Articles | Volume 22, issue 13
https://doi.org/10.5194/bg-22-3301-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-3301-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An upper-mesopelagic-zone carbon budget for the subarctic North Pacific
Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
Institute of Oceanography, National Taiwan University, Taipei 106319, Taiwan
Montserrat Roca-Martí
CORRESPONDING AUTHOR
Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
Amy E. Maas
Bermuda Institute of Ocean Sciences, School of Ocean Futures, Arizona State University, St. George's, GE01, Bermuda
Vinícius J. Amaral
Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, USA
Samantha Clevenger
MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, MA 02139, USA
Shawnee Traylor
MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, MA 02139, USA
Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Claudia R. Benitez-Nelson
School of the Earth, Ocean and Environment, University of South Carolina, Columbia, SC 29208, USA
Philip W. Boyd
Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
Ken O. Buesseler
Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Craig A. Carlson
Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
Nicolas Cassar
Division of Earth and Climate Sciences, Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
CNRS, Université de Brest, IRD, Ifremer, LEMAR, 29280 Plouzané, France
Margaret Estapa
School of Marine Sciences, Darling Marine Center, University of Maine, Walpole, ME 04573, USA
Andrea J. Fassbender
NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, WA 98115, USA
Yibin Huang
State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, FJ 350800, China
Phoebe J. Lam
Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, USA
Olivier Marchal
Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Susanne Menden-Deuer
Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
Nicola L. Paul
Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
Alyson E. Santoro
Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
David A. Siegel
Earth Research Institute and Department of Geography, University of California, Santa Barbara, CA 93106, USA
Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Related authors
No articles found.
Emily Havard, Katherine Cherry, Claudia Benitez-Nelson, Eric Tappa, and Catherine V. Davis
Biogeosciences, 22, 4035–4060, https://doi.org/10.5194/bg-22-4035-2025, https://doi.org/10.5194/bg-22-4035-2025, 2025
Short summary
Short summary
This study explores the impact of modern climate change on single-celled, marine organisms in the Santa Barbara Basin called foraminifera. We collect their shells as they sink to the seafloor and compare our record (2014–2021) to previous studies (1993–1998). We find substantial decreases in total foraminifera and warm-water species. Likely influenced by ocean acidification and regional water circulation, these changes have implications for the marine carbon cycle, ecosystem, and fossil record.
Brendan R. Carter, Jörg Schwinger, Rolf Sonnerup, Andrea J. Fassbender, Jonathan D. Sharp, Larissa M. Dias, and Daniel E. Sandborn
Earth Syst. Sci. Data, 17, 3073–3088, https://doi.org/10.5194/essd-17-3073-2025, https://doi.org/10.5194/essd-17-3073-2025, 2025
Short summary
Short summary
We infer ocean gas exchange and circulation from ocean tracer measurements and use this to create code to estimate the amount of carbon dioxide dissolved in the ocean that is there due to human emissions of CO2 into the atmosphere. The code works across the ocean depths for the past, present, or future from information about the location, temperature, and salinity of the seawater. We produce a data product with estimates throughout the ocean throughout the last ~300 and the next ~500 years.
Travis Mellett, Justine Albers, Alyson Santoro, Pascal Salaun, Joseph Resing, Wenhao Wang, Alistar Lough, Alessandro Tagliabue, Maeve Lohan, Randelle Bundy, and Kristen Buck
EGUsphere, https://doi.org/10.5194/egusphere-2025-1798, https://doi.org/10.5194/egusphere-2025-1798, 2025
Short summary
Short summary
Hydrothermal plumes of iron have been observed to persist in the deep ocean, but the exact mechanisms that contribute to the long-range transport of iron is not well defined. We collected plume waters from three different vent systems along the mid-Atlantic Ridge and monitored the temporal evolution of the physical and chemical forms of iron and its interaction with organic matter over time to learn about the mechanisms that control its dispersion.
Li-Qing Jiang, Amanda Fay, Jens Daniel Müller, Lydia Keppler, Dustin Carroll, Siv K. Lauvset, Tim DeVries, Judith Hauck, Christian Rödenbeck, Luke Gregor, Nicolas Metzl, Andrea J. Fassbender, Jean-Pierre Gattuso, Peter Landschützer, Rik Wanninkhof, Christopher Sabine, Simone R. Alin, Mario Hoppema, Are Olsen, Matthew P. Humphreys, Kumiko Azetsu-Scott, Dorothee C. E. Bakker, Leticia Barbero, Nicholas R. Bates, Nicole Besemer, Henry C. Bittig, Albert E. Boyd, Daniel Broullón, Wei-Jun Cai, Brendan R. Carter, Thi-Tuyet-Trang Chau, Chen-Tung Arthur Chen, Frédéric Cyr, John E. Dore, Ian Enochs, Richard A. Feely, Hernan E. Garcia, Marion Gehlen, Lucas Gloege, Melchor González-Dávila, Nicolas Gruber, Yosuke Iida, Masao Ishii, Esther Kennedy, Alex Kozyr, Nico Lange, Claire Lo Monaco, Derek P. Manzello, Galen A. McKinley, Natalie M. Monacci, Xose A. Padin, Ana M. Palacio-Castro, Fiz F. Pérez, Alizée Roobaert, J. Magdalena Santana-Casiano, Jonathan Sharp, Adrienne Sutton, Jim Swift, Toste Tanhua, Maciej Telszewski, Jens Terhaar, Ruben van Hooidonk, Anton Velo, Andrew J. Watson, Angelicque E. White, Zelun Wu, Hyelim Yoo, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-255, https://doi.org/10.5194/essd-2025-255, 2025
Preprint under review for ESSD
Short summary
Short summary
This review article provides an overview of 60 existing ocean carbonate chemistry data products, encompassing a broad range of types, including compilations of cruise datasets, gap-filled observational products, model simulations, and more. It is designed to help researchers identify and access the data products that best support their scientific objectives, thereby facilitating progress in understanding the ocean's changing carbonate chemistry.
Colleen L. Hoffman, Patrick J. Monreal, Justine B. Albers, Alastair J. M. Lough, Alyson E. Santoro, Travis Mellett, Kristen N. Buck, Alessandro Tagliabue, Maeve C. Lohan, Joseph A. Resing, and Randelle M. Bundy
Biogeosciences, 21, 5233–5246, https://doi.org/10.5194/bg-21-5233-2024, https://doi.org/10.5194/bg-21-5233-2024, 2024
Short summary
Short summary
Hydrothermally derived iron can be transported kilometers away from deep-sea vents, representing a significant flux of vital micronutrients to the ocean. However, the mechanisms that support the stabilization of dissolved iron remain elusive. Using electrochemical, spectrometry, and genomic methods, we demonstrated that strong ligands exert an important control on iron in plumes, and high-affinity iron-binding siderophores were identified in several hydrothermal plume samples for the first time.
