Articles | Volume 22, issue 19
https://doi.org/10.5194/bg-22-5157-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-5157-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimation of metabolic dynamics of restored seagrass meadows in a Southeast Asia islet: insights from ex situ benthic incubation
Mariche Bandibas-Natividad
Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
Doctoral Degree Program in Ocean Resource and Environmental Changes, National Taiwan Ocean University, Keelung, Taiwan
Ecosystems Research and Development Bureau, Laguna, Philippines
Jian-Jhih Chen
Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
Department of Oceanography, National Sun Yat-Sen University, Kaohsiung, Taiwan
Hsin-Yu Chou
Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
Lan-Feng Fan
Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
Yi-Le Shen
Penghu Fisheries Biology Research Center, FRI, MOA, Penghu, Taiwan
Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan
Related authors
No articles found.
Pei-Jie Meng, Chia-Ming Chang, Wen-Chen Chou, Hung-Yen Hsieh, Anderson B. Mayfield, and Chung-Chi Chen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3273, https://doi.org/10.5194/egusphere-2024-3273, 2024
Preprint archived
Short summary
Short summary
This study measured pCO2 in Nanwan Bay, a coral reef ecosystem in Southern Taiwan, to identify the factors driving its variability. The results indicate that Nanwan Bay is a highly dynamic ecosystem, with notable spatial and seasonal changes in carbon exchange. Surface water carbon parameters in this biodiverse subtropical marine environment are influenced not only by seasonal temperature fluctuations but also by vertical mixing, intermittent upwelling, and biological processes.
Cited articles
Allen Coral Atlas: Imagery, maps and monitoring of the world's tropical coral reefs, Zendodo [data set], https://doi.org/10.5281/zenodo.3833242, 2020.
Alongi, D. M., Trott, L. A., Undu, M. C., and Tirendi, F.: Benthic microbial metabolism in seagrass meadows along a carbonate gradient in Sulawesi, Indonesia, Aquat. Microb. Ecol., 51, 141–152, https://doi.org/10.3354/ame01191, 2008.
Andersson, A. J., Mackenzie, F. T., and Lerman, A.: Coastal ocean and carbonate systems in the high CO2 world of the Anthropocene, Am. J. Sci., 305, 875–918, https://doi.org/10.2475/ajs.305.9.875, 2005.
Attard, K. M., Rodil, I. F., Glud, R. N., Berg, P., Norkko, J., and Norkko, A.: Seasonal ecosystem metabolism across shallow benthic habitats measured by aquatic eddy covariance, Limnol. Oceanogr. Lett., 4, 79–86, https://doi.org/10.1002/lol2.10107, 2019.
Barrón, C., Duarte, C. M., Frankignoulle, M., and Borges, A. V.: Organic carbon metabolism and carbonate dynamics in a Mediterranean seagrass (Posidonia oceanica), meadow, Estuar. Coasts., 29, 417–426, https://doi.org/10.1007/bf02784990, 2006.
Beavington-penney, S. J., Wright, V. P., and Racey, A.: Sediment production and dispersal on foraminifera-dominated early Tertiary ramps: The Eocene El Garia Formation, Tunisia, Sedimentology, 52, 537–569, https://doi.org/10.1111/j.1365-3091.2005.00709.x, 2005.
Belshe, E. F., Hoeijmakers, D., Herran, N., Mtolera, M., and Teichberg, M.: Seagrass community-level controls over organic carbon storage are constrained by geophysical attributes within meadows of Zanzibar, Tanzania, Biogeosciences, 15, 4609–4626, https://doi.org/10.5194/bg-15-4609-2018, 2018.
Berg, P., Huettel, M., Glud, R. N., Reimers, C. E., and Attard, K. M. Aquatic Eddy Covariance: The method and its contributions to defining oxygen and carbon fluxes in marine environments, Ann. Rev. Mar. Sci., 14, 431–455, https://doi.org/10.1146/annurev-marine-042121-012329, 2022.
Borum, J., Sand-Jensen, K., Binzer, T., Pedersen, O., and Greve, T. M.: Oxygen movement in seagrasses, in: Seagrasses: Biology, Ecology and Conservation, edited by: Larkum, A. W. D., Orth, R. J., and Duarte, C. M., Springer, Dordrecht, 255–270, https://doi.org/10.1007/978-1-4020-2983-7_10, 2006.
