Articles | Volume 22, issue 18
https://doi.org/10.5194/bg-22-5081-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-5081-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effect of preceding integrated and organic farming on 15N recovery and the N balance, including emissions of NH3, N2O, and N2 and leaching of NO3−
Fawad Khan
Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMKIFU), Karlsruhe Institute of Technology (KIT), 82467 Garmisch-Partenkirchen, Germany
Samuel Franco Luesma
Department for Environment, Agricultural and Forest Systems, Agri-Food Research and Technology Centre of Aragon (CITA), 50059 Zaragoza, Spain
Frederik Hartmann
Chair of Organic Farming with focus on Sustainable Soil Use, Justus Liebig University, Karl-Glöckner Str. 21C, 35392 Giessen, Germany
Michael Dannenmann
Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMKIFU), Karlsruhe Institute of Technology (KIT), 82467 Garmisch-Partenkirchen, Germany
Rainer Gasche
Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMKIFU), Karlsruhe Institute of Technology (KIT), 82467 Garmisch-Partenkirchen, Germany
Clemens Scheer
Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMKIFU), Karlsruhe Institute of Technology (KIT), 82467 Garmisch-Partenkirchen, Germany
Andreas Gattinger
Chair of Organic Farming with focus on Sustainable Soil Use, Justus Liebig University, Karl-Glöckner Str. 21C, 35392 Giessen, Germany
Wiebke Niether
Chair of Organic Farming with focus on Sustainable Soil Use, Justus Liebig University, Karl-Glöckner Str. 21C, 35392 Giessen, Germany
Elizabeth Gachibu Wangari
Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMKIFU), Karlsruhe Institute of Technology (KIT), 82467 Garmisch-Partenkirchen, Germany
Ricky Mwangada Mwanake
Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMKIFU), Karlsruhe Institute of Technology (KIT), 82467 Garmisch-Partenkirchen, Germany
Ralf Kiese
Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMKIFU), Karlsruhe Institute of Technology (KIT), 82467 Garmisch-Partenkirchen, Germany
Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMKIFU), Karlsruhe Institute of Technology (KIT), 82467 Garmisch-Partenkirchen, Germany
Related authors
No articles found.
Sophie Reinermann, Carolin Boos, Andrea Kaim, Anne Schucknecht, Sarah Asam, Ursula Gessner, Sylvia H. Annuth, Thomas M. Schmitt, Thomas Koellner, and Ralf Kiese
Biogeosciences, 22, 4969–4992, https://doi.org/10.5194/bg-22-4969-2025, https://doi.org/10.5194/bg-22-4969-2025, 2025
Short summary
Short summary
Grasslands shape the landscape in many parts of the world and serve as the main source of fodder for livestock. There is a lack of comprehensive data on grassland yield, although these data are highly valuable for authorities and research. By applying three approaches to estimate grassland yields, namely, a satellite data model, a biogeochemical model and a field measurements approach, we provide annual grassland yield maps for the Ammer region in 2019 and highlight the potentials and limitations of the approaches.
Wolfgang Aumer, Morten Möller, Carolyn-Monika Görres, Christian Eckhardt, Tobias Karl David Weber, Carolina Bilibio, Christian Bruns, Andreas Gattinger, Maria Renate Finckh, and Claudia Kammann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2862, https://doi.org/10.5194/egusphere-2025-2862, 2025
Short summary
Short summary
Arable soils emit or absorb greenhouse gases such as carbon dioxide, nitrous oxide and methane. This study compared two gas analysis techniques for determining greenhouse gas fluxes under field conditions using the closed chamber method. Fluxes were measured simultaneously using the widely applied gas chromatography (GC) and the emerging mid-infrared laser absorption spectroscopy (LAS) technique. Our results showed that LAS is a reliable alternative to GC, particularly for low flux rates.
Samuel Franco-Luesma, María Alonso-Ayuso, Benjamin Wolf, Borja Latorre, and Jorge Álvaro-Fuentes
SOIL, 11, 523–533, https://doi.org/10.5194/soil-11-523-2025, https://doi.org/10.5194/soil-11-523-2025, 2025
Short summary
Short summary
Agriculture may play a significant role in climate change mitigation. For this reason, it is necessary to have good estimations of the greenhouse gas (GHG) emissions from agricultural activities. In this work, two different chamber systems to determine GHGs were compared. Our results highlighted that automated chamber systems, compared to manual chamber systems, are a powerful tool for quantifying GHG fluxes, allowing us to capture the large temporal variability that characterizes them.
Roxanne Daelman, Marijn Bauters, Matti Barthel, Emmanuel Bulonza, Lodewijk Lefevre, José Mbifo, Johan Six, Klaus Butterbach-Bahl, Benjamin Wolf, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 22, 1529–1542, https://doi.org/10.5194/bg-22-1529-2025, https://doi.org/10.5194/bg-22-1529-2025, 2025
Short summary
Short summary
The increase in atmospheric concentrations of several greenhouse gases (GHGs) since 1750 is attributed to human activity. However, natural ecosystems, such as tropical forests, also contribute to GHG budgets. The Congo Basin hosts the second largest tropical forest and is understudied. In this study, measurements of soil GHG exchange were carried out during 16 months in a tropical forest in the Congo Basin. Overall, the soil acted as a major source of CO2 and N2O and a minor sink of CH4.
Carolin Boos, Sophie Reinermann, Raul Wood, Ralf Ludwig, Anne Schucknecht, David Kraus, and Ralf Kiese
EGUsphere, https://doi.org/10.5194/egusphere-2024-2864, https://doi.org/10.5194/egusphere-2024-2864, 2024
Preprint archived
Short summary
Short summary
We applied a biogeochemical model on grasslands in the pre-Alpine Ammer region in Germany and analyzed the influence of soil and climate on annual yields. In drought affected years, total yields were decreased by 4 %. Overall, yields decrease with rising elevation, but less so in drier and hotter years, whereas soil organic carbon has a positive impact on yields, especially in drier years. Our findings imply, that adapted management in the region allows to mitigate yield losses from drought.