S. Alejandra Castillo Cieza, Rachel H. R. Stanley, Pierre Marrec, Diana N. Fontaine, E. Taylor Crockford, Dennis J. McGillicuddy Jr., Arshia Mehta, Susanne Menden-Deuer, Emily E. Peacock, Tatiana A. Rynearson, Zoe O. Sandwith, Weifeng Zhang, and Heidi M. Sosik
Biogeosciences, 21, 1235–1257, https://doi.org/10.5194/bg-21-1235-2024, https://doi.org/10.5194/bg-21-1235-2024, 2024
Short summary
Short summary
The coastal ocean in the northeastern USA provides many services, including fisheries and habitats for threatened species. In summer 2019, a bloom occurred of a large unusual phytoplankton, the diatom Hemiaulus, with nitrogen-fixing symbionts. This led to vast changes in productivity and grazing rates in the ecosystem. This work shows that the emergence of one species can have profound effects on ecosystem function. Such changes may become more prevalent as the ocean warms due to climate change.
Robert W. Izett, Katja Fennel, Adam C. Stoer, and David P. Nicholson
Biogeosciences, 21, 13–47, https://doi.org/10.5194/bg-21-13-2024, https://doi.org/10.5194/bg-21-13-2024, 2024
Short summary
Short summary
This paper provides an overview of the capacity to expand the global coverage of marine primary production estimates using autonomous ocean-going instruments, called Biogeochemical-Argo floats. We review existing approaches to quantifying primary production using floats, provide examples of the current implementation of the methods, and offer insights into how they can be better exploited. This paper is timely, given the ongoing expansion of the Biogeochemical-Argo array.
David T. Ho, Laurent Bopp, Jaime B. Palter, Matthew C. Long, Philip W. Boyd, Griet Neukermans, and Lennart T. Bach
State Planet, 2-oae2023, 12, https://doi.org/10.5194/sp-2-oae2023-12-2023, https://doi.org/10.5194/sp-2-oae2023-12-2023, 2023
Short summary
Short summary
Monitoring, reporting, and verification (MRV) refers to the multistep process to quantify the amount of carbon dioxide removed by a carbon dioxide removal (CDR) activity. Here, we make recommendations for MRV for Ocean Alkalinity Enhancement (OAE) research, arguing that it has an obligation for comprehensiveness, reproducibility, and transparency, as it may become the foundation for assessing large-scale deployment. Both observations and numerical simulations will be needed for MRV.
Weiyi Tang, Bess B. Ward, Michael Beman, Laura Bristow, Darren Clark, Sarah Fawcett, Claudia Frey, François Fripiat, Gerhard J. Herndl, Mhlangabezi Mdutyana, Fabien Paulot, Xuefeng Peng, Alyson E. Santoro, Takuhei Shiozaki, Eva Sintes, Charles Stock, Xin Sun, Xianhui S. Wan, Min N. Xu, and Yao Zhang
Earth Syst. Sci. Data, 15, 5039–5077, https://doi.org/10.5194/essd-15-5039-2023, https://doi.org/10.5194/essd-15-5039-2023, 2023
Short summary
Short summary
Nitrification and nitrifiers play an important role in marine nitrogen and carbon cycles by converting ammonium to nitrite and nitrate. Nitrification could affect microbial community structure, marine productivity, and the production of nitrous oxide – a powerful greenhouse gas. We introduce the newly constructed database of nitrification and nitrifiers in the marine water column and guide future research efforts in field observations and model development of nitrification.
Jonathan D. Sharp, Andrea J. Fassbender, Brendan R. Carter, Gregory C. Johnson, Cristina Schultz, and John P. Dunne
Earth Syst. Sci. Data, 15, 4481–4518, https://doi.org/10.5194/essd-15-4481-2023, https://doi.org/10.5194/essd-15-4481-2023, 2023
Short summary
Short summary
Dissolved oxygen content is a critical metric of ocean health. Recently, expanding fleets of autonomous platforms that measure oxygen in the ocean have produced a wealth of new data. We leverage machine learning to take advantage of this growing global dataset, producing a gridded data product of ocean interior dissolved oxygen at monthly resolution over nearly 2 decades. This work provides novel information for investigations of spatial, seasonal, and interannual variability in ocean oxygen.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Emily J. Zakem, Barbara Bayer, Wei Qin, Alyson E. Santoro, Yao Zhang, and Naomi M. Levine
Biogeosciences, 19, 5401–5418, https://doi.org/10.5194/bg-19-5401-2022, https://doi.org/10.5194/bg-19-5401-2022, 2022
Short summary
Short summary
We use a microbial ecosystem model to quantitatively explain the mechanisms controlling observed relative abundances and nitrification rates of ammonia- and nitrite-oxidizing microorganisms in the ocean. We also estimate how much global carbon fixation can be associated with chemoautotrophic nitrification. Our results improve our understanding of the controls on nitrification, laying the groundwork for more accurate predictions in global climate models.
Elena Ceballos-Romero, Ken O. Buesseler, and María Villa-Alfageme
Earth Syst. Sci. Data, 14, 2639–2679, https://doi.org/10.5194/essd-14-2639-2022, https://doi.org/10.5194/essd-14-2639-2022, 2022
Short summary
Short summary
Thorium-234 is widely used for studying the removal rate of material on sinking particles from the upper ocean and for determining the downward flux of carbon. In this study, we present a compilation of the 50 years of 234Th measurements in the ocean and provide a broad overview of the character of the datasets. This provides a valuable resource useful to better understand and quantify how the contemporary oceanic carbon uptake functions and how it will change in future.
Rebecca Chmiel, Nathan Lanning, Allison Laubach, Jong-Mi Lee, Jessica Fitzsimmons, Mariko Hatta, William Jenkins, Phoebe Lam, Matthew McIlvin, Alessandro Tagliabue, and Mak Saito
Biogeosciences, 19, 2365–2395, https://doi.org/10.5194/bg-19-2365-2022, https://doi.org/10.5194/bg-19-2365-2022, 2022
Short summary
Short summary
Dissolved cobalt is present in trace amounts in seawater and is a necessary nutrient for marine microbes. On a transect from the Alaskan coast to Tahiti, we measured seawater concentrations of dissolved cobalt. Here, we describe several interesting features of the Pacific cobalt cycle including cobalt sources along the Alaskan coast and Hawaiian vents, deep-ocean particle formation, cobalt activity in low-oxygen regions, and how our samples compare to a global biogeochemical model’s predictions.
