaction in a changing climate.
Ward Swinnen, Nils Broothaerts, and Gert Verstraeten
Biogeosciences, 18, 6181–6212, https://doi.org/10.5194/bg-18-6181-2021, https://doi.org/10.5194/bg-18-6181-2021, 2021
Short summary
Short summary
Here we present a new modelling framework specifically designed to simulate alluvial peat growth, taking into account the river dynamics. The results indicate that alluvial peat growth is strongly determined by the number, spacing and movement of the river channels in the floodplain, rather than by environmental changes or peat properties. As such, the amount of peat that can develop in a floodplain is strongly determined by the characteristics and dynamics of the local river network.
Shirley W. Leung, Thomas Weber, Jacob A. Cram, and Curtis Deutsch
Biogeosciences, 18, 229–250, https://doi.org/10.5194/bg-18-229-2021, https://doi.org/10.5194/bg-18-229-2021, 2021
Short summary
Short summary
A global model is constrained with empirical relationships to quantify how shifts in sinking-particle sizes modulate particulate organic carbon export production changes in a warming ocean. Including the effect of dynamic particle sizes on remineralization reduces the magnitude of predicted 100-year changes in export production by ~14 %. Projections of future export could thus be improved by considering dynamic phytoplankton and particle-size-dependent remineralization depths.
Mirjam Pfeiffer, Dushyant Kumar, Carola Martens, and Simon Scheiter
Biogeosciences, 17, 5829–5847, https://doi.org/10.5194/bg-17-5829-2020, https://doi.org/10.5194/bg-17-5829-2020, 2020
Short summary
Short summary
Lags caused by delayed vegetation response to changing environmental conditions can lead to disequilibrium vegetation states. Awareness of this issue is relevant for ecosystem conservation. We used the aDGVM vegetation model to quantify the difference between transient and equilibrium vegetation states in Africa during the 21st century for two potential climate trajectories. Lag times increased over time and vegetation was non-analog to any equilibrium state due to multi-lag composite states.
Tony W. Carr, Juraj Balkovič, Paul E. Dodds, Christian Folberth, Emil Fulajtar, and Rastislav Skalsky
Biogeosciences, 17, 5263–5283, https://doi.org/10.5194/bg-17-5263-2020, https://doi.org/10.5194/bg-17-5263-2020, 2020
Short summary
Short summary
We generate 30-year mean water erosion estimates in global maize and wheat fields based on daily simulation outputs from an EPIC-based global gridded crop model. Evaluation against field data confirmed the robustness of the outputs for the majority of global cropland and overestimations at locations with steep slopes and strong rainfall. Additionally, we address sensitivities and uncertainties of model inputs to improve water erosion estimates in global agricultural impact studies.
Lester Kwiatkowski, Olivier Torres, Laurent Bopp, Olivier Aumont, Matthew Chamberlain, James R. Christian, John P. Dunne, Marion Gehlen, Tatiana Ilyina, Jasmin G. John, Andrew Lenton, Hongmei Li, Nicole S. Lovenduski, James C. Orr, Julien Palmieri, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Charles A. Stock, Alessandro Tagliabue, Yohei Takano, Jerry Tjiputra, Katsuya Toyama, Hiroyuki Tsujino, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, and Tilo Ziehn
Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, https://doi.org/10.5194/bg-17-3439-2020, 2020
Short summary
Short summary
We assess 21st century projections of marine biogeochemistry in the CMIP6 Earth system models. These models represent the most up-to-date understanding of climate change. The models generally project greater surface ocean warming, acidification, subsurface deoxygenation, and euphotic nitrate reductions but lesser primary production declines than the previous generation of models. This has major implications for the impact of anthropogenic climate change on marine ecosystems.
Georgii A. Alexandrov, Victor A. Brovkin, Thomas Kleinen, and Zicheng Yu
Biogeosciences, 17, 47–54, https://doi.org/10.5194/bg-17-47-2020, https://doi.org/10.5194/bg-17-47-2020, 2020
Miko U. F. Kirschbaum, Guang Zeng, Fabiano Ximenes, Donna L. Giltrap, and John R. Zeldis
Biogeosciences, 16, 831–846, https://doi.org/10.5194/bg-16-831-2019, https://doi.org/10.5194/bg-16-831-2019, 2019
Short summary
Short summary
Globally, C is added to the atmosphere from fossil fuels and deforestation, balanced by ocean uptake and atmospheric increase. The difference (residual sink) is equated to plant uptake. But this omits cement carbonation; transport to oceans by dust; riverine organic C and volatile organics; and increased C in plastic, bitumen, wood, landfills, and lakes. Their inclusion reduces the residual sink from 3.6 to 2.1 GtC yr-1 and thus the inferred ability of the biosphere to alter human C emissions.
Kerstin Kretschmer, Lukas Jonkers, Michal Kucera, and Michael Schulz
Biogeosciences, 15, 4405–4429, https://doi.org/10.5194/bg-15-4405-2018, https://doi.org/10.5194/bg-15-4405-2018, 2018
Short summary
Short summary
The fossil shells of planktonic foraminifera are widely used to reconstruct past climate conditions. To do so, information about their seasonal and vertical habitat is needed. Here we present an updated version of a planktonic foraminifera model to better understand species-specific habitat dynamics under climate change. This model produces spatially and temporally coherent distribution patterns, which agree well with available observations, and can thus aid the interpretation of proxy records.
Titta Majasalmi, Stephanie Eisner, Rasmus Astrup, Jonas Fridman, and Ryan M. Bright
Biogeosciences, 15, 399–412, https://doi.org/10.5194/bg-15-399-2018, https://doi.org/10.5194/bg-15-399-2018, 2018
Short summary
Short summary
Forest management shapes forest structure and in turn surface–atmosphere interactions. We used Fennoscandian forest maps and inventory data to develop a classification system for forest structure. The classification was integrated with the ESA Climate Change Initiative land cover map to achieve complete surface representation. The result is an improved product for modeling surface–atmosphere exchanges in regions with intensively managed forests.
Anna T. Trugman, David Medvigy, William A. Hoffmann, and Adam F. A. Pellegrini
Biogeosciences, 15, 233–243, https://doi.org/10.5194/bg-15-233-2018, https://doi.org/10.5194/bg-15-233-2018, 2018
Short summary
Short summary
Tree fire tolerance strategies may significantly impact woody carbon stability and the existence of tropical savannas under global climate change. We used a numerical ecosystem model to test the impacts of fire survival strategy under differing fire and rainfall regimes. We found that the high survival rate of large fire-tolerant trees reduced carbon losses with increasing fire frequency, and reduced the range of conditions leading to either complete tree loss or complete grass loss.