Elizabeth Gachibu Wangari, Ricky Mwangada Mwanake, Tobias Houska, David Kraus, Gretchen Maria Gettel, Ralf Kiese, Lutz Breuer, and Klaus Butterbach-Bahl
Biogeosciences, 20, 5029–5067, https://doi.org/10.5194/bg-20-5029-2023, https://doi.org/10.5194/bg-20-5029-2023, 2023
Short summary
Short summary
Agricultural landscapes act as sinks or sources of the greenhouse gases (GHGs) CO2, CH4, or N2O. Various physicochemical and biological processes control the fluxes of these GHGs between ecosystems and the atmosphere. Therefore, fluxes depend on environmental conditions such as soil moisture, soil temperature, or soil parameters, which result in large spatial and temporal variations of GHG fluxes. Here, we describe an example of how this variation may be studied and analyzed.
Ricky Mwangada Mwanake, Gretchen Maria Gettel, Elizabeth Gachibu Wangari, Clarissa Glaser, Tobias Houska, Lutz Breuer, Klaus Butterbach-Bahl, and Ralf Kiese
Biogeosciences, 20, 3395–3422, https://doi.org/10.5194/bg-20-3395-2023, https://doi.org/10.5194/bg-20-3395-2023, 2023
Short summary
Short summary
Despite occupying <1 %; of the globe, streams are significant sources of greenhouse gas (GHG) emissions. In this study, we determined anthropogenic effects on GHG emissions from streams. We found that anthropogenic-influenced streams had up to 20 times more annual GHG emissions than natural ones and were also responsible for seasonal peaks. Anthropogenic influences also altered declining GHG flux trends with stream size, with potential impacts on stream-size-based spatial upscaling techniques.
Joseph Okello, Marijn Bauters, Hans Verbeeck, Samuel Bodé, John Kasenene, Astrid Françoys, Till Engelhardt, Klaus Butterbach-Bahl, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 20, 719–735, https://doi.org/10.5194/bg-20-719-2023, https://doi.org/10.5194/bg-20-719-2023, 2023
Short summary
Short summary
The increase in global and regional temperatures has the potential to drive accelerated soil organic carbon losses in tropical forests. We simulated climate warming by translocating intact soil cores from higher to lower elevations. The results revealed increasing temperature sensitivity and decreasing losses of soil organic carbon with increasing elevation. Our results suggest that climate warming may trigger enhanced losses of soil organic carbon from tropical montane forests.
Friedrich Boeing, Oldrich Rakovec, Rohini Kumar, Luis Samaniego, Martin Schrön, Anke Hildebrandt, Corinna Rebmann, Stephan Thober, Sebastian Müller, Steffen Zacharias, Heye Bogena, Katrin Schneider, Ralf Kiese, Sabine Attinger, and Andreas Marx
Hydrol. Earth Syst. Sci., 26, 5137–5161, https://doi.org/10.5194/hess-26-5137-2022, https://doi.org/10.5194/hess-26-5137-2022, 2022
Short summary
Short summary
In this paper, we deliver an evaluation of the second generation operational German drought monitor (https://www.ufz.de/duerremonitor) with a state-of-the-art compilation of observed soil moisture data from 40 locations and four different measurement methods in Germany. We show that the expressed stakeholder needs for higher resolution drought information at the one-kilometer scale can be met and that the agreement of simulated and observed soil moisture dynamics can be moderately improved.
Anne Schucknecht, Bumsuk Seo, Alexander Krämer, Sarah Asam, Clement Atzberger, and Ralf Kiese
Biogeosciences, 19, 2699–2727, https://doi.org/10.5194/bg-19-2699-2022, https://doi.org/10.5194/bg-19-2699-2022, 2022
Short summary
Short summary
Actual maps of grassland traits could improve local farm management and support environmental assessments. We developed, assessed, and applied models to estimate dry biomass and plant nitrogen (N) concentration in pre-Alpine grasslands with drone-based multispectral data and canopy height information. Our results indicate that machine learning algorithms are able to estimate both parameters but reach a better level of performance for biomass.
Matthias Mauder, Andreas Ibrom, Luise Wanner, Frederik De Roo, Peter Brugger, Ralf Kiese, and Kim Pilegaard
Atmos. Meas. Tech., 14, 7835–7850, https://doi.org/10.5194/amt-14-7835-2021, https://doi.org/10.5194/amt-14-7835-2021, 2021
Short summary
Short summary
Turbulent flux measurements suffer from a general systematic underestimation. One reason for this bias is non-local transport by large-scale circulations. A recently developed model for this additional transport of sensible and latent energy is evaluated for three different test sites. Different options on how to apply this correction are presented, and the results are evaluated against independent measurements.
Jaber Rahimi, Expedit Evariste Ago, Augustine Ayantunde, Sina Berger, Jan Bogaert, Klaus Butterbach-Bahl, Bernard Cappelaere, Jean-Martial Cohard, Jérôme Demarty, Abdoul Aziz Diouf, Ulrike Falk, Edwin Haas, Pierre Hiernaux, David Kraus, Olivier Roupsard, Clemens Scheer, Amit Kumar Srivastava, Torbern Tagesson, and Rüdiger Grote
Geosci. Model Dev., 14, 3789–3812, https://doi.org/10.5194/gmd-14-3789-2021, https://doi.org/10.5194/gmd-14-3789-2021, 2021
Short summary
Short summary
West African Sahelian and Sudanian ecosystems are important regions for global carbon exchange, and they provide valuable food and fodder resources. Therefore, we simulated net ecosystem exchange and aboveground biomass of typical ecosystems in this region with an improved process-based biogeochemical model, LandscapeDNDC. Carbon stocks and exchange rates were particularly correlated with the abundance of trees. Grass and crop yields increased under humid climatic conditions.