Jonathan D. Sharp, Andrea J. Fassbender, Brendan R. Carter, Paige D. Lavin, and Adrienne J. Sutton
Earth Syst. Sci. Data, 14, 2081–2108, https://doi.org/10.5194/essd-14-2081-2022, https://doi.org/10.5194/essd-14-2081-2022, 2022
Short summary
Short summary
Oceanographers calculate the exchange of carbon between the ocean and atmosphere by comparing partial pressures of carbon dioxide (pCO2). Because seawater pCO2 is not measured everywhere at all times, interpolation schemes are required to fill observational gaps. We describe a monthly gap-filled dataset of pCO2 in the northeast Pacific Ocean off the west coast of North America created by machine-learning interpolation. This dataset is unique in its robust representation of coastal seasonality.
Chiho Sukigara, Ryuichiro Inoue, Kanako Sato, Yoshihisa Mino, Takeyoshi Nagai, Andrea J. Fassbender, Yuichiro Takeshita, Stuart Bishop, and Eitarou Oka
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-9, https://doi.org/10.5194/bg-2022-9, 2022
Manuscript not accepted for further review
Short summary
Short summary
To investigate the physical changes in the ocean from winter to spring and the corresponding biological activities, two automated floats were used to conduct observations in the western North Pacific from January to April 2018. During the observation, repeated storms passed and mixed the ocean surface layer. Afterwards, active biological activity was observed. Using data from the float, we observed the formation, decomposition, and settling of particulate organic matter.
Chiho Sukigara, Ryuichiro Inoue, Kanako Sato, Yoshihisa Mino, Takeyoshi Nagai, Andrea J. Fassbender, Yuichiro Takeshita, and Eitarou Oka
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-116, https://doi.org/10.5194/bg-2021-116, 2021
Manuscript not accepted for further review
Short summary
Short summary
We combined ship-borne water sampling with the use of two Argo floats equipped with biogeochemical sensors to determine the changes in primary productivity associated with the passage of storms and resultant disturbance in the subtropical western North Pacific. We found that the episodic influx of carbon to the surface facilitated by storms played a key role in promoting primary production. Particulate carbon transported to the twilight layer were not the major substrate for the respiration.
Andrea J. Fassbender, James C. Orr, and Andrew G. Dickson
Biogeosciences, 18, 1407–1415, https://doi.org/10.5194/bg-18-1407-2021, https://doi.org/10.5194/bg-18-1407-2021, 2021
Short summary
Short summary
A decline in upper-ocean pH with time is typically ascribed to ocean acidification. A more quantitative interpretation is often confused by failing to recognize the implications of pH being a logarithmic transform of hydrogen ion concentration rather than an absolute measure. This can lead to an unwitting misinterpretation of pH data. We provide three real-world examples illustrating this and recommend the reporting of both hydrogen ion concentration and pH in studies of ocean chemical change.
Fuminori Hashihama, Hiroaki Saito, Taketoshi Kodama, Saori Yasui-Tamura, Jota Kanda, Iwao Tanita, Hiroshi Ogawa, E. Malcolm S. Woodward, Philip W. Boyd, and Ken Furuya
Biogeosciences, 18, 897–915, https://doi.org/10.5194/bg-18-897-2021, https://doi.org/10.5194/bg-18-897-2021, 2021
Short summary
Short summary
We investigated the nutrient assimilation characteristics of deep-water-induced phytoplankton blooms across the subtropical North and South Pacific Ocean. Nutrient drawdown ratios of dissolved inorganic nitrogen to phosphate were anomalously low in the western North Pacific, likely due to the high phosphate uptake capability of low-phosphate-adapted phytoplankton. The anomalous phosphate uptake might influence the maintenance of chronic phosphate depletion in the western North Pacific.
Cited articles
Amano, C., Reinthaler, T., Sintes, E., Varela, M. M., Stefanschitz, J., Kaneko, S., Nakano, Y., Borchert, W., Herndl, G. J., and Utsumi, M.: A device for assessing microbial activity under ambient hydrostatic pressure: The in situ microbial incubator (ISMI), Limnol. Oceanogr.-Meth., 21, 69–81, https://doi.org/10.1002/lom3.10528, 2023.
Amaral, V. J., Lam, P. J., Marchal, O., Roca-Martí, M., Fox, J., and Nelson, N. B.: Particle cycling rates at Station P as estimated from the inversion of POC concentration data, Elementa: Science of the Anthropocene, 10, 00018, https://doi.org/10.1525/elementa.2021.00018, 2022.
Arteaga, L. A., Pahlow, M., Bushinsky, S. M., and Sarmiento, J. L.: Nutrient Controls on Export Production in the Southern Ocean, Global Biogeochem. Cy., 33, 942–956, https://doi.org/10.1029/2019GB006236, 2019.
Baltar, F., Arístegui, J., Sintes, E., Gasol, J. M., Reinthaler, T., and Herndl, G. J.: Significance of non-sinking particulate organic carbon and dark CO2 fixation to heterotrophic carbon demand in the mesopelagic northeast Atlantic, Geophys. Res. Lett., 37, L09602, https://doi.org/10.1029/2010GL043105, 2010.
Baumas, C., Fuchs, R., Garel, M., Poggiale, J.-C., Memery, L., Le Moigne, F. A. C., and Tamburini, C.: Reconstructing the ocean's mesopelagic zone carbon budget: sensitivity and estimation of parameters associated with prokaryotic remineralization, Biogeosciences, 20, 4165–4182, https://doi.org/10.5194/bg-20-4165-2023, 2023.
Baumgartner, M. F. and Tarrant, A. M.: The Physiology and Ecology of Diapause in Marine Copepods, Annu. Rev. Mar. Sci., 9, 387–411, https://doi.org/10.1146/annurev-marine-010816-060505, 2017.
Bayer, B., McBeain, K., Carlson, C. A., and Santoro, A. E.: Carbon content, carbon fixation yield and dissolved organic carbon release from diverse marine nitrifiers, Limnol. Oceanogr., 68, 84–96, https://doi.org/10.1002/lno.12252, 2023.
Bevington, P. R. and Robinson, D. K.: Data reduction and error analysis for the physical sciences, 3rd edn., McGraw-Hill, New York, NY, ISBN-13: 978-0-07-247227-1, 2003.
Billheimer, S., Talley, L. D., and Martz, T. R.: Oxygen Seasonality, Utilization Rate, and Impacts of Vertical Mixing in the Eighteen Degree Water Region of the Sargasso Sea as Observed by Profiling Biogeochemical Floats, Global Biogeochem. Cy., 35, e2020GB006824, https://doi.org/10.1029/2020GB006824, 2021.