Nitin Chaudhary, Paul A. Miller, and Benjamin Smith
Biogeosciences, 14, 4023–4044, https://doi.org/10.5194/bg-14-4023-2017, https://doi.org/10.5194/bg-14-4023-2017, 2017
Short summary
Short summary
We employed an individual- and patch-based dynamic global ecosystem model to quantify long-term C accumulation rates and to assess the effects of historical and projected climate change on peatland C balances across the pan-Arctic. We found that peatlands in Scandinavia, Europe, Russia and central and eastern Canada will become C sources, while Siberia, far eastern Russia, Alaska and western and northern Canada will increase their sink capacity by the end of the 21st century.
Giovanni De Falco, Emanuela Molinaroli, Alessandro Conforti, Simone Simeone, and Renato Tonielli
Biogeosciences, 14, 3191–3205, https://doi.org/10.5194/bg-14-3191-2017, https://doi.org/10.5194/bg-14-3191-2017, 2017
Short summary
Short summary
This study quantifies the contribution of carbonate sediments, produced in seagrass meadows and in photophilic algal communities, to the sediment budget of a beach–dune system. The contribution to the beach sediment budget represents a further ecosystem service provided by seagrass. The dependence of the beach sediment budget on carbonate production associated with coastal ecosystems has implications for the adaptation of carbonate beaches to the seagrass decline and sea level rise.
Nitin Chaudhary, Paul A. Miller, and Benjamin Smith
Biogeosciences, 14, 2571–2596, https://doi.org/10.5194/bg-14-2571-2017, https://doi.org/10.5194/bg-14-2571-2017, 2017
Short summary
Short summary
We incorporated peatland dynamics into
Arcticversion of dynamic vegetation model LPJ-GUESS to understand the long-term evolution of northern peatlands and effects of climate change on peatland carbon balance. We found that the Stordalen mire may be expected to sequester more carbon before 2050 due to milder and wetter climate conditions, a longer growing season and CO2 fertilization effect, turning into a C source after 2050 because of higher decomposition rates in response to warming soils.
Maria Stergiadi, Marcel van der Perk, Ton C. M. de Nijs, and Marc F. P. Bierkens
Biogeosciences, 13, 1519–1536, https://doi.org/10.5194/bg-13-1519-2016, https://doi.org/10.5194/bg-13-1519-2016, 2016
Short summary
Short summary
We modelled the effects of changes in climate and land management on soil organic carbon (SOC) and dissolved organic carbon (DOC) levels in sandy and loamy soils under forest, grassland, and arable land. Climate change causes a decrease in both SOC and DOC for the agricultural systems, whereas for the forest systems, SOC slightly increases. A reduction in fertilizer application leads to a decrease in SOC and DOC levels under arable land but has a negligible effect under grassland.
S. S. Rabin, B. I. Magi, E. Shevliakova, and S. W. Pacala
Biogeosciences, 12, 6591–6604, https://doi.org/10.5194/bg-12-6591-2015, https://doi.org/10.5194/bg-12-6591-2015, 2015
Short summary
Short summary
People worldwide use fire to manage agriculture, but often also suppress fire in the landscape surrounding their fields. Here, we estimate the net result of these effects of cropland and pasture on fire at a regional, monthly level. Pasture is shown, for the first time, to contribute strongly to global patterns of burning. Our results could be used to improve representations of burning in global vegetation and climate models, improving our understanding of how people affect the Earth system.
Y. Le Page, D. Morton, B. Bond-Lamberty, J. M. C. Pereira, and G. Hurtt
Biogeosciences, 12, 887–903, https://doi.org/10.5194/bg-12-887-2015, https://doi.org/10.5194/bg-12-887-2015, 2015
W. Knorr, T. Kaminski, A. Arneth, and U. Weber
Biogeosciences, 11, 1085–1102, https://doi.org/10.5194/bg-11-1085-2014, https://doi.org/10.5194/bg-11-1085-2014, 2014
A. M. Foley, D. Dalmonech, A. D. Friend, F. Aires, A. T. Archibald, P. Bartlein, L. Bopp, J. Chappellaz, P. Cox, N. R. Edwards, G. Feulner, P. Friedlingstein, S. P. Harrison, P. O. Hopcroft, C. D. Jones, J. Kolassa, J. G. Levine, I. C. Prentice, J. Pyle, N. Vázquez Riveiros, E. W. Wolff, and S. Zaehle
Biogeosciences, 10, 8305–8328, https://doi.org/10.5194/bg-10-8305-2013, https://doi.org/10.5194/bg-10-8305-2013, 2013
R. Fuchs, M. Herold, P. H. Verburg, and J. G. P. W. Clevers
Biogeosciences, 10, 1543–1559, https://doi.org/10.5194/bg-10-1543-2013, https://doi.org/10.5194/bg-10-1543-2013, 2013
P. W. Keys, R. J. van der Ent, L. J. Gordon, H. Hoff, R. Nikoli, and H. H. G. Savenije
Biogeosciences, 9, 733–746, https://doi.org/10.5194/bg-9-733-2012, https://doi.org/10.5194/bg-9-733-2012, 2012
V. Kovalskyy and G. M. Henebry
Biogeosciences, 9, 141–159, https://doi.org/10.5194/bg-9-141-2012, https://doi.org/10.5194/bg-9-141-2012, 2012
V. Kovalskyy and G. M. Henebry
Biogeosciences, 9, 161–177, https://doi.org/10.5194/bg-9-161-2012, https://doi.org/10.5194/bg-9-161-2012, 2012
A. Dallmeyer and M. Claussen
Biogeosciences, 8, 1499–1519, https://doi.org/10.5194/bg-8-1499-2011, https://doi.org/10.5194/bg-8-1499-2011, 2011
B. D. Stocker, K. Strassmann, and F. Joos
Biogeosciences, 8, 69–88, https://doi.org/10.5194/bg-8-69-2011, https://doi.org/10.5194/bg-8-69-2011, 2011
A. Oschlies, W. Koeve, W. Rickels, and K. Rehdanz
Biogeosciences, 7, 4017–4035, https://doi.org/10.5194/bg-7-4017-2010, https://doi.org/10.5194/bg-7-4017-2010, 2010