Lutz Merbold, Charlotte Decock, Werner Eugster, Kathrin Fuchs, Benjamin Wolf, Nina Buchmann, and Lukas Hörtnagl
Biogeosciences, 18, 1481–1498, https://doi.org/10.5194/bg-18-1481-2021, https://doi.org/10.5194/bg-18-1481-2021, 2021
Short summary
Short summary
Our study investigated the exchange of the three major greenhouse gases (GHGs) over a temperate grassland prior to and after restoration through tillage in central Switzerland. Our results show that irregular management events, such as tillage, have considerable effects on GHG emissions in the year of tillage while leading to enhanced carbon uptake and similar nitrogen losses via nitrous oxide in the years following tillage to those observed prior to tillage.
Cited articles
Abdo, A. I., Sun, D., Li, Y., Yang, J., Metwally, M. S., Abdel-Hamed, E. M. W., Wei, H., and Zhang, J.: Coupling the environmental impacts of reactive nitrogen losses and yield responses of staple crops in China, Front. Plant Sci., 13, 927935, https://doi.org/10.3389/fpls.2022.927935, 2022.
Almaraz, M., Wong, M. Y., Zhang, Y., and Silver, W. L.: Biotic regulation of nitrogen gas emissions in temperate agriculture, Biogeochemistry, 167, 1079–1087, https://doi.org/10.1007/s10533-024-01157-9, 2024.
Arah, J. R. M.: Apportioning nitrous oxide fluxes between nitrification and denitrification using gas-phase mass spectrometry, Soil Biol. Biochem., 29, 1295–1299, https://doi.org/10.1016/S0038-0717(97)00009-6, 1997.
Bizimana, F., Luo, J., Timilsina, A., Dong, W., Gaudel, G., Ding, K., Qin, S., and Hu, C.: Estimating field N2 emissions based on laboratory-quantified ratios and field-quantified N2O emissions, J. Soils Sediments, 22, 2196–2208, https://doi.org/10.1007/s11368-022-03212-0, 2022.
Bleizgys, R. and Naujokienė, V.: Ammonia emissions from cattle manure under variable moisture exchange between the manure and the environment, Agronomy, 13, 1555, https://doi.org/10.3390/agronomy13061555, 2023.
Böhm, H., Dauber, J., Dehler, M., Gallardo, D. A. A., de Witte, T., Fuß, R., Höppner, F., Langhof, M., Rinke, N., and Rodemann, B.: Fruchtfolgen mit und ohne Leguminosen: ein Review, J. Kulturpflanzen, 72, 489–509, https://doi.org/10.5073/JfK.2020.10-11.01, 2020.
Bryla, D. R.: Application of the “4R” nutrient stewardship concept to horticultural crops: Getting nutrients in the “right” place, HortTechnology, 21, 674–682, https://doi.org/10.21273/HORTTECH.21.6.674, 2011.
Buchen-Tschiskale, C., Well, R., and Flessa, H.: Tracing nitrogen transformations during spring development of winter wheat induced by 15N-labeled cattle slurry applied with different techniques, Sci. Total Environ., 871, 162061, https://doi.org/10.1016/j.scitotenv.2023.162061, 2023.
Butterbach-Bahl, K. and Dannenmann, M.: Denitrification and associated soil N2O emissions due to agricultural activities in a changing climate, Curr. Opin. Env. Sust., 3, 389–395, https://doi.org/10.1016/j.cosust.2011.08.004, 2011.
Butterbach-Bahl, K., Willibald, G., and Papen, H.: Soil core method for direct simultaneous determination of N2 and N2O emissions from forest soils, Plant Soil, 240, 105–116, https://doi.org/10.1023/A:1015870518723, 2002.
Cárceles Rodríguez, B., Durán-Zuazo, V. H., Soriano Rodríguez, M., García-Tejero, I. F., Gálvez Ruiz, B., and Cuadros Tavira, S.: Conservation agriculture as a sustainable system for soil health: A review, Soil Syst., 6, 87, https://doi.org/10.3390/soilsystems6040087, 2022.
Chalk, P. M., Craswell, E. T., Polidoro, J. C., and Chen, D.: Fate and efficiency of 15N-labelled slow- and controlled-release fertilizers, Nutr. Cycl. Agroecosys., 102, 167–178, https://doi.org/10.1007/s10705-015-9697-2, 2015.
Chaoui, R., Boudsocq, S., Taschen, E., Sentenac, H., Farissi, M., and Lazali, M.: Intercropping durum wheat and chickpea increases nutrient availability and use efficiency under low phosphorus soils, J. Plant Nutr., 46, 4125–4139, https://doi.org/10.1080/01904167.2023.2221677, 2023.
Chen, T., Oenema, O., Li, J., Misselbrook, T., Dong, W., Qin, S., Yuan, H., Li, X., and Hu, C.: Seasonal variations in N2 and N2O emissions from a wheat–maize cropping system, Biol. Fert. Soils, 55, 539–551, https://doi.org/10.1007/s00374-019-01373-8, 2019.
Chmelíková, L., Schmid, H., Anke, S., and Hülsbergen, K.-J.: Nitrogen-use efficiency of organic and conventional arable and dairy farming systems in Germany, Nutr. Cycl. Agroecosyst., 119, 337–354, https://doi.org/10.1007/s10705-021-10126-9, 2021.
Costa, C. M., da Costa, A. B. G., Theodoro, G. F., Difante, G. S., Gurgel, A. L. C., Santana, J. C. S., Camargo, F. C., and de Almeida, E. M.: The 4R management for nitrogen fertilization in tropical forage: A review, Aust. J. Crop Sci., 14, 1834–1837, https://doi.org/10.21475/ajcs.20.14.11.p2646, 2020.
Couto-Vázquez, A. and Gonzalez-Prieto, S. J.: Fate of 15N-fertilizers in the soil-plant system of a forage rotation under conservation and plough tillage, Soil Till. Res., 161, 10–18, https://doi.org/10.1016/j.still.2016.02.011, 2016.