Bittig, H. C., Steinhoff, T., Claustre, H., Fiedler, B., Williams, N. L., Sauzède, R., Körtzinger, A., and Gattuso, J. P.: An alternative to static climatologies: Robust estimation of open ocean CO2 variables and nutrient concentrations from T, S, and O2 data using Bayesian neural networks, Front. Mar. Sci., 5, 328, https://doi.org/10.3389/fmars.2018.00328, 2018.
Boyd, P. and Harrison, P. J.: Phytoplankton dynamics in the NE subarctic Pacific, Deep-Sea Res. Pt. II, 46, 2405–2432, https://doi.org/10.1016/S0967-0645(99)00069-7, 1999.
Boyd, P. W.: Toward quantifying the response of the oceans' biological pump to climate change, Front. Mar. Sci., 2, 146326, https://doi.org/10.3389/fmars.2015.00077, 2015.
Boyd, P. W., Sherry, N. D., Berges, J. A., Bishop, J. K. B., Calvert, S. E., Charette, M. A., Giovannoni, S. J., Goldblatt, R., Harrison, P. J., Moran, S. B., Roy, S., Soon, M., Strom, S., Thibault, D., Vergin, K. L., Whitney, F. A., and Wong, C. S.: Transformations of biogenic particulates from the pelagic to the deep ocean realm, Deep-Sea Res. Pt. II, 46, 2761–2792, https://doi.org/10.1016/S0967-0645(99)00083-1, 1999.
Boyd, P. W., Mcdonnell, A., Valdez, J., Lefevre, D., and Gall, M. P.: RESPIRE: An in situ particle interceptor to conduct particle remineralization and microbial dynamics studies in the oceans' Twilight Zone, Limnol. Oceanogr.-Meth., 13, 494–508, https://doi.org/10.1002/LOM3.10043, 2015.
Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A., and Weber, T.: Multi-faceted particle pumps drive carbon sequestration in the ocean, Nature, 568, 327–335, https://doi.org/10.1038/s41586-019-1098-2, 2019.
Boyd, P. W., Bach, L. T., Hurd, C. L., Paine, E., Raven, J. A., and Tamsitt, V.: Potential negative effects of ocean afforestation on offshore ecosystems, Nature Ecology & Evolution, 6, 675–683, https://doi.org/10.1038/s41559-022-01722-1, 2022.
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K., Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C., Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M., Yasuhara, M., and Zhang, J.: Declining oxygen in the global ocean and coastal waters, Science, 359, 6371, https://doi.org/10.1126/science.aam7240, 2018.
Bressac, M., Laurenceau-Cornec, E. C., Kennedy, F., Santoro, A. E., Paul, N. L., Briggs, N., Carvalho, F., and Boyd, P. W.: Decoding drivers of carbon flux attenuation in the oceanic biological pump, Nature, 633, 587–593, https://doi.org/10.1038/s41586-024-07850-x, 2024.
Briand, E., Pringault, O., Jacquet, S., and Torréton, J. P.: The use of oxygen microprobes to measure bacterial respiration for determining bacterioplankton growth efficiency, Limnol. Oceanogr.-Meth., 2, 406–416, https://doi.org/10.4319/LOM.2004.2.406, 2004.
Brzezinski, M. A., Varela, D. E., Jenkins, B. D., Buck, K. N., Kafrissen, S. M., and Jones, J. L.: The upper ocean silicon cycle of the subarctic Pacific during the EXPORTS field campaign, Elementa, 10, 00087, https://doi.org/10.1525/elementa.2021.00087, 2022.
Buesseler, K. O. and Boyd, P. W.: Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean, Limnol. Oceanogr., 54, 1210–1232, https://doi.org/10.4319/lo.2009.54.4.1210, 2009.
Buesseler, K. O., Bacon, M. P., Kirk Cochran, J., and Livingston, H. D.: Carbon and nitrogen export during the JGOFS North Atlantic Bloom experiment estimated from 234Th:238U disequilibria, Deep-Sea Res., 39, 1115–1137, https://doi.org/10.1016/0198-0149(92)90060-7, 1992.
Buesseler, K. O., Antia, A. N., Chen, M., Fowler, S. W., Gardner, W. D., Gustafsson, O., Harada, K., Michaels, A. F., Rutgers van der Loeff, M., Sarin, M., Steinberg, D. K., and Trull, T.: An assessment of the use of sediment traps for estimating upper ocean particle fluxes, J. Mar. Res., 65, 345–416, 2007.
Buesseler, K. O., Benitez-Nelson, C. R., Roca-Martí, M., Wyatt, A. M., Resplandy, L., Clevenger, S. J., Drysdale, J. A., Estapa, M. L., Pike, S., and Umhau, B. P.: High-resolution spatial and temporal measurements of particulate organic carbon flux using thorium-234 in the northeast Pacific Ocean during the EXport Processes in the Ocean from RemoTe Sensing field campaign, Elementa: Science of the Anthropocene, 8, 030, https://doi.org/10.1525/elementa.2020.030, 2020.
Burd, A. B., Hansell, D. A., Steinberg, D. K., Anderson, T. R., Arístegui, J., Baltar, F., Beaupré, S. R., Buesseler, K. O., DeHairs, F., Jackson, G. A., Kadko, D. C., Koppelmann, R., Lampitt, R. S., Nagata, T., Reinthaler, T., Robinson, C., Robison, B. H., Tamburini, C., and Tanaka, T.: Assessing the apparent imbalance between geochemical and biochemical indicators of meso- and bathypelagic biological activity: What the @$#! is wrong with present calculations of carbon budgets?, Deep-Sea Res. Pt. II, 57, 1557–1571, https://doi.org/10.1016/j.dsr2.2010.02.022, 2010.
Calbet, A., Landry, M. R., and Nunnery, S.: Bacteria-flagellate interactions in the microbial food web of the oligotrophic subtropical North Pacific, Aquat. Microb. Ecol., 23, 283–292, https://doi.org/10.3354/ame023283, 2001.
Ceballos-Romero, E., De Soto, F., Le Moigne, F. A. C., García-Tenorio, R., and Villa-Alfageme, M.: 234Th-Derived Particle Fluxes and Seasonal Variability: When Is the SS Assumption Reliable? Insights From a Novel Approach for Carbon Flux Simulation, Geophys. Res. Lett., 45, 13414–13426, https://doi.org/10.1029/2018GL079968, 2018.
Cheng, Y. H., Ho, C. R., Zheng, Q., and Kuo, N. J.: Statistical Characteristics of Mesoscale Eddies in the North Pacific Derived from Satellite Altimetry, Remote Sens.-Basel, 6, 5164–5183, https://doi.org/10.3390/RS6065164, 2014.