S. Bathiany, M. Claussen, V. Brovkin, T. Raddatz, and V. Gayler
Biogeosciences, 7, 1383–1399, https://doi.org/10.5194/bg-7-1383-2010, https://doi.org/10.5194/bg-7-1383-2010, 2010
M. Steinacher, F. Joos, T. L. Frölicher, L. Bopp, P. Cadule, V. Cocco, S. C. Doney, M. Gehlen, K. Lindsay, J. K. Moore, B. Schneider, and J. Segschneider
Biogeosciences, 7, 979–1005, https://doi.org/10.5194/bg-7-979-2010, https://doi.org/10.5194/bg-7-979-2010, 2010
A. Oschlies
Biogeosciences, 6, 1603–1613, https://doi.org/10.5194/bg-6-1603-2009, https://doi.org/10.5194/bg-6-1603-2009, 2009
Cited articles
Allen, J., Somerfield, P., and Gilbert, F.: Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models, J. Mar. Syst., 64, 3–14, https://doi.org/10.1016/j.jmarsys.2006.02.010, 2007. a
Allison, M. A., Kineke, G. C., Gordon, E. S., and Goni, M. A.: Development and reworking of a seasonal flood deposit on the inner continental shelf off the Atchafalaya River, Cont. Shelf Res., 20, 2267–2294, https://doi.org/10.1016/S0278-4343(00)00070-4, 2000. a
Balogun, A.-L., Yekeen, S. T., Pradhan, B., and Althuwaynee, O. F.: Spatio-temporal analysis of oil spill impact and recovery pattern of coastal vegetation and wetland using multispectral satellite landsat 8-OLI imagery and machine learning models, Remote Sens., 12, 1225, https://doi.org/10.3390/rs12071225, 2020. a
Bates, P. D.: Flood inundation prediction, Annu. Rev. Fluid Mech., 54, 287–315, https://doi.org/10.1146/annurev-fluid-030121-113138, 2022. a
Bevington, A. E. and Twilley, R. R.: Island edge morphodynamics along a chronosequence in a prograding deltaic floodplain wetland, J. Coast. Res., 34, 806–817, https://doi.org/10.2112/JCOASTRES-D-17-00074.1, 2018. a
Booij, N. and Holthuijsen, L. H.: Propagation of ocean waves in discrete spectral wave models, J. Comput. Phys., 68, 307–326, https://doi.org/10.1016/0021-9991(87)90060-X, 1987. a
Bue, B. D., Thompson, D. R., Eastwood, M., Green, R. O., Gao, B.-C., Keymeulen, D., Sarture, C. M., Mazer, A. S., and Luong, H. H.: Real-time atmospheric correction of AVIRIS-NG imagery, IEEE T. Geosci. Remote, 53, 6419–6428, https://doi.org/10.1109/TGRS.2015.2439215, 2015. a
Bunya, S., Dietrich, J. C., Westerink, J. J., Ebersole, B. A., Smith, J. M., Atkinson, J. H., Jensen, R., Resio, D. T., Luettich, R. A., Dawson, C., Cardone, V. J., Cox, A. T., Powell, M. D., Westerink, H. J., and Roberts, H. J.: A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi, Part I: Model development and validation, Mon. Weather Rev., 138, 345–377, https://doi.org/10.1175/2009MWR2906.1, 2010. a, b
Cahoon, D. R., Hensel, P. F., Spencer, T., Reed, D. J., McKee, K. L., and Saintilan, N.: Coastal Wetland Vulnerability to Relative Sea-Level Rise: Wetland Elevation Trends and Process Controls, edited by: Verhoeven, J. T. A., Beltman, B., Bobbink, R., and Whigham, D. F., Wetlands and Natural Resource Management, Ecological Studies, 190, 271–292, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-33187-2_12, 2006. a
Cardoso, G. F., Souza, C., and Souza-Filho, P. W. M.: Using spectral analysis of Landsat-5 TM images to map coastal wetlands in the Amazon River mouth, Brazil, Wetlands Ecol. Manage., 22, 79–92, https://doi.org/10.1007/s11273-013-9324-4, 2014. a
Carniello, L., Silvestri, S., Marani, M., D'Alpaos, A., Volpe, V., and Defina, A.: Sediment dynamics in shallow tidal basins: In situ observations, satellite retrievals, and numerical modeling in the Venice Lagoon, J. Geophys. Res.-Ea., 119, 802–815, https://doi.org/10.1002/2013JF003015, 2014. a
Castagno, K. A., Jiménez-Robles, A. M., Donnelly, J. P., Wiberg, P. L., Fenster, M. S., and Fagherazzi, S.: Intense storms increase the stability of tidal bays, Geophys. Res. Lett., 45, 5491–5500, https://doi.org/10.1029/2018GL078208, 2018. a
Center for Operational Oceanographic Products and Services (CO-OPS): CO-OPS Water Level Data from the Coastal Tide Gauge and Great Lake Water Level Network of the United States and US Territories, NOAA National Centers for Environmental Information, [data set], https://doi.org/10.25921/dt9g-2p60, 2018. a
Chen, C., Ma, Y., Ren, G., and Wang, J.: Aboveground biomass of salt-marsh vegetation in coastal wetlands: Sample expansion of in situ hyperspectral and Sentinel-2 data using a generative adversarial network, Remote Sens. Environ., 270, 112885, https://doi.org/10.1016/j.rse.2021.112885, 2022. a
Coastal Protection and Restoration Authority (CPRA) of Louisiana: Coastwide Reference Monitoring System-Wetlands Monitoring Data, Retrieved from Coastal Information Management System (CIMS) database, [data set], http://cims.coastal.louisiana.gov (last access: 20 October 2023), 2023. a
Corbett, D. R., Dail, M., and McKee, B.: High-frequency time-series of the dynamic sedimentation processes on the western shelf of the Mississippi River Delta, Cont. Shelf Res., 27, 1600–1615, https://doi.org/10.1016/j.csr.2007.01.025, 2007. a
Cortese, L. and Fagherazzi, S.: Fetch and distance from the bay control accretion and erosion patterns in Terrebonne marshes (Louisiana, USA), Earth Surf. Proc. Land., 47, 1455–1465, https://doi.org/10.1002/esp.5327, 2022. a
Couvillion, B. R., Beck, H., Schoolmaster, D., and Fischer, M.: Land area change in coastal Louisiana (1932 to 2016), Tech. Rep., US Geological Survey, https://doi.org/10.3133/sim3381, 2017. a, b, c