Dai, S., Jing, W., Cheng, Y., Zhang, J., and Cai, Z.: Effects of long-term fertilization on soil gross N transformation rates and their implications, J. Integr. Agr., 16, 2863–2870, https://doi.org/10.1016/S2095-3119(17)61673-3, 2017.
Dannenmann, M., Gasche, R., Ledebuhr, A., and Papen, H.: Effects of forest management on soil N cycling in beech forests on calcareous soils, Plant Soil, 287, 279–300, https://doi.org/10.1007/s11104-006-9077-4, 2006.
Dannenmann, M., Bimüller, C., Gschwendtner, S., Leberecht, M., Tejedor, J., Bilela, S., Gasche, R., Hanewinkel, M., Baltensweiler, A., and Kögel-Knabner, I.: Climate change impairs nitrogen cycling in European beech forests, PLoS ONE, 11, e0158823, https://doi.org/10.1371/journal.pone.0158823, 2016.
Dannenmann, M., Yankelzon, I., Wähling, S., Ramm, E., Schreiber, M., Ostler, U., Schlingmann, M., Stange, C. F., Kiese, R., and Butterbach-Bahl, K.: Fates of slurry-nitrogen applied to mountain grasslands: the importance of dinitrogen emissions versus plant N uptake, Biol. Fert. Soils, 61, 455–468, https://doi.org/10.1007/s00374-024-01826-9, 2024.
De Jager, A., Onduru, D., Van Wijk, M. S., Vlaming, J., and Gachini, G. N.: Assessing sustainability of low-external-input farm management systems with the nutrient monitoring approach: a case study in Kenya, Agr. Syst., 69, 99–118, https://doi.org/10.1016/S0308-521X(01)00020-8, 2001.
De Sousa, R. N., and Moreira, L. A.: Plant Nutrition Optimization: Integrated Soil Management and Fertilization Practices, in Strategic Tillage and Soil Management – New Perspectives, IntechOpen, London, UK, University of São Paulo affiliation, CC BY 3.0, https://doi.org/10.5772/intechopen.114848, 2024.
Dell, C. J., Meisinger, J. J., and Beegle, D. B.: Subsurface application of manure slurries for conservation tillage and pasture soils and their impact on the nitrogen balance, J. Environ. Qual., 40, 352–361, https://doi.org/10.2134/jeq2010.0069, 2011.
Di, H. J. and Cameron, K. C.: Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies, Nutr. Cycl. Agroecosyst., 64, 237–256, https://doi.org/10.1023/A:1021471531188, 2002.
Duncan, E. W., Kleinman, P. J. A., Beegle, D. B., and Dell, C. J.: Nitrogen cycling trade-offs with broadcasting and injecting dairy manure, Nutr. Cycl. Agroecosyst., 114, 57–70, https://doi.org/10.1007/s10705-019-09975-2, 2019.
Eckei, J., Well, R., Maier, M., Matson, A., Dittert, K., and Rummel, P. S.: Determining N2O and N2 fluxes in relation to winter wheat and sugar beet growth and development using the improved 15N gas flux method on the field scale, Biol. Fert. Soils, 61, 489–505, https://doi.org/10.1007/s00374-024-01806-z 2025.
Eysholdt, M., Kunkel, R., Rösemann, C., Wendland, F., Wolters, T., Zinnbauer, M., and Fuß, R.: A model-based estimate of nitrate leaching in Germany for GHG reporting, J. Plant Nutr. Soil Sci., 185, 465–478, https://doi.org/10.1002/jpln.202200119 , 2022
Fangueiro, D., Pereira, J., Chadwick, D., Coutinho, J., Moreira, N., and Trindade, H.: Laboratory assessment of the effect of cattle slurry pre-treatment on organic N degradation after soil application and N2O and N2 emissions, Nutr. Cycl. Agroecosyst., 80, 107–120, https://doi.org/10.1007/s10705-007-9124-4, 2008.
Fixen, P. E.: A brief account of the genesis of 4R nutrient stewardship, Agron. J., 112, 4511–4518, https://doi.org/10.1002/agj2.20315, 2020.
Frick, H., Oberson, A., Cormann, M., Wettstein, H.-R., Frossard, E., and Bünemann, E. K.: Similar distribution of 15N labeled cattle slurry and mineral fertilizer in soil after one year, Nutr. Cycl. Agroecosyst., 125, 153–169, https://doi.org/10.1007/s10705-022-10205-5, 2023.
Friedl, J., Scheer, C., Rowlings, D. W., Deltedesco, E., Gorfer, M., De Rosa, D., Grace, P. R., Müller, C., and Keiblinger, K. M.: Effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on N-turnover, the N2O reductase-gene nosZ and N2O:N2 partitioning from agricultural soils, Sci. Rep., 10, 2399, https://doi.org/10.1038/s41598-020-59249-z, 2020.
Gai, X., Liu, H., Liu, J., Zhai, L., Yang, B., Wu, S., Ren, T., Lei, Q., and Wang, H.: Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China Plain, Agr. Water Manage., 208, 384–392, https://doi.org/10.1016/j.agwat.2018.07.002, 2018.
Gardner, J. B. and Drinkwater, L. E.: The fate of nitrogen in grain cropping systems: A meta-analysis of 15N field experiments, Ecol. Appl., 19, 2167–2184, https://doi.org/10.1890/08-1122.1, 2009.
Good, A. G. and Beatty, P. H.: Fertilizing nature: a tragedy of excess in the commons, PLoS Biol., 9, e1001124, https://doi.org/10.1371/journal.pbio.1001124, 2011.
Grahmann, K., Verhulst, N., Palomino, L. M., Bischoff, W.-A., Govaerts, B., and Buerkert, A.: Ion exchange resin samplers to estimate nitrate leaching from a furrow irrigated wheat-maize cropping system under different tillage-straw systems, Soil Till. Res., 175, 91–100, https://doi.org/10.1016/j.still.2017.08.013, 2018.