Collins, J. R., Edwards, B. R., Thamatrakoln, K., Ossolinski, J. E., Ditullio, G. R., Bidle, K. D., Doney, S. C., and Van Mooy, B. A. S.: The multiple fates of sinking particles in the North Atlantic Ocean, Global Biogeochem. Cy., 29, 1471–1494, https://doi.org/10.1002/2014GB005037, 2015.
Davison, P. C., Checkley, D. M., Koslow, J. A., and Barlow, J.: Carbon export mediated by mesopelagic fishes in the northeast Pacific Ocean, Prog. Oceanogr., 116, 14–30, https://doi.org/10.1016/j.pocean.2013.05.013, 2013.
Ducklow, H. W. and Hill, S. M.: The growth of heterotrophic bacteria in the surface waters of warm core rings, Limnol. Oceanogr., 30, 239–259, https://doi.org/10.4319/lo.1985.30.2.0239, 1985.
Ducklow, H. W., Carlson, C. A., and Marshall, K. C.: Advances in microbial ecology, Oceanic bacterial production, edited by: Marshall, K. C., Plenum Press, Vol. 12, New York, https://doi.org/10.1007/978-1-4684-7609-5_3, 1992.
Durkin, C. A., Buesseler, K. O., Cetinić, I., Estapa, M. L., Kelly, R. P., and Omand, M.: A Visual Tour of Carbon Export by Sinking Particles, Global Biogeochem. Cy., 35, e2021GB006985, https://doi.org/10.1029/2021GB006985, 2021.
Emerson, S., Quay, P. D., Stump, C., Wilbur, D., and Schudlich, R.: Chemical tracers of productivity and respiration in the subtropical Pacific Ocean, J. Geophys. Res.-Oceans, 100, 15873–15887, https://doi.org/10.1029/95JC01333, 1995.
Emerson, S., Yang, B., White, M., and Cronin, M.: Air-Sea Gas Transfer: Determining Bubble Fluxes With In Situ N2 Observations, J. Geophys. Res.-Oceans, 124, 2716–2727, https://doi.org/10.1029/2018JC014786, 2019.
Estapa, M., Buesseler, K., Durkin, C. A., Omand, M., Benitez-Nelson, C. R., Roca-Martí, M., Breves, E., Kelly, R. P., and Pike, S.: Biogenic sinking particle fluxes and sediment trap collection efficiency at Ocean Station Papa, Elementa: Science of the Anthropocene, 9, 00122, https://doi.org/10.1525/elementa.2020.00122, 2021.
Fassbender, A. J., Sabine, C. L., and Cronin, M. F.: Net community production and calcification from 7 years of NOAA Station Papa Mooring measurements, Global Biogeochem. Cy., 30, 250–267, https://doi.org/10.1002/2015GB005205, 2016.
Giering, S. L. C. and Evans, C.: Overestimation of prokaryotic production by leucine incorporation – and how to avoid it, Limnol. Oceanogr., 67, 726–738, https://doi.org/10.1002/LNO.12032, 2022.
Giering, S. L. C., Sanders, R., Lampitt, R. S., Anderson, T. R., Tamburini, C., Boutrif, M., Zubkov, M. V., Marsay, C. M., Henson, S. A., Saw, K., Cook, K., and Mayor, D. J.: Reconciliation of the carbon budget in the ocean's twilight zone, Nature, 507, 480–483, https://doi.org/10.1038/nature13123, 2014.
Graff, J. R., Nelson, N. B., Roca-Martí, M., Romanelli, E., Kramer, S. J., Erickson, Z., Cetinic, I., Buesseler, K. O., Passow, U., Zhang, X., Benitez-Nelson, C., Bisson, K., Close, H. G., Crockford, T., Fox, J., Halewood, S., Lam, P., Roesler, C., Sweet, J., VerWey, B., Xiong, Y., and Siegel, D. A.: Reconciliation of total particulate organic carbon and nitrogen measurements determined using contrasting methods in the North Pacific Ocean as part of the NASA EXPORTS field campaign, Elementa: Science of the Anthropocene, 11, 00112, https://doi.org/10.1525/elementa.2022.00112, 2023.
Harrison, P. J.: Station Papa time series: Insights into ecosystem dynamics, J. Oceanogr., 58, 259–264, https://doi.org/10.1023/A:1015857624562, 2002.
Haskell, W. Z., Fassbender, A. J., Long, J. S., and Plant, J. N.: Annual Net Community Production of Particulate and Dissolved Organic Carbon From a Decade of Biogeochemical Profiling Float Observations in the Northeast Pacific, Global Biogeochem. Cy., 34, e2020GB006599, https://doi.org/10.1029/2020GB006599, 2020.
Hays, G. C.: A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations, Hydrobiologia, 503, 163–170, https://doi.org/10.1023/B:HYDR.0000008476.23617.b0, 2003.
Hennon, T. D., Riser, S. C., and Mecking, S.: Profiling float-based observations of net respiration beneath the mixed layer, Global Biogeochem. Cy., 30, 920–932, https://doi.org/10.1002/2016GB005380, 2016.
Herndl, G. J., Bayer, B., Baltar, F., and Reinthaler, T.: Prokaryotic Life in the Deep Ocean's Water Column, Annu. Rev. Mar. Sci., 15, 461–483, https://doi.org/10.1146/annurev-marine-032122-115655, 2023.
Heywood, K. J.: Diel vertical migration of zooplankton in the Northeast Atlantic, J. Plankton Res., 18, 163–184, https://doi.org/10.1093/plankt/18.2.163, 1996.
Hristova, H. G., Ladd, C., and Stabeno, P. J.: Variability and Trends of the Alaska Gyre From Argo and Satellite Altimetry, J. Geophys. Res.-Oceans, 124, 5870–5887, https://doi.org/10.1029/2019JC015231, 2019.
Huang, Y., Fassbender, A. J., Long, J. S., Johannessen, S., and Bernardi Bif, M.: Partitioning the Export of Distinct Biogenic Carbon Pools in the Northeast Pacific Ocean Using a Biogeochemical Profiling Float, Global Biogeochem. Cy., 36, e2021GB007178, https://doi.org/10.1029/2021GB007178, 2022.
Huang, Y., Fassbender, A. J., and Bushinsky, S. M.: Biogenic carbon pool production maintains the Southern Ocean carbon sink, P. Natl. Acad. Sci. USA, 120, e2217909120, https://doi.org/10.1073/pnas.2217909120, 2023.
Ikeda, T.: Metabolism in mesopelagic and bathypelagic copepods: Reply to Childress et al. (2008), Mar. Ecol. Prog. Ser., 373, 193–198, 2008.
Ikeda, T.: Respiration and ammonia excretion by marine metazooplankton taxa: synthesis toward a global-bathymetric model, Mar. Biol., 161, 2753–2766, https://doi.org/10.1007/s00227-014-2540-5, 2014.