Defne, Z. and Ganju, N. K.: Quantifying the residence time and flushing characteristics of a shallow, back-barrier estuary: Application of hydrodynamic and particle tracking models, Estuar. Coast., 38, 1719–1734, https://doi.org/10.1007/s12237-014-9885-3, 2015. a
Denbina, M., Simard, M., Rodriguez, E., Wu, X., Chen, A., and Pavelsky, T.: Mapping water surface elevation and slope in the Mississippi river delta using the AirSWOT Ka-Band interferometric synthetic aperture radar, Remote Sens., 11, 2739, https://doi.org/10.3390/rs11232739, 2019. a, b
Denbina, M., Simard, M., Pavelsky, T., Christensen, A., Liu, K., and Lyon, C.: Pre-Delta-X: Channel Bathymetry of the Atchafalaya Basin, LA, USA, 2016, ORNL DAAC, [data set], https://doi.org/10.3334/ORNLDAAC/1807, 2020. a, b
Denbina, M., Simard, M., and Rodriguez, E.: Delta-X: AirSWOT L2 Geocoded Water Surface Elevation, MRD, Louisiana, 2021, Version 2, ORNL DAAC, Oak Ridge, Tennessee, USA, [data set], https://doi.org/10.3334/ORNLDAAC/2128, 2022. a
Dietrich J. C., Westerink, J. J. , Kennedy, A. B., Smith, J. M., Jensen, R. E., Zijlema, M., Holthuijsen, L. H., Dawson, C., Luettich, R. A., Powell, M. D., Cardone, V. J., Cox, A. T., Stone, G. W., Pourtaheri, H., Hope, M. E., Tanaka, S., Westerink, L. G., Westerink, H. J., and Cobell, Z.: Hurricane Gustav (2008) waves and storm surge: hindcast, synoptic analysis, and validation in Southern Louisiana, Mon. Weather Rev., 139, 2488–2522, https://doi.org/10.1175/2011MWR3611.1, 2011. a
Donatelli, C., Passalacqua, P., Jensen, D., Jones, C., Oliver-Cabrera, T., and Fagherazzi, S.: Spatial variability in salt marsh drainage controlled by small scale topography, J. Geophys. Res.-Ea., 128, 11, https://doi.org/10.1029/2023JF007219, 2023a. a
Donatelli, C., Passalacqua, P., Wright, K., Salter, G., Lamb, M. P., Jensen, D., and Fagherazzi, S.: Quantifying flow velocities in river deltas via remotely sensed suspended sediment concentration, Geophys. Res. Lett., 50, e2022GL101392, https://doi.org/10.1029/2022GL101392, 2023b. a
Dorji, P. and Fearns, P.: A quantitative comparison of total suspended sediment algorithms: A case study of the last decade for MODIS and landsat-based sensors, Remote Sens., 8, 810, https://doi.org/10.3390/rs8100810, 2016. a
Edmonds, D. A. and Slingerland, R. L.: Significant effect of sediment cohesion on delta morphology, Nat. Geosci., 3, 105–109, https://doi.org/10.1038/ngeo730, 2010. a
Fagherazzi, S., Mariotti, G., Leonardi, N., Canestrelli, A., Nardin, W., and Kearney, W. S.: Salt marsh dynamics in a period of accelerated sea level rise, J. Geophys. Res.-Earth, 125, e2019JF005200, https://doi.org/10.1029/2019JF005200, 2020. a, b
Farber, S.: The value of coastal wetlands for protection of property against hurricane wind damage, J. Environ. Econ. Manage., 14, 143–151, https://doi.org/10.1016/0095-0696(87)90012-X, 1987. a
Fichot, C. and Harringmeyer, J.: Delta-X: In Situ Water Surface Reflectance across MRD, LA, USA, 2021, Version 2, ORNL DAAC, [data set], https://doi.org/10.3334/ORNLDAAC/2076, 2021. a
Fichot, C. and Harringmeyer, J.: Delta-X: AVIRIS-NG L3-derived Water Quality, TSS, and Turbidity, MRD, LA 2021, V2, ORNL DAAC, [data set], https://doi.org/10.3334/ORNLDAAC/2112, 2022. a, b
Fichot, C., Ghosh, N., Harringmeyer, J., and Weiser, M.: Delta-X: Total Suspended Solids Concentration across MRD, LA, USA, 2021, Version 2, ORNL DAAC, [data set], https://doi.org/10.3334/ORNLDAAC/2075, 2022. a, b
Fichot, C. G., Downing, B. D., Bergamaschi, B. A., Windham-Myers, L., Marvin-DiPasquale, M., Thompson, D. R., and Gierach, M. M.: High-resolution remote sensing of water quality in the San Francisco Bay–Delta Estuary, Environ. Sci. Technol., 50, 573–583, https://doi.org/10.1021/acs.est.5b03518, 2016. a
Freeman, A. M., Jose, F., Roberts, H. H., and Stone, G. W.: Storm induced hydrodynamics and sediment transport in a coastal Louisiana lake, Estuar. Coast. Shelf Sci., 161, 65–75, https://doi.org/10.1016/j.ecss.2015.04.011, 2015. a
Galbraith, H., Jones, R., Park, R., Clough, J., Herrod-Julius, S., Harrington, B., and Page, G.: Global climate change and sea level rise: potential losses of intertidal habitat for shorebirds, Waterbirds, 25, 173–183, https://doi.org/10.1675/1524-4695(2002)025[0173:GCCASL]2.0.CO;2, 2002. a
Ganju, N. K. and Schoellhamer, D. H.: Decadal-timescale estuarine geomorphic change under future scenarios of climate and sediment supply, Estuar. Coast., 33, 15–29, https://doi.org/10.1007/s12237-009-9244-y, 2010. a
Ganju, N. K., Defne, Z., Kirwan, M. L., Fagherazzi, S., D'Alpaos, A., and Carniello, L.: Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes, Nat. Commun., 8, 14156, https://doi.org/10.1038/ncomms14156, 2017. a
Gao, B.-C., Heidebrecht, K. B., and Goetz, A. F.: Derivation of scaled surface reflectances from AVIRIS data, Remote Sens. Environ., 44, 165–178, https://doi.org/10.1016/0034-4257(93)90014-O, 1993. a
Georgiou, I. Y., FitzGerald, D. M., and Stone, G. W.: The impact of physical processes along the Louisiana coast, J. Coast. Res., 72–89, http://www.jstor.org/stable/25737050 (last access: 20 October 2023), 2005. a
Ghosh, S., Mishra, D. R., and Gitelson, A. A.: Long-term monitoring of biophysical characteristics of tidal wetlands in the northern Gulf of Mexico – A methodological approach using MODIS, Remote Sens. Environ., 173, 39–58, https://doi.org/10.1016/j.rse.2015.11.015, 2016. a
Goldstein, R. M. and Zebker, H.: Interferometric radar measurement of ocean surface currents, Nature, 328, 707–709, https://doi.org/10.1038/328707a0, 1987. a