Häfner, F., Ruser, R., Claß-Mahler, I., and Möller, K.: Field application of organic fertilizers triggers N2O emissions from the soil N pool as indicated by 15N-labeled digestates, Front. Sustain. Food Syst., 4, 614349, https://doi.org/10.3389/fsufs.2020.614349, 2021.
Hamonts, K., Balaine, N., Moltchanova, E., Beare, M., Thomas, S., Wakelin, S. A., O'Callaghan, M., Condron, L. M., and Clough, T. J.: Influence of soil bulk density and matric potential on microbial dynamics, inorganic N transformations, N2O and N2 fluxes following urea deposition, Soil Biol. Biochem., 65, 1–11, https://doi.org/10.1016/j.soilbio.2013.05.006, 2013.
Häni, C., Flechard, C., Neftel, A., Sintermann, J., and Kupper, T.: Accounting for field-scale dry deposition in backward Lagrangian stochastic dispersion modelling of NH3 emissions, Atmosphere-Basel, 9, 146, https://doi.org/10.3390/atmos9040146, 2018.
Hauck, R. D., Melsted, S. W., and Yankwich, P. E.: Use of N-isotope distribution in nitrogen gas in the study of denitrification, Soil Sci., 86, 287–291, 1958.
He, W., Jiang, R., He, P., Yang, J., Zhou, W., Ma, J., and Liu, Y.: Estimating soil nitrogen balance at regional scale in China's croplands from 1984 to 2014, Agr. Syst., 167, 125–135, https://doi.org/10.1016/j.agsy.2018.09.002, 2018.
Heng, L. K., Sakadevan, K., Dercon, G., and Nguyen, M. L.: International Symposium on Managing Soils for Food Security and Climate Change Adaptation and Mitigation, Food Agric. Organ. U.N., Rome, 331–348, https://agris.fao.org/search/en/providers/122621/records/6473afa513d110e4e7a93220 (last access: 18 September 2025), 2014.
Herr, C., Mannheim, T., Müller, T., and Ruser, R.: Effect of cattle slurry application techniques on N2O and NH3 emissions from a loamy soil, J. Plant Nutr. Soil Sc., 182, 964–979, https://doi.org/10.1002/jpln.201800376, 2019.
Iheshiulo, E. M.-A., Larney, F. J., Hernandez-Ramirez, G., St. Luce, M., Chau, H. W., and Liu, K.: Crop rotations influence soil hydraulic and physical quality under no-till crop management, Agr. Ecosyst. Environ., 14, 1774, https://doi.org/10.1016/j.agee.2023.108820, 2024.
Jantalia, C. P., Halvorson, A. D., Follett, R. F., Rodrigues Alves, B. J., Polidoro, J. C., and Urquiaga, S.: Nitrogen source effects on ammonia volatilization as measured with semi-static chambers, Agron. J., 104, 1595–1603, https://doi.org/10.2134/agronj2012.0210, 2012.
Jensen, L. S., Pedersen, I. S., Hansen, T. B., and Nielsen, N. E.: Turnover and fate of 15N-labelled cattle slurry ammonium-N applied in the autumn to winter wheat, Eur. J. Agron., 12, 23–35, https://doi.org/10.1016/S1161-0301(99)00040-4, 2000.
Ju, X.-T., Xing, G.-X., Chen, X.-P., Zhang, S.-L., Zhang, L.-J., Liu, X.-J., Cui, Z.-L., Yin, B., Christie, P., and Zhu, Z.-L.: Reducing environmental risk by improving N management in intensive Chinese agricultural systems, P. Natl. Acad. Sci. USA, 106, 3041–3046, https://doi.org/10.1073/pnas.0813417106, 2009.
Kayser, M., Breitsameter, L., Benke, M., and Isselstein, J.: Nitrate leaching is not controlled by the slurry application technique in productive grassland on organic–sandy soil, Agron. Sustain. Dev., 35, 213–223, https://doi.org/10.1007/s13593-014-0220-y, 2015.
Kempers, A. J. and Zweers, A.: Ammonium determination in soil extracts by the salicylate method, Commun. Soil Sci. Plan., 17, 715–723, 1986.
Khan, F., Basak, J. K., Jaihuni, M., Lee, D. H., Lee, J. H., and Kim, H. T.: Forced aerated poultry compost effects on soil physicochemical properties and lettuce plant growth, J. Biosyst. Eng., 45, 104–116, https://doi.org/10.1007/s42853-020-00050-1, 2020.
Khan, F., Franco, S., Ulrich, M., Rainer, D., Andreas, G., Hartmann, F., Tobisch, B., Kiese, R., and Wolf, B.: Integrated rather than organic farming history facilitates soil nitrogen turnover and N2O reduction in a green rye–silage maize cropping sequence, Biol. Fert. Soils, 61, 27–41, https://doi.org/10.1007/s00374-024-01865-2, 2024.
Kramer, A. W., Doane, T. A., Horwath, W. R., and van Kessel, C.: Short-term nitrogen-15 recovery vs. long-term total soil N gains in conventional and alternative cropping systems, Soil Biol. Biochem., 34, 43–50, https://doi.org/10.1016/S0038-0717(01)00149-3, 2002.
Kramer, S. B., Reganold, J. P., Glover, J. D., Bohannan, B. J. M., and Mooney, H. A.: Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils, P. Natl. Acad. Sci. USA, 103, 4522–4527, https://doi.org/10.1073/pnas.0600359103, 2006.
Kulkarni, M. V., Yavitt, J. B., and Groffman, P. M.: Rapid conversion of added nitrate to nitrous oxide and dinitrogen in northern forest soil, Geomicrobiol. J., 34, 670–676, https://doi.org/10.1080/01490451.2016.1238981, 2017.
