Articles | Volume 22, issue 1
https://doi.org/10.5194/bg-22-257-2025
https://doi.org/10.5194/bg-22-257-2025
Research article
 | 
13 Jan 2025
Research article |  | 13 Jan 2025

Explainable machine learning for modeling of net ecosystem exchange in boreal forests

Ekaterina Ezhova, Topi Laanti, Anna Lintunen, Pasi Kolari, Tuomo Nieminen, Ivan Mammarella, Keijo Heljanko, and Markku Kulmala

Data sets

NEE and Enviromental Variables in Hyytiälä and Värriö Topi Laanti https://doi.org/10.5281/zenodo.14013145

Model code and software

Machine Learning Models and XAI Methods Topi Laanti https://doi.org/10.5281/zenodo.14013145

Download
Short summary
Machine learning (ML) models are gaining popularity in biogeosciences. They are applied as gap-filling methods and used to upscale carbon fluxes to larger areas. Here we use explainable artificial intelligence (XAI) methods to elucidate the performance of machine learning models for carbon dioxide fluxes in boreal forests. We show that statistically equal models treat input variables differently. XAI methods can help scientists make informed decisions when applying ML models in their research.
Altmetrics
Final-revised paper
Preprint