Guo, M., Li, J., Sheng, C., Xu, J., and Wu, L.: A review of wetland remote sensing, Sensors, 17, 777, https://doi.org/10.3390/s17040777, 2017. a, b
Haddad, J., Lawler, S., and Ferreira, C. M.: Assessing the relevance of wetlands for storm surge protection: a coupled hydrodynamic and geospatial framework, Nat. Hazards, 80, 839–861, https://doi.org/10.1007/s11069-015-2000-7, 2016. a
Hamlin, L., Green, R., Mouroulis, P., Eastwood, M., Wilson, D., Dudik, M., and Paine, C.: Imaging spectrometer science measurements for terrestrial ecology: AVIRIS and new developments, in: 2011 Aerospace conference, IEEE, 44, 127–143, https://doi.org/10.1109/AERO.2011.5747395, 2011. a
Henderson, F. M. and Lewis, A. J.: Radar detection of wetland ecosystems: a review, Int. J. Remote Sens., 29, 5809–5835, https://doi.org/10.1080/01431160801958405, 2008. a
Holthuijsen, L. H., Booij, N., and Ris, R. C.: A spectral wave model for the coastal zone, Proceedings 2nd International Symposium on Ocean Wave Measurement and Analysis, New Orleans, Louisiana, July 25–28, 1993, New York, 630–641, 1993. a
Hong, S.-H. and Wdowinski, S.: Multitemporal Multitrack Monitoring of Wetland Water Levels in the Florida Everglades Using ALOS PALSAR Data With Interferometric Processing, IEEE T. Geosci. Remote, 11, 1355–1359, https://doi.org/10.1109/LGRS.2013.2293492, 2014. a
Ill, E. W. R., Chappell, D. K., and Baldwin, D. G.: AVHRR lmagery used to identify hurricane damage in a forested wetland of Louisiana, Photogramm. Eng., 63, 293–297, http://pubs.er.usgs.gov/publication/70020165 (last access: 20 October 2023), 1997. a
Jensen, D., Simard, M., Cavanaugh, K., Sheng, Y., Fichot, C. G., Pavelsky, T., and Twilley, R.: Improving the transferability of suspended solid estimation in wetland and deltaic waters with an empirical hyperspectral approach, Remote Sens., 11, 1629, https://doi.org/10.3390/rs11131629, 2019. a, b
Jensen, D., Cavanaugh, K. C., Simard, M., Christensen, A., Rovai, A., and Twilley, R.: Aboveground biomass distributions and vegetation composition changes in Louisiana's Wax Lake Delta, Estuar. Coast. Shelf Sci., 250, 107139, https://doi.org/10.1016/j.ecss.2020.107139, 2021. a
Jensen, D., Cavanaugh, K., Thompson, D., Fagherazzi, S., Cortese, L., and Simard, M.: Leveraging the historical Landsat catalog for a remote sensing model of wetland accretion in coastal Louisiana, J. Geophys. Res.-Biogeo., 127, e2022JG006794, https://doi.org/10.1029/2022JG006794, 2022. a, b
Jones, C., Oliver-Cabrera, T., Simard, M., and Lou, Y.: Delta-X: UAVSAR L3 Water Level Changes, MRD, Louisiana, 2021, ORNL DAAC, [data set], https://doi.org/10.3334/ORNLDAAC/2058, 2022. a
Kang, X., Yan, L., Zhang, X., Li, Y., Tian, D., Peng, C., Wu, H., Wang, J., and Zhong, L.: Modeling gross primary production of a typical coastal wetland in China using MODIS time series and CO2 eddy flux tower data, Remote Sens., 10, 708, https://doi.org/10.3390/rs10050708, 2018. a
Kaplan, G. and Avdan, U.: Mapping and monitoring wetlands using Sentinel-2 satellite imagery, https://doi.org/10.5194/isprs-annals-IV-4-W4-271-2017, 2017. a
Kim, J.-W., Lu, Z., Lee, H., Shum, C., Swarzenski, C. M., Doyle, T. W., and Baek, S.-H.: Integrated analysis of PALSAR/Radarsat-1 InSAR and ENVISAT altimeter data for mapping of absolute water level changes in Louisiana wetlands, Remote Sens. Environ., 113, 2356–2365, https://doi.org/10.1016/j.rse.2009.06.014, 2009. a
Kjerfve, B. and Magill, K. E.: Geographic and hydrodynamic characteristics of shallow coastal lagoons, Mar. Geol., 88, 187–199, https://doi.org/10.1016/0025-3227(89)90097-2, 1989. a
Kundu, P. K., Cohen, I. M., and Dowling, D. R.: Fluid mechanics, Academic Press, ISBN 9780124059351, 2015. a
Kwoun, O.-I. and Lu, Z.: Multi-temporal RADARSAT-1 and ERS backscattering signatures of coastal wetlands in southeastern Louisiana, Photogram. Eng. Remote Sens., 75, 607–617, https://doi.org/10.14358/PERS.75.5.607, 2009. a
Lamb, M. P., de Leeuw, J., Fischer, W. W., Moodie, A. J., Venditti, J. G., Nittrouer, J. A., Haught, D., and Parker, G.: Mud in rivers transported as flocculated and suspended bed material, Nat. Geosci., 13, 566–570, https://doi.org/10.1038/s41561-020-0602-5, 2020. a
Lesser, G., Roelvink, J., van Kester, J., and Stelling, G.: Development and validation of a three-dimensional morphological model, Coast. Eng., 51, 883–915, https://doi.org/10.1016/j.coastaleng.2004.07.014, 2004. a
Liao, T.-H., Simard, M., Denbina, M., and Lamb, M. P.: Monitoring water level change and seasonal vegetation change in the coastal wetlands of Louisiana using L-band time-series, Remote Sens., 12, 2351, https://doi.org/10.3390/rs12152351, 2020. a
Limerinos, J. T.: Determination of the Manning coefficient from measured bed roughness in natural channels, Vol. 1898, US Government Printing Office Washington, DC, https://doi.org/10.3133/wsp1898B, 1970. a
Liu, K., Chen, Q., Hu, K., Xu, K., and Twilley, R. R.: Modeling hurricane-induced wetland-bay and bay-shelf sediment fluxes, Coast. Eng., 135, 77–90, https://doi.org/10.1016/j.coastaleng.2017.12.014, 2018. a, b
Lopes, C. L., Mendes, R., Caçador, I., and Dias, J. M.: Evaluation of long-term estuarine vegetation changes through Landsat imagery, Sci. Total Environ., 653, 512–522, https://doi.org/10.1016/j.scitotenv.2018.10.381, 2019. a