Küstermann, B., Munch, J. C., and Hülsbergen, K.-J.: Effects of soil tillage and fertilization on resource efficiency and greenhouse gas emissions in a long-term field experiment in Southern Germany, Eur. J. Agron., 49, 61–73, https://doi.org/10.1016/j.eja.2013.02.012, 2013.
Lewicka-Szczebak, D., Augustin, J., Giesemann, A., and Well, R.: Quantifying N2O reduction to N2 based on N2O isotopocules – validation with independent methods (helium incubation and 15N gas flux method), Biogeosciences, 14, 711–732, https://doi.org/10.5194/bg-14-711-2017, 2017.
Lewicka-Szczebak, D., Lewicki, M. P., and Well, R.: N2O isotope approaches for source partitioning of N2O production and estimation of N2O reduction – validation with the 15N gas-flux method in laboratory and field studies, Biogeosciences, 17, 5513–5537, https://doi.org/10.5194/bg-17-5513-2020, 2020.
Li, Z., Reichel, R., Xu, Z., Vereecken, H., and Brüggemann, N.: Return of crop residues to arable land stimulates N2O emission but mitigates leaching: a meta-analysis, Agron. Sustain. Dev., 41, 66, https://doi.org/10.1007/s13593-021-00715-x, 2021.
Lin, H.-C., Huber, J. A., Gerl, G., and Hülsbergen, K.-J.: Nitrogen balances and nitrogen-use efficiency of different organic and conventional farming systems, Nutr. Cycl. Agroecosys., 105, 1–23, https://doi.org/10.1007/s10705-016-9770-5, 2016.
Liu, L., Xu, W., Lu, X., Zhong, B., Guo, Y., Lu, X., Zhao, Y., He, W., Wang, S., and Zhang, X.: Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980, P. Natl. Acad. Sci. USA, 119, e2121998119, https://doi.org/10.1073/pnas.2121998119, 2022.
Loubet, B., Carozzi, M., Voylokov, P., Cohan, J.-P., Trochard, R., and Génermont, S.: Evaluation of a new inference method for estimating ammonia volatilisation from multiple agronomic plots, Biogeosciences, 15, 3439–3460, https://doi.org/10.5194/bg-15-3439-2018, 2018.
Luo, J., Tillman, R. W., and Ball, P. R.: Nitrogen loss through denitrification in a soil under pasture in New Zealand, Soil Biol. Biochem., 32, 497–509, https://doi.org/10.1016/S0038-0717(99)00179-0, 2000.
Lyu, H., Li, Y., Wang, Y., Wang, P., Shang, Y., Yang, X., Wang, F., and Yu, A.: Drive soil nitrogen transformation and improve crop nitrogen absorption and utilization – a review of green manure applications, Front. Plant Sci., 14, 1305600, https://doi.org/10.3389/fpls.2023.1305600, 2024.
Maguire, R. O., Kleinman, P. J. A., Dell, C. J., Beegle, D. B., Brandt, R. C., McGrath, J. M., and Ketterings, Q. M.: Manure application technology in reduced tillage and forage systems: a review, J. Environ. Qual., 40, 292–301, https://doi.org/10.2134/jeq2009.0228, 2011.
Manns, H. R. and Martin, R. C.: Cropping system yield stability in response to plant diversity and soil organic carbon in temperate ecosystems, Agroecol. Sust. Food, 42, 724–750, https://doi.org/10.1080/21683565.2017.1423529, 2018.
Marliah, A., Anhar, A., and Hayati, E.: Combine organic and inorganic fertilizer increases yield of cucumber (Cucumis sativus L.), IOP C. Ser. Earth Env., 425, 012075, https://doi.org/10.1088/1755-1315/425/1/012075, 2020.
Micucci, G., Sgouridis, F., McNamara, N. P., Krause, S., Lynch, I., Roos, F., Well, R., and Ullah, S.: The 15N-Gas flux method for quantifying denitrification in soil: Current progress and future directions, Soil Biol. Biochem., 184, 109108, https://doi.org/10.1016/j.soilbio.2023.109108, 2023.
Morley, N. J., Richardson, D. J., and Baggs, E. M.: Substrate induced denitrification over or underestimates shifts in soil N2/N2O ratios, PLoS ONE, 9, e108144, https://doi.org/10.1371/journal.pone.0108144, 2014.
Msimbira, L. A. and Smith, D. L.: The roles of plant growth promoting microbes in enhancing plant tolerance to acidity and alkalinity stresses, Front. Sustain. Food Syst., 4, 106, https://doi.org/10.3389/fsufs.2020.00106, 2020.
Mulvaney, R. L. and Boast, C. W.: Equations for determination of nitrogen-15 labelled dinitrogen and nitrous oxide by mass spectrometry, Soil Sci. Soc. Am. J., 50, 360–363, https://doi.org/10.2136/sssaj1986.03615995005000020021x, 1986.
Ni, K., Köster, J. R., Seidel, A., and Pacholski, A.: Field measurement of ammonia emissions after nitrogen fertilization – A comparison between micrometeorological and chamber methods, Eur. J. Agron., 71, 115–122, https://doi.org/10.1016/j.eja.2015.09.006, 2015.
Nigon, L. L.: Integrating enhanced-efficiency fertilizers in 4R nutrient management, Crops Soils, 57, 32–37, https://doi.org/10.1002/crso.20329, 2024.
Nyameasem, J. K., Zutz, M., Kluß, C., Huf, M. T., Essich, C., Buchen-Tschiskale, C., Ruser, R., Flessa, H., Olfs, H.-W., Taube, F., and Reinsch, T.: Impact of cattle slurry application methods on ammonia losses and grassland nitrogen use efficiency, Environ. Pollut., 315, 120302, https://doi.org/10.1016/j.envpol.2022.120302, 2022.
Paul, J. W. and Beauchamp, E. G.: Availability of manure slurry ammonium for corn using 15N-labelled (NH4)2SO4, Can. J. Soil Sci., 75, 35–42, 1995.