Iversen, M. H.: Carbon export in the ocean: A biologist's perspective, Annu. Rev. Mar. Sci., 15, 357–381, https://doi.org/10.1146/annurev-marine-032122-035153, 2023.
Kiko, R., Brandt, P., Christiansen, S., Faustmann, J., Kriest, I., Rodrigues, E., Schütte, F., and Hauss, H.: Zooplankton-Mediated Fluxes in the Eastern Tropical North Atlantic, Front. Mar. Sci., 7, 481716, https://doi.org/10.3389/fmars.2020.00358, 2020.
Kirchman, D. L.: Incorporation of thymidine and leucine in the subarctic Pacific: Application to estimating bacterial production, Mar. Ecol. Prog. Ser., 82, 301–309, https://doi.org/10.3354/meps082301, 1992.
Kirchman, D. L., Keil, R. G., Simon, M., and Welschmeyer, N. A.: Biomass and production of heterotrophic bacterioplankton in the oceanic subarctic Pacific, Deep-Sea Res. Pt. I, 40, 967–988, 1993.
Kwong, L. E. and Pakhomov, E. A.: Assessment of active vertical carbon transport: New methodology, Proceedings of Kazan University, Natural Sciences/Uchenye Zapiski Kazanskogo Universiteta, Seriya Estestvennye Nauki, 159, ISSN 2542-064X, 2017.
Landry, M. R. and Calbet, A.: Microzooplankton production in the oceans, ICES J. Mar. Sci., 61, 501–507, https://doi.org/10.1016/j.icesjms.2004.03.011, 2004.
Landry, M. R. and Hassett, R. P.: Estimating the grazing impact of marine micro-zooplankton, Mar. Biol., 67, 283–288, https://doi.org/10.1007/bf00397668, 1982.
Laws, E. A.: Photosynthetic quotients, new production and net community production in the open ocean, Deep-Sea Res., 38, 143–167, https://doi.org/10.1016/0198-0149(91)90059-O, 1991.
Liang, J. H., Deutsch, C., McWilliams, J. C., Baschek, B., Sullivan, P. P., and Chiba, D.: Parameterizing bubble-mediated air-sea gas exchange and its effect on ocean ventilation, Global Biogeochem. Cy., 27, 894–905, https://doi.org/10.1002/GBC.20080, 2013.
Lopez, C. N., Robert, M., Galbraith, M., Bercovici, S. K., Orellana, M. V., and Hansell, D. A.: High temporal variability of total organic carbon in the deep northeastern pacific, Front. Earth Sci., 8, 80, https://doi.org/10.3389/feart.2020.00080, 2020.
Maas, A. E., Gossner, H., Smith, M. J., and Blanco-Bercial, L.: Use of optical imaging datasets to assess biogeochemical contributions of the mesozooplankton, J. Plankton Res., 43, 475–491, https://doi.org/10.1093/plankt/fbab037, 2021a.
Maas, A. E., Miccoli, A., Stamieszkin, K., Carlson, C. A., and Steinberg, D. K.: Allometry and the calculation of zooplankton metabolism in the subarctic Northeast Pacific Ocean, J. Plankton Res., 43, 413–427, https://doi.org/10.1093/plankt/fbab026, 2021b.
Martínez-García, S., Fernández, E., Aranguren-Gassis, M., and Teira, E.: In vivo electron transport system activity: a method to estimate respiration in natural marine microbial planktonic communities, Limnol. Oceanogr.-Meth., 7, 459–469, https://doi.org/10.4319/lom.2009.7.459, 2009.
Martz, T. R., Johnson, K. S., and Riser, S. C.: Ocean metabolism observed with oxygen sensors on profiling floats in the South Pacific, Limnol. Oceanogr., 53, 2094–2111, https://doi.org/10.4319/lo.2008.53.5_part_2.2094, 2008.
McNair, H. M., Morison, F., Graff, J. R., Rynearson, T. A., and Menden-Deuer, S.: Microzooplankton grazing constrains pathways of carbon export in the subarctic North Pacific, Limnol. Oceanogr., 66, 2697–2711, https://doi.org/10.1002/lno.11783, 2021.
McNair, H. M., Meyer, M. G., Lerch, S. J., Maas, A. E., Stephens, B. M., Fox, J., Buck, K. N., Burns, S. M., Cetinić, I., Cohn, M., Durkin, C., Gifford, S., Gong, W., Graff, J. R., Jenkins, B., Jones, E. L., Santoro, A. E., Shea, C. H., Stamieszkin, K., Steinberg, D. K., Marchetti, A., Carlson, C. A., Menden-Deuer, S., Brzezinski, M. A., Siegel, D. A., and Rynearson, T. A.: Quantitative analysis of food web dynamics in a low export ecosystem, bioRxiv [preprint], https://doi.org/10.1101/2023.03.17.532807, 2023.
Meyer, M. G., Gong, W., Kafrissen, S. M., Torano, O., Varela, D. E., Santoro, A. E., Cassar, N., Gifford, S., Niebergall, A. K., Sharpe, G., and Marchetti, A.: Phytoplankton size-class contributions to new and regenerated production during the EXPORTS Northeast Pacific Ocean field deployment, Elementa: Science of the Anthropocene, 10, 00068, https://doi.org/10.1525/elementa.2021.00068, 2022.
Nicholson, D. P., Khatiwala, S., and Heimbach, P.: Noble gas tracers of ventilation during deep-water formation in the Weddell Sea, IOP C. Ser. Earth Env., 35, 012019, https://doi.org/10.1088/1755-1315/35/1/012019, 2016.
Niebergall, A. K., Traylor, S., Huang, Y., Feen, M., Meyer, M. G., McNair, H. M., Nicholson, D., Fassbender, A. J., Omand, M. M., Marchetti, A., Menden-Deuer, S., Tang, W., Gong, W., Tortell, P., Hamme, R., and Cassar, N.: Evaluation of new and net community production estimates by multiple ship-based and autonomous observations in the Northeast Pacific Ocean, Elementa: Science of the Anthropocene, 11, 00107, https://doi.org/10.1525/elementa.2021.00107, 2023.
Omand, M. M., D'Asaro, E. A., Lee, C. M., Perry, M. J., Briggs, N., Cetinić, I., and Mahadevan, A.: Eddy-driven subduction exports particulate organic carbon from the spring bloom, Science, 348, 222–225, 2015.
Omand, M. M., Steinberg, D. K., and Stamieszkin, K.: Cloud shadows drive vertical migrations of deep-dwelling marine life, P. Natl. Acad. Sci. USA, 118, e2022977118, https://doi.org/10.1073/pnas.2022977118, 2021.