Love, M. R., Caldwell, R. J., Carignan, K. S., Eakins, B. W., and Taylor, L. A.: Digital Elevation Models of Southern Louisiana: Procedures, Data Sources and Analysis, NOAA National Geophysical Data Center technical report, https://repository.library.noaa.gov/view/noaa/1186 (last access: 20 October 2023), 2010. a
Lumbierres, M., Méndez, P. F., Bustamante, J., Soriguer, R., and Santamaría, L.: Modeling biomass production in seasonal wetlands using MODIS NDVI land surface phenology, Remote Sens., 9, 392, https://doi.org/10.3390/rs9040392, 2017. a
Mariotti, G., Fagherazzi, S., Wiberg, P., McGlathery, K., Carniello, L., and Defina, A.: Influence of storm surges and sea level on shallow tidal basin erosive processes, J. Geophys. Res.-Oceans, 115, C11, https://doi.org/10.1029/2009JC005892, 2010. a
McClain, C. R. and Meister, G.: Mission Requirements for Future Ocean-Colour Sensors, https://doi.org/10.25607/OBP-104, 2012. a
Medeiros, S., Hagen, S., Weishampel, J., and Angelo, J.: Adjusting lidar-derived digital terrain models in coastal marshes based on estimated aboveground biomass density, Remote Sens., 7, 3507–3525, https://doi.org/10.3390/rs70403507, 2015. a
Minello, T. J., Able, K. W., Weinstein, M. P., and Hays, C. G.: Salt marshes as nurseries for nekton: testing hypotheses on density, growth and survival through meta-analysis, Mar. Ecol. Prog. Ser., 246, 39–59, https://doi.org/10.3354/meps246039, 2003. a
Möller, I., Kudella, M., Rupprecht, F., Spencer, T., Paul, M., Van Wesenbeeck, B. K., Wolters, G., Jensen, K., Bouma, T. J., Miranda-Lange, M., and Schimmels, S.: Wave attenuation over coastal salt marshes under storm surge conditions, Nat. Geosci., 7, 727–731, https://doi.org/10.1038/ngeo2251, 2014. a
Muro, J., Canty, M., Conradsen, K., Hüttich, C., Nielsen, A. A., Skriver, H., Remy, F., Strauch, A., Thonfeld, F., and Menz, G.: Short-term change detection in wetlands using Sentinel-1 time series, Remote Sens., 8, 795, https://doi.org/10.3390/rs8100795, 2016. a
Nahlik, A. M. and Fennessy, M. S.: Carbon storage in US wetlands, Nat. Commun., 7, 1–9, https://doi.org/10.1038/ncomms13835, 2016. a
Nardin, W., Mariotti, G., Edmonds, D., Guercio, R., and Fagherazzi, S.: Growth of river mouth bars in sheltered bays in the presence of frontal waves, J. Geophys. Res.-Earth, 118, 872–886, 2013. a
Nicholls, R. J.: Coastal flooding and wetland loss in the 21st century: changes under the SRES climate and socio-economic scenarios, Glob. Environ. Change, 14, 69–86, https://doi.org/10.1016/j.gloenvcha.2003.10.007, 2004. a
Oliver-Cabrera, T., Jones, C. E., Yunjun, Z., and Simard, M.: InSAR phase unwrapping error correction for rapid repeat measurements of water level change in wetlands, IEEE T. Geosci. Remote, 60, 1–15, https://doi.org/10.1109/TGRS.2021.3108751, 2021. a
Ou, Y., Xue, Z. G., Li, C., Xu, K., White, J. R., Bentley, S. J., and Zang, Z.: A numerical investigation of salinity variations in the Barataria Estuary, Louisiana in connection with the Mississippi River and restoration activities, Estuar. Coast. Shelf Sci., 245, 107021, https://doi.org/10.1016/j.ecss.2020.107021, 2020. a
Palazzoli, I., Leonardi, N., Jimenez-Robles, A., and Fagherazzi, S.: Velocity skew controls the flushing of a tracer in a system of shallow bays with multiple inlets, Cont. Shelf Res., 192, 104008, https://doi.org/10.1016/j.csr.2019.104008, 2020. a
Parker, G. and Sequeiros, O.: Large scale river morphodynamics: Application to the Mississippi Delta, in: River Flow 2006: proceedings of the international conference on Fluvial Hydraulics, Taylor and Francis London, 3–11, https://doi.org/10.1201/9781439833865.ch1, 2006. a
Partheniades, E.: Erosion and deposition of cohesive soils, J. Hydraul. Div., 91, 105–139, https://doi.org/10.1061/JYCEAJ.0001165, 1965. a
Peter Sheng, Y., Paramygin, V. A., Rivera-Nieves, A. A., Zou, R., Fernald, S., Hall, T., and Jacob, K.: Coastal marshes provide valuable protection for coastal communities from storm-induced wave, flood, and structural loss in a changing climate, Sci. Rep., 12, 3051, https://doi.org/10.1038/s41598-022-06850-z, 2022. a
Pflugmacher, D., Krankina, O. N., and Cohen, W. B.: Satellite-based peatland mapping: Potential of the MODIS sensor, Global Planet. Change, 56, 248–257, https://doi.org/10.1016/j.gloplacha.2006.07.019, 2007. a
Proust, S. and Nikora, V. I.: Compound open-channel flows: effects of transverse currents on the flow structure, J. Fluid Mech., 885, https://doi.org/10.1017/jfm.2019.973, 2020. a
Roberts, H., Coleman, J., Bentley, S., and Walker, N.: An embryonic major delta lobe: A new generation of delta studies in the Atchafalaya-Wax Lake Delta system, 690–703, 2003. a
Rodgers, J. C., Murrah, A. W., and Cooke, W. H.: The impact of Hurricane Katrina on the coastal vegetation of the Weeks Bay Reserve, Alabama from NDVI data, Estuar. Coast., 32, 496–507, http://www.jstor.org/stable/40663559 (last access: 20 October 2023), 2009. a
Rogers, K., Kelleway, J. J., Saintilan, N., Megonigal, J. P., Adams, J. B., Holmquist, J. R., Lu, M., Schile-Beers, L., Zawadzki, A., Mazumder, D., and Woodroffe, C. D.: Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise, Nature, 567, 91–95, https://doi.org/10.1038/s41586-019-0951-7, 2019. a
Rosen, P. A., Hensley, S., Wheeler, K., Sadowy, G., Miller, T., Shaffer, S., Muellerschoen, R., Jones, C., Zebker, H., and Madsen, S.: UAVSAR: A new NASA airborne SAR system for science and technology research, in: 2006 IEEE Conference on Radar, IEEE, 8 pp., https://doi.org/10.1109/RADAR.2006.1631770, 2006. a