Pearsons, K. A., Omondi, E. C., Zinati, G., Smith, A., and Rui, Y.: A tale of two systems: Does reducing tillage affect soil health differently in long-term, side-by-side conventional and organic agricultural systems?, Soil Till. Res., 226, 105562, https://doi.org/10.1016/j.still.2022.105562, 2023.
Peng, G., Zhang, T., Lei, X., Cui, X., Lu, Y., Fan, P., Long, S., Huang, J., Gao, J., and Zhang, Z.: Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers, J. Integr. Agr., 7, 2221–2232, https://doi.org/10.1016/j.jia.2023.02.037, 2023.
Pomoni, D. I., Koukou, M. K., Vrachopoulos, M. G., and Vasiliadis, L.: A review of hydroponics and conventional agriculture based on energy and water consumption, environmental impact, and land use, Energies, 16, 1690, https://doi.org/10.3390/en16041690, 2023.
Quan, Z., Li, S., Zhang, X., Zhu, F., Li, P., Sheng, R., Chen, X., Zhang, L.-M., He, J.-Z., and Wei, W.: Fertilizer nitrogen use efficiency and fates in maize cropping systems across China: Field 15N tracer studies, Soil Till. Res., 197, 104498, https://doi.org/10.1016/j.still.2019.104498, 2020.
Ramirez, K. S., Craine, J. M., and Fierer, N.: Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes, Glob. Change Biol., 18, 1918–1927, https://doi.org/10.1111/j.1365-2486.2012.02639.x, 2012.
Reza, M. S. and Sabau, G.: Impact of climate change on crop production and food security in Newfoundland and Labrador, Canada, J. Agric. Food Res., 8, 100405, https://doi.org/10.1016/j.jafr.2022.100405, 2022.
Rohe, L., Apelt, B., Vogel, H.-J., Well, R., Wu, G.-M., and Schlüter, S.: Denitrification in soil as a function of oxygen availability at the microscale, Biogeosciences, 18, 1185–1201, https://doi.org/10.5194/bg-18-1185-2021, 2021.
Russenes, A. L., Korsaeth, A., Bakken, L. R., and Dörsch, P.: Spatial variation in soil pH controls off-season N2O emission in an agricultural soil, Soil Biol. Biochem., 99, 36–46, https://doi.org/10.1016/j.soilbio.2016.04.019, 2016.
Samad, M. S., Bakken, L. R., Nadeem, S., Clough, T. J., de Klein, C. A. M., Richards, K. G., Lanigan, G. J., and Morales, S. E.: High-resolution denitrification kinetics in pasture soils link N2O emissions to pH, and denitrification to C mineralization, PLoS ONE, 11, e0151713, https://doi.org/10.1371/journal.pone.0151713, 2016.
Scheer, C., Wassmann, R., Butterbach-Bahl, K., Lamers, J. P. A., and Martius, C.: The role of N2O and N2 emissions in nitrogen cycling in agroecosystems, Agr. Ecosyst. Environ., 293, 106848, https://doi.org/10.1016/j.cosust.2020.07.005, 2020.
Senbayram, M., Chen, R., Budai, A., Bakken, L., and Dittert, K.: N2O emission and the product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations, Agr. Ecosyst. Environ., 147, 4–12, https://doi.org/10.1016/j.agee.2011.06.022, 2012.
Sherman, J., Young, E., Jokela, W., and Kieke, B.: Manure application timing and incorporation effects on ammonia and greenhouse gas emissions in corn, Agriculture, 12, 1952, https://doi.org/10.3390/agriculture12111952, 2022.
Smith, K. A. and Arah, J. R. M.: Losses of nitrogen by denitrification and emissions of nitrogen oxides from soils, Soil Res., 28, 95–120, 1990.
Snyder, C. S.: Enhanced nitrogen fertiliser technologies support the “4R” concept to optimise crop production and minimise environmental losses, Soil Res., 55, 463–472, https://doi.org/10.1071/sr16335, 2017.
Sommer, S. G. and Hutchings, N. J.: Ammonia emission from field applied manure and its reduction, Eur. J. Agron., 15, 1–15, https://doi.org/10.1016/S1161-0301(01)00112-5, 2001.
Sommer, S. G., Christensen, B. T., Nielsen, N. E., and Schjorring, J. K.: Ammonia volatilization during storage of cattle and pig slurry: Effect of surface cover, J. Agr. Sci., 117, 91–100, 1993.
Sørensen, P. and Thomsen, I. K.: Separation of pig slurry and plant utilization and loss of nitrogen-15-labeled slurry nitrogen, Soil Sci. Soc. Am. J., 69, 1644–1651, https://doi.org/10.2136/sssaj2004.0365, 2005.
Spott, O., Russow, R., Apelt, B., and Stange, C. F.: A 15N-aided artificial atmosphere gas flow technique for online determination of soil N2 release using the zeolite Köstrolith SX6®, Rapid Commun. Mass Sp., 20, 3267–3274, https://doi.org/10.1002/rcm.2722, 2006.
Stevens, R. J. and Laughlin, R. J.: Cattle slurry affects nitrous oxide and dinitrogen emissions from fertilizer nitrate, Soil Sci. Soc. Am. J., 65, 1307–1314, https://doi.org/10.2136/sssaj2001.6541307x, 2001a.
Stevens, R. J. and Laughlin, R. J.: Lowering the detection limit for dinitrogen using the enrichment of nitrous oxide, Soil Biol. Biochem., 33, 1287–1289, https://doi.org/10.1016/S0038-0717(01)00036-0, 2001b.
Surekha, K., Kumar, R. M., Nagendra, V., Sailaja, N., and Satyanarayana, T.: 4R nitrogen management for sustainable rice production, Better Crop, 10, 16–19, 2016.
Tang, H., Xiao, X., Tang, W., Li, C., Wang, K., Li, W., Cheng, K., and Pan, X.: Long-term effects of NPK fertilizers and organic manures on soil organic carbon and carbon management index under a double-cropping rice system in Southern China, Soil Till. Res., 49, 1976–1989, https://doi.org/10.1016/j.still.2016.10.005, 2018.