Palevsky, H. I. and Nicholson, D. P.: Insights from the Ocean Observatories Initiative Irminger Sea Array, Oceanography, 31, 42–49, 2018.
Reinthaler, T., van Aken, H. M., and Herndl, G. J.: Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantic's interior, Deep-Sea Res. Pt. II, 57, 1572–1580, https://doi.org/10.1016/J.DSR2.2010.02.023, 2010.
Rigaud, S., Puigcorbé, V., Cámara-Mor, P., Casacuberta, N., Roca-Martí, M., Garcia-Orellana, J., Benitez-Nelson, C. R., Masqué, P., and Church, T.: A methods assessment and recommendations for improving calculations and reducing uncertainties in the determination of 210Po and 210Pb activities in seawater, Limnol. Oceanogr.-Meth., 11, 561–571, https://doi.org/10.4319/LOM.2013.11.561, 2013.
Roca-Martí, M. and Puigcorbé, V.: Combined Use of Short-Lived Radionuclides (234Th and 210Po) as Tracers of Sinking Particles in the Ocean, Annu. Rev. Mar. Sci., 16, 551–575, https://doi.org/10.1146/annurev-marine-041923-013807, 2024.
Roca-Martí, M., Estapa, M., Masqué, P., Benitez-Nelson, C. R., and Buesseler, K.: Polonium-210 and Lead-210 as tracers of particle export and attenuation on the first EXPORTS cruise at Station Papa, 16–21 February 2020, San Diego, CA, USA, OB11B-02, Ocean Sciences Meeting 2020, 2020.
Roca-Martí, M., Benitez-Nelson, C. R., Umhau, B. P., Wyatt, A. M., Clevenger, S. J., Pike, S., Horner, T. J., Estapa, M. L., Resplandy, L., and Buesseler, K. O.: Concentrations, ratios, and sinking fluxes of major bioelements at Ocean Station Papa, Elementa: Science of the Anthropocene, 9, 00166, https://doi.org/10.1525/elementa.2020.00166, 2021.
Romanelli, E., Sweet, J., Giering, S. L. C., Siegel, D. A., and Passow U.: The importance of transparent exopolymer particles over ballast in determining both sinking and suspension of small particles during late summer in the Northeast Pacific Ocean, Elementa: Science of the Anthropocene, 11, 00122, https://doi.org/10.1525/elementa.2022.00122, 2023.
Saba, G. K., Burd, A. B., Dunne, J. P., Hernández-León, S., Martin, A. H., Rose, K. A., Salisbury, J., Steinberg, D. K., Trueman, C. N., Wilson, R. W., and Wilson, S. E.: Toward a better understanding of fish-based contribution to ocean carbon flux, Limnol. Oceanogr., 66, 1639–1664, https://doi.org/10.1002/lno.11709, 2021.
Santoro, A. E., Casciotti, K. L., and Francis, C. A.: Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current, Environ. Microbiol., 12, 1989–2006, https://doi.org/10.1111/j.1462-2920.2010.02205.x, 2010.
Seibel, B. A. and Drazen, J. C.: The rate of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities, Philos. T. Roy. Soc. B, 362, 2061–2078, https://doi.org/10.1098/rstb.2007.2101, 2007.
Shea, C. H., Wojtal, P. K., Close, H. G., Maas, A. E., Stamieszkin, K., Cope, J. S., Steinberg, D. K., Wallsgrove, N., and Popp, B. N.: Small particles and heterotrophic protists support the mesopelagic zooplankton food web in the subarctic northeast Pacific Ocean, Limnol. Oceanogr., 68, 1949–1963, https://doi.org/10.1002/LNO.12397, 2023.
Sherry, N. D., Boyd, P. W., Sugimoto, K., and Harrison, P. J.: Seasonal and spatial patterns of heterotrophic bacterial production, respiration, and biomass in the subarctic NE Pacific, Deep-Sea Res. Pt. II, 46, 2557–2578, https://doi.org/10.1016/S0967-0645(99)00076-4, 1999.
Siegel, D. A., Buesseler, K. O., Behrenfeld, M. J., Benitez-Nelson, C. R., Boss, E., Brzezinski, M. A., Burd, A., Carlson, C. A., D'Asaro, E. A., Doney, S. C., Perry, M. J., Stanley, R. H. R., and Steinberg, D. K.: Prediction of the Export and Fate of Global Ocean Net Primary Production: The EXPORTS Science Plan, Front. Mar. Sci., 3, 1–10, https://doi.org/10.3389/fmars.2016.00022, 2016.
Siegel, D. A., Cetinić, I., Graff, J. R., Lee, C. M., Nelson, N., Perry, M. J., Ramos, I. S., Steinberg, D. K., Buesseler, K., Hamme, R., Fassbender, A. J., Nicholson, D., Omand, M. M., Robert, M., Thompson, A., Amaral, V., Behrenfeld, M., Benitez-Nelson, C., Bisson, K., Boss, E., Boyd, P. W., Brzezinski, M., Buck, K., Burd, A., Burns, S., Caprara, S., Carlson, C., Cassar, N., Close, H., D'Asaro, E., Durkin, C., Erickson, Z., Estapa, M. L., Fields, E., Fox, J., Freeman, S., Gifford, S., Gong, W., Gray, D., Guidi, L., Haëntjens, N., Halsey, K., Huot, Y., Hansell, D., Jenkins, B., Karp-Boss, L., Kramer, S., Lam, P., Lee, J.-M., Maas, A., Marchal, O., Marchetti, A., McDonnell, A., McNair, H., Menden-Deuer, S., Morison, F., Niebergall, A. K., Passow, U., Popp, B., Potvin, G., Resplandy, L., Roca-Martí, M., Roesler, C., Rynearson, T., Traylor, S., Santoro, A., Seraphin, K. D., Sosik, H. M., Stamieszkin, K., Stephens, B., Tang, W., Van Mooy, B., Xiong, Y., and Zhang, X.: An operational overview of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) Northeast Pacific field deployment, Elementa: Science of the Anthropocene, 9, 00107, https://doi.org/10.1525/elementa.2020.00107, 2021.
Siegel, D. A., DeVries, T., Cetinić, I., and Bisson, K. M.: Quantifying the Ocean's Biological Pump and Its Carbon Cycle Impacts on Global Scales, Annu. Rev. Mar. Sci., 15, 329–356, https://doi.org/10.1146/annurev-marine-040722-115226, 2023.
Simon, M. and Azam, F.: Protein content and protein synthesis rates of planktonic marine bacteria, Mar. Ecol. Prog. Ser., 51, 201–213, https://doi.org/10.3354/meps051201, 1989.