Rosso, P., Ustin, S., and Hastings, A.: Use of lidar to study changes associated with Spartina invasion in San Francisco Bay marshes, Remote Sens. Environ., 100, 295–306, https://doi.org/10.1016/j.rse.2005.10.012, 2006. a
Saintilan, N., Rogers, K., Mazumder, D., and Woodroffe, C.: Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands, Estuar. Coast. Shelf Sci., 128, 84–92, https://doi.org/10.1016/j.ecss.2013.05.010, 2013. a
Salter, G., Passalacqua, P., Wright, K., Feil, S., Jensen, D., Simard, M., and Lamb, M. P.: Spatial patterns of deltaic deposition/erosion revealed by streaklines extracted from remotely-sensed suspended sediment concentration, Geophys. Res. Lett., 49, 11, https://doi.org/10.1029/2022GL098443, 2022. a
Schuerch, M., Spencer, T., Temmerman, S., Kirwan, M. L., Wolff, C., Lincke, D., McOwen, C. J., Pickering, M. D., Reef, R., Vafeidis, A. T., Hinkel, J., Nicholls, R. J., and Brown, S.: Future response of global coastal wetlands to sea-level rise, Nature, 561, 231–234, https://doi.org/10.1038/s41586-018-0476-5, 2018. a
Shi, Z., Ren, L., Zhang, S., and Chen, J.: Acoustic imaging of cohesive sediment resuspension and re-entrainment in the Changjiang Estuary, East China Sea, Geo.-Mar. Lett., 17, 162–168, https://doi.org/10.1007/s003670050022, 1997. a
Simard, M., Jones, C., Denbina, M W., Christensen, A., Oliver-Cabrera, T., Liao, T.-H., Fagherazzi, S., Passalacqua, P., Wright, K. A., Zhang, X., and Cortese, L.: Delta-X, SWOT and NISAR to Revolutionize our Understanding of Coastal Hydrodynamics, in: AGU Fall Meeting Abstracts, Vol. 2022, B45C–01, 2022. a
Slatton, K. C., Crawford, M. M., and Chang, L.-D.: Modeling temporal variations in multipolarized radar scattering from intertidal coastal wetlands, ISPRS J. Photogramm., 63, 559–577, https://doi.org/10.1016/j.isprsjprs.2008.07.003, 2008. a
Spencer, T., Schuerch, M., Nicholls, R. J., Hinkel, J., Lincke, D., Vafeidis, A., Reef, R., McFadden, L., and Brown, S.: Global coastal wetland change under sea-level rise and related stresses: The DIVA Wetland Change Model, Global Planet. Change, 139, 15–30, https://doi.org/10.1016/j.gloplacha.2015.12.018, 2016. a
Stark, J., Van Oyen, T., Meire, P., and Temmerman, S.: Observations of tidal and storm surge attenuation in a large tidal marsh, Limnol. Oceanogr., 60, 1371–1381, https://doi.org/10.1002/lno.10104, 2015. a
Syvitski, J. P., Vörösmarty, C. J., Kettner, A. J., and Green, P.: Impact of humans on the flux of terrestrial sediment to the global coastal ocean, Science, 308, 376–380, https://doi.org/10.1126/science.1109454, 2005. a
Syvitski, J. P., Kettner, A. J., Overeem, I., Hutton, E. W., Hannon, M. T., Brakenridge, G. R., Day, J., Vörösmarty, C., Saito, Y., Giosan, L., Nicholls, R. J.: Sinking deltas due to human activities, Nat. Geosci., 2, 681–686, https://doi.org/10.1038/ngeo629, 2009. a
Tan, Q., Shao, Y., Yang, S., and Wei, Q.: Wetland vegetation biomass estimation using Landsat-7 ETM+ data, in: IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium, Proceedings (IEEE Cat. No. 03CH37477), IEEE, 4, 2629–2631, https://doi.org/10.1109/IGARSS.2003.1294532, 2003. a
Tana, G., Letu, H., Cheng, Z., and Tateishi, R.: Wetlands mapping in North America by decision rule classification using MODIS and ancillary data, IEEE J. Sel. Top. Appl., 6, 2391–2401, https://doi.org/10.1109/JSTARS.2013.2249499, 2013. a
Temmerman, S., Horstman, E. M., Krauss, K. W., Mullarney, J. C., Pelckmans, I., and Schoutens, K.: Marshes and mangroves as nature-based coastal storm buffers, Annu. Rev., 15, 95–118, https://doi.org/10.1146/annurev-marine-040422-092951, 2023. a
Thomas, N., Simard, M., Castañeda-Moya, E., Byrd, K., Windham-Myers, L., Bevington, A., and Twilley, R. R.: High-resolution mapping of biomass and distribution of marsh and forested wetlands in southeastern coastal Louisiana, Int. J. Appl. Earth Observ. Geoinfo., 80, 257–267, https://doi.org/10.1016/j.jag.2019.03.013, 2019. a
Twilley, R. and Rovai, A.: Delta-X: Real-Time Kinematic Elevation Measurements for Coastal Wetlands, LA, 2021, ORNL DAAC, [data set], https://doi.org/10.3334/ORNLDAAC/2071, 2022. a
Twilley, R., Day, J., Bevington, A., Castañeda-Moya, E., Christensen, A., Holm, G., Heffner, L., Lane, R., McCall, A., Aarons, A., Li, S., Freeman, A., and Rovai, A. S.: Ecogeomorphology of coastal deltaic floodplains and estuaries in an active delta: Insights from the Atchafalaya Coastal Basin, Estuar. Coast. Shelf Sci., 227, 106341, https://doi.org/10.1016/j.ecss.2019.106341, 2019. a, b
U.S. Geological Survey: National Water Information System data available on the World Wide Web (USGS Water Data for the Nation) [data set], https://doi.org/10.5066/F7P55KJN, 2016. a, b, c
van der Wegen, M., Dastgheib, A., Jaffe, B. E., and Roelvink, D.: Bed composition generation for morphodynamic modeling: case study of San Pablo Bay in California, USA, Ocean Dynam., 61, 173–186, https://doi.org/10.1007/s10236-010-0314-2, 2011. a
Van Rijn, L. C.: Unified view of sediment transport by currents and waves. I: Initiation of motion, bed roughness, and bed-load transport, J. Hydraul. Eng., 133, 649–667, 2007. a
Van Rijn, L. C.: Principles of sediment transport in rivers, Estuar. Coast. Sea., ISBN 9789080035621, 1993. a