Thompson, R. B., Ryden, J. C., and Lockyer, D. R.: Fate of nitrogen in cattle slurry following surface application or injection to grassland, J. Soil Sci., 38, 689–700, https://doi.org/10.1111/j.1365-2389.1987.tb02166.x, 1987.
Van Es, H. M., Sogbedji, J. M., and Schindelbeck, R. R.: Effect of manure application timing, crop, and soil type on nitrate leaching, J. Environ. Qual., 35, 670–679, https://doi.org/10.2134/jeq2005.0192, 2006.
Vanden Heuvel, R. M., Mulvaney, R. L., and Hoeft, R. G.: Evaluation of nitrogen-15 tracer techniques for direct measurement of denitrification in soil: II. Simulation studies, Soil Sci. Soc. Am. J., 52, 1322–1326, 1988.
Wang, C., Amon, B., Schulz, K., and Mehdi, B.: Factors that influence nitrous oxide emissions from agricultural soils as well as their representation in simulation models: a review, Agronomy, 11, 770, https://doi.org/10.3390/agronomy11040770, 2021.
Wangari, G., Mwanake, R. M., Houska, T., Kraus, D., Kikowatz, H.-M., Wolf, B., Gettel, G. M., Breuer, L., Ambus, P., Kiese, R., and Butterbach-Bahl, K.: Spatial-temporal patterns of foliar and bulk soil 15N isotopic signatures across a heterogeneous landscape: Linkages to soil N status, nitrate leaching, and N2O fluxes, Soil Biol. Biochem., 199, 109609, https://doi.org/10.1016/j.soilbio.2024.109609, 2024.
Well, R., Burkart, S., Giesemann, A., Grosz, B., Köster, J. R., and Lewicka-Szczebak, D.: Improvement of the 15N gas flux method for in situ measurement of soil denitrification and its product stoichiometry, Rapid Commun. Mass Sp., 33, 437–448, https://doi.org/10.1002/rcm.8363, 2019a.
Well, R., Maier, M., Lewicka-Szczebak, D., Köster, J.-R., and Ruoss, N.: Underestimation of denitrification rates from field application of the 15N gas flux method and its correction by gas diffusion modelling, Biogeosciences, 16, 2233–2246, https://doi.org/10.5194/bg-16-2233-2019, 2019b.
Winkhart, F., Mösl, T., Schmid, H., and Hülsbergen, K.-J.: Effects of organic maize cropping systems on nitrogen balances and nitrous oxide emissions, Agriculture, 12, 907, https://doi.org/10.3390/agriculture12070907, 2022.
Xu, C., Zhu, H., Liu, H., Ji, C., Yuan, J., Li, G., Wang, J., and Zhang, Y.: Patterns of crop-specific fertilizer-nitrogen losses and opportunities for sustainable mitigation: A quantitative overview of 15N-tracing studies, Soil Ecol. Lett., 6, 230206, https://doi.org/10.1007/s42832-023-0206-2, 2024.
Yankelzon, I., Schilling, L., Butterbach-Bahl, K., Gasche, R., Han, J., Hartl, L., Kepp, J., Matson, A., Ostler, U., Scheer, C., Schneider, K., Tenspolde, A., Well, R., Wolf, B., Wrage-Moennig, N., and Dannenmann, M.: Lysimeter-based full fertilizer 15N balances corroborate direct dinitrogen emission measurements using the 15N gas flow method, Biol. Fert. Soils, 61, 437–454, https://doi.org/10.1007/s00374-024-01801-4, 2024a.
Yankelzon, I., Willibald, G., Dannenmann, M., Malique, F., Ostler, U., Scheer, C., and Butterbach-Bahl, K.: A new incubation system to simultaneously measure N2 as well as N2O and CO2 fluxes from plant-soil mesocosms, Biol. Fert. Soils, 61, 1–19, https://doi.org/10.1007/s00374-024-01809-w, 2024b.
Zhang, J. B., Zhu, T. B., Cai, Z. C., Qin, S. W., and Müller, C.: Effects of long-term repeated mineral and organic fertilizer applications on soil nitrogen transformations, Eur. J. Soil Sci., 63, 75–85, https://doi.org/10.1111/j.1365-2389.2011.01410.x, 2012.
Zhang, Y., Zhao, J., Huang, X., Cheng, Y., Cai, Z., Zhang, J., and Müller, C.: Microbial pathways account for the pH effect on soil N2O production, Eur. J. Soil Biol., 106, 103337, https://doi.org/10.1016/j.ejsobi.2021.103337, 2021.
Zhou, M., Zhu, B., Brüggemann, N., Dannenmann, M., Wang, Y., and Butterbach-Bahl, K.: Sustaining crop productivity while reducing environmental nitrogen losses in the subtropical wheat-maize cropping systems: A comprehensive case study of nitrogen cycling and balance, Agr. Ecosyst. Environ., 231, 1–14, https://doi.org/10.1016/j.agee.2016.06.022, 2016.
Zistl-Schlingmann, M., Kwatcho Kengdo, S., Kiese, R., and Dannenmann, M.: Management intensity controls nitrogen-use-efficiency and flows in grasslands – a 15N tracing experiment, Agronomy, 10, 606, https://doi.org/10.3390/agronomy10040606, 2020.
Short summary
Crop rotations with legumes and use of organic and mineral fertilizers show potential to reduce agricultural N losses. This study examined N losses, including direct N2 flux, on two adjacent sites with different management histories: organic farming (OF) with legume cultivation and integrated farming (IF) using synthetic and organic N inputs. IF increased soil organic carbon and nitrogen content and 15N recovery and showed a balanced N budget (i.e. more efficient N cycling compared to OF).
Crop rotations with legumes and use of organic and mineral fertilizers show potential to reduce...
Altmetrics
Final-revised paper
Preprint