Simon, M., Welschmeyer, N. A., and Kirchman, D. L.: Bacterial production and the sinking flux of particulate organic matter in the subarctic Pacific, Deep-Sea Res., 39, 1997–2008, https://doi.org/10.1016/0198-0149(92)90010-Q, 1992.
Stamieszkin, K., Steinberg, D. K., and Maas, A. E.: Fecal pellet production by mesozooplankton in the subarctic Northeast Pacific Ocean, Limnol. Oceanogr., 66, 2585–2597, https://doi.org/10.1002/lno.11774, 2021.
Steinberg, D. K. and Landry, M. R.: Zooplankton and the Ocean Carbon Cycle, Annu. Rev. Mar. Sci., 9, 413–444, https://doi.org/10.1146/annurev-marine-010814-015924, 2017.
Steinberg, D. K., Carlson, C. A., Bates, N. R., Goldthwait, S. A., Madin, L. P., and Michaels, A. F.: Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea, Deep-Sea Res. Pt. I, 47, 137–158, https://doi.org/10.1016/S0967-0637(99)00052-7, 2000.
Steinberg, D. K., Van Mooy, B. A. S., Buesseler, K. O., Boyd, P. W., Kobari, T., and Karl, D. M.: Bacterial vs. zooplankton control of sinking particle flux in the ocean's twilight zone, Limnol. Oceanogr., 53, 1327–1338, https://doi.org/10.4319/lo.2008.53.4.1327, 2008.
Steinberg, D. K., Stamieszkin, K., Maas, A. E., Durkin, C. A., Passow, U., Estapa, M. L., Omand, M. M., McDonnell, A. M. P., Karp-Boss, L., Galbraith, M., and Siegel, D. A.: The outsized role of salps in carbon export in the subarctic Northeast Pacific Ocean, Global Biogeochem. Cy., 37, e2022GB007523, https://doi.org/10.1029/2022GB007523, 2023.
Stephens, B. M., Opalk, K., Petras, D., Liu, S., Comstock, J., Aluwihare, L. I., Hansell, D. A., and Carlson, C. A.: Organic Matter Composition at Ocean Station Papa Affects Its Bioavailability, Bacterioplankton Growth Efficiency and the Responding Taxa, Front. Mar. Sci., 7, 1077, https://doi.org/10.3389/fmars.2020.590273, 2020.
Stephens, B. M., Fox, J., Liu, S., Halsey, K. H., Nicholson, D. P., Traylor, S., and Carlson, C. A.: Influence of amino acids on bacterioplankton production, biomass and community composition at Ocean Station Papa in the subarctic Pacific, Elementa, 11, 00095, https://doi.org/10.1525/elementa.2022.00095, 2023.
Stephens, B. M., Durkin, C. A., Sharpe, G., Nguyen, T. T. H., Albers, J., Estapa, M. L., Steinberg, D. K., Levine, N. M., Gifford, S. M., Carlson, C. A., Boyd, P. W., and Santoro, A. E.: Direct observations of microbial community succession on sinking marine particles, ISME J., 18, 1–13, https://doi.org/10.1093/ismejo/wrad010, 2024.
Straile, D.: Gross growth efficiencies of protozoan and metazoan zooplankton and their dependence on food concentration, predator-prey weight ratio, and taxonomic group, Limnol. Oceanogr., 42, 1375–1385, https://doi.org/10.4319/lo.1997.42.6.1375, 1997.
Suess, E.: Particulate organic carbon flux in the oceans – surface productivity and oxygen utilization, Nature, 288, 260–263, https://doi.org/10.1038/288260a0, 1980.
Tamburini, C., Garcin, J., and Bianchi, A.: Role of deep-sea bacteria in organic matter mineralization and adaptation to hydrostatic pressure conditions in the NW Mediterranean Sea, Aquat. Microb. Ecol., 32, 209–218, https://doi.org/10.3354/ame032209, 2003.
Traylor, S., Nicholson, D. P., Clevenger, S. J., Buesseler, K. O., D’Asaro, E., and Lee, C. M.: Autonomous observations enhance our ability to observe the biological carbon pump across diverse carbon export regimes, Limnol. Oceanogr., 9999, 1–14, https://doi.org/10.1002/LNO.70002, 2025.
Turnewitsch, R., Reyss, J.-L., Nycander, J., Waniek, J. J., and Lampitt, R. S.: Internal tides and sediment dynamics in the deep sea – Evidence from radioactive disequilibria, Deep-Sea Res. Pt. I, 55, 1727–1747, https://doi.org/10.1016/j.dsr.2008.07.008, 2008.
Werdell, P. J., Bailey, S., Fargion, G., Pietras, C., Knobelspiesse, K., Feidman, G., and Mcclain, C.: Unique data repository facilitates ocean color satellite validation, Eos (Washington DC) [data set], 84, 377, https://doi.org/10.1029/2003EO380001, 2003.
Whitney, F. A. and Freeland, H. J.: Variability in upper-ocean water properties in the NE Pacific Ocean, Deep-Sea Res. Pt. II, 46, 2351–2370, https://doi.org/10.1016/S0967-0645(99)00067-3, 1999.
Wojtal, P. K., Doherty, S. C., Shea, C. H., Popp, B. N., Benitez-Nelson, C. R., Buesseler, K. O., Estapa, M. L., Roca-Martí, M., and Close, H. G.: Deconvolving mechanisms of particle flux attenuation using nitrogen isotope analyses of amino acids, Limnol. Oceanogr., 68, 1965–1981, https://doi.org/10.1002/lno.12398, 2023.
Xiang, Y., Quay, P. D., Sonnerup, R. E., and Fassbender, A. J.: Subtropical Gyre Nutrient Cycling in the Upper Ocean: Insights From a Nutrient-Ratio Budget Method, Geophys. Res. Lett., 50, e2023GL103213, https://doi.org/10.1029/2023GL103213, 2023.
Yang, B., Emerson, S. R., and Angelica Penã, M.: The effect of the 2013–2016 high temperature anomaly in the subarctic Northeast Pacific (the “blob”) on net community production, Biogeosciences, 15, 6747–6759, https://doi.org/10.5194/bg-15-6747-2018, 2018.
Short summary
The ocean’s mesopelagic zone (MZ) plays a crucial role in the global carbon cycle. This study combines new and previously published measurements of organic carbon supply and demand collected in August 2018 in the MZ of the subarctic North Pacific Ocean. Supply was insufficient to meet demand in August, but supply entering into the MZ in the spring of 2018 could have met the August demand. Results suggest observations over seasonal timescales may help to close MZ carbon budgets.
The ocean’s mesopelagic zone (MZ) plays a crucial role in the global carbon cycle. This study...
Altmetrics
Final-revised paper
Preprint