Walker, N. D. and Hammack, A. B.: Impacts of winter storms on circulation and sediment transport: Atchafalaya-Vermilion Bay region, Louisiana, USA, J. Coast. Res., 996–1010, http://www.jstor.org/stable/4300118, 2000. a
Wang, F. and D'Sa, E. J.: Potential of MODIS EVI in identifying hurricane disturbance to coastal vegetation in the northern Gulf of Mexico, Remote Sens., 2, 1–18, https://doi.org/10.3390/rs2010001, 2009. a
Wang, X., Gao, X., Zhang, Y., Fei, X., Chen, Z., Wang, J., Zhang, Y., Lu, X., and Zhao, H.: Land-cover classification of coastal wetlands using the RF algorithm for Worldview-2 and Landsat 8 images, Remote Sens., 11, 1927, https://doi.org/10.3390/rs11161927, 2019. a
Wang, X., Xiao, X., Zou, Z., Hou, L., Qin, Y., Dong, J., Doughty, R. B., Chen, B., Zhang, X., Chen, Y., Ma, J., Zhao, B., and Li, B.: Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine, ISPRS J. Photogramm., 163, 312–326, https://doi.org/10.1016/j.isprsjprs.2020.03.014, 2020. a
Wdowinski, S., Kim, S.-W., Amelung, F., Dixon, T. H., Miralles-Wilhelm, F., and Sonenshein, R.: Space-based detection of wetlands' surface water level changes from L-band SAR interferometry, Remote Sens. Environ., 112, 681–696, https://doi.org/10.1016/j.rse.2007.06.008, 2008. a
Wdowinski, S., Hong, S.-H., Mulcan, A., and Brisco, B.: Remote-sensing monitoring of tide propagation through coastal wetlands, Oceanography, 26, 64–69, https://doi.org/10.5670/oceanog.2013.46, 2013. a
Wiberg, P. L., Carr, J. A., Safak, I., and Anutaliya, A.: Quantifying the distribution and influence of non-uniform bed properties in shallow coastal bays, Limnol. Oceanogr.-Meth., 13, 746–762, https://doi.org/10.1002/lom3.10063, 2015. a
Williams, S. J., Arsenault, M. A., Buczkowski, B. J., Reid, J. A., Flocks, J., Kulp, M. A., Penland, S., and Jenkins, C. J.: Surficial sediment character of the Louisiana offshore Continental Shelf region: a GIS Compilation, Tech. Rep., US Geological Survey, https://doi.org/10.3133/ofr20061195, 2006. a
Xie, C., Shao, Y., Xu, J., Wan, Z., and Fang, L.: Analysis of ALOS PALSAR InSAR data for mapping water level changes in Yellow River Delta wetlands, Int. J. Remote Sens., 34, 2047–2056, https://doi.org/10.1080/01431161.2012.731541, 2013. a
Yan, Y., Zhao, B., Chen, J., Guo, H., Gu, Y., Wu, Q., and Li, B.: Closing the carbon budget of estuarine wetlands with tower-based measurements and MODIS time series, Glob. Change Biol., 14, 1690–1702, https://doi.org/10.1111/j.1365-2486.2008.01589.x, 2008. a
Zang, Z., Xue, Z. G., Bao, S., Chen, Q., Walker, N. D., Haag, A. S., Ge, Q., and Yao, Z.: Numerical study of sediment dynamics during hurricane Gustav, Ocean Model., 126, 29–42, https://doi.org/10.1016/j.ocemod.2018.04.002, 2018. a
Zhang, X., Leonardi, N., Donatelli, C., and Fagherazzi, S.: Fate of cohesive sediments in a marsh-dominated estuary, Adv. Water Resour., 125, 32–40, https://doi.org/10.1016/j.advwatres.2019.01.003, 2019. a, b
Zhang, X., Fichot, C. G., Baracco, C., Guo, R., Neugebauer, S., Bengtsson, Z., Ganju, N., and Fagherazzi, S.: Determining the drivers of suspended sediment dynamics in tidal marsh-influenced estuaries using high-resolution ocean color remote sensing, Remote Sens. Environ., 240, 111682, https://doi.org/10.1016/j.rse.2020.111682, 2020a. a
Zhang, X., Leonardi, N., Donatelli, C., and Fagherazzi, S.: Divergence of sediment fluxes triggered by sea-level rise will reshape coastal bays, Geophys. Res. Lett., 47, e2020GL087862, https://doi.org/10.1029/2020GL087862, 2020b. a
Zhang, X., Wright, K., Passalacqua, P., Simard, M., and Fagherazzi, S.: Improving Channel Hydrological Connectivity in Coastal Hydrodynamic Models With Remotely Sensed Channel Networks, J. Geophys. Res.-Earth, 127, e2021JF006294, https://doi.org/10.1029/2021JF006294, 2022b. a
Zhang, X., Xiao, X., Qiu, S., Xu, X., Wang, X., Chang, Q., Wu, J., and Li, B.: Quantifying latitudinal variation in land surface phenology of Spartina alterniflora saltmarshes across coastal wetlands in China by Landsat and Sentinel-2 images, Remote Sens. Environ., 269, 112810, https://doi.org/10.1016/j.rse.2021.112810, 2022c. a
Zhang, Y., Lu, D., Yang, B., Sun, C., and Sun, M.: Coastal wetland vegetation classification with a Landsat Thematic Mapper image, Int. J. Remote Sens., 32, 545–561, https://doi.org/10.1080/01431160903475241, 2011. a
Zhao, B., Yan, Y., Guo, H., He, M., Gu, Y., and Li, B.: Monitoring rapid vegetation succession in estuarine wetland using time series MODIS-based indicators: an application in the Yangtze River Delta area, Ecol. Ind., 9, 346–356, https://doi.org/10.1016/j.ecolind.2008.05.009, 2009. a
Zoffoli, M. L., Kandus, P., Madanes, N., and Calvo, D. H.: Seasonal and interannual analysis of wetlands in South America using NOAA-AVHRR NDVI time series: the case of the Parana Delta Region, Landscape Ecol., 23, 833–848, https://doi.org/10.1007/s10980-008-9240-9, 2008. a
Short summary
This study shows that numerical models in coastal areas can greatly benefit from the spatial information provided by remote sensing. Three Delft3D numerical models in coastal Louisiana are calibrated using airborne SAR and hyperspectral remote sensing products from the recent NASA Delta-X mission. The comparison with the remote sensing allows areas where the models perform better to be spatially verified and yields more representative parameters for the entire area.
This study shows that numerical models in coastal areas can greatly benefit from the spatial...
Altmetrics
Final-revised paper
Preprint