Burdige, D. J. and Zimmerman, R. C.: Impact of sea grass density on carbonate dissolution in Bahamian sediments, Limnol. Oceanogr., 47, 1751–1763, https://doi.org/10.4319/lo.2002.47.6.1751, 2002.
Burdige, D. J., Zimmerman, R. C., and Hu, X.: Rates of carbonate dissolution in permeable sediments estimated from porewater profiles: the role of sea grasses, Limnol. Oceanogr., 53, 549–565, https://doi.org/10.4319/lo.2008.53.2.0549, 2008.
Campbell, S., Miller, C., Steven, A., and Stephens, A.: Photosynthetic responses of two temperate seagrasses across a water quality gradient using chlorophyll fluorescence, J. Exp. Mar. Biol. Ecol., 291, 57–78, https://doi.org/10.1016/s0022-0981(03)00090-x, 2003.
Chen, J., Wells, N., Erler, D., and Eyre, B.: Importance of habitat diversity to changes in benthic metabolism over land-use gradients: evidence from three subtropical estuaries, Mar. Ecol. Prog. Ser., 631, 31–47, https://doi.org/10.3354/meps13147, 2019.
Chen, T.-Y., Chen, J.-J., and Chou, W.-C.: Rethinking blue carbon: unlocking invisible carbon sinks, Environ. Res. Lett., 19, 101001, https://doi.org/10.1088/1748-9326/ad7044, 2024.
Chou, W., Fan, L., Yang, C., Chen, Y., Hung, C., Huang, W., Shih, Y., Soong, K., Tseng, H., Gong, G., Chen, H., and Su, C.: A unique DIEL pattern in carbonate chemistry in the seagrass meadows of Dongsha Island: the enhancement of metabolic carbonate dissolution in a semienclosed lagoon, Front. Mar. Sci., 8, https://doi.org/10.3389/fmars.2021.717685, 2021.
Chou, W., Fan, L., Hung, C., Shih, Y., Huang, W., Lui, H., and Chen, T.: Dynamics of O2 and pCO2 in a Southeast Asia seagrass meadow: Metabolic rates and carbon sink capacity, Front. Mar. Sci., 10, https://doi.org/10.3389/fmars.2023.1076991, 2023.
Chou, W.-C., Chu, H.-C., Chen, Y.-H., Syu, R.-W., Hung, C.-C., and Soong, K.: Short-term variability of carbon chemistry in two contrasting seagrass meadows at Dongsha island: implications for pH buffering and CO2 sequestration, Estuar. Coast. Shelf Sci., 210, 36–44, https://doi.org/10.1016/j.ecss.2018.06.006, 2018.
Clayton, T. D. and Byrne, R. H.: Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results, Deep-Sea Res. I: Oceanogr. Res. Pap., 40, 2115–2129, https://doi.org/10.1016/0967-0637(93)90048-8, 1993.
De Beer, D. and Larkum, A. W. D.: Photosynthesis and calcification in the calcifying algae Halimeda discoidea studied with microsensors, Plant Cell Environ., 24, 1209– 1217, https://doi.org/10.1046/j.1365-3040.2001.00772.x, 2001.
Dickson, A. G. and Millero, F. J.: A Comparison of the Equilibrium Constants for the Dissociation of Carbonic Acid in Seawater Media, Deep-Sea Res. I: Oceanogr. Res. Pap., 34, 1733–1743, https://doi.org/10.1016/0198-0149(87)90021-5, 1987.
Dickson, A. G., Sabine, C. L., and Christian, J. R. (Eds.): Guide to best practices for ocean CO2 measurements, PICES Special Publication 3, 191 pp., ISBN 1-897176-07-4, 2007.
Duarte, C. M. and Krause-Jensen, D.: Export from Seagrass Meadows Contributes to Marine Carbon Sequestration, Front. Mar. Sci., 4, 13, https://doi.org/10.3389/fmars.2017.00013, 2017.
Duarte, C. M., Middelburg, J. J., and Caraco, N.: Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, 2, 1–8, https://doi.org/10.5194/bg-2-1-2005, 2005.
Duarte, C. M., Marbà, N., Gacia, E., Fourqurean, J. W., Beggins, J., Barrón, C., and Apostolaki, E. T.: Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows, Global Biogeochem. Cy., 24, https://doi.org/10.1029/2010gb003793, 2010.
Duarte, C. M., Sintes, T., and Marbà, N.: Assessing the CO2 capture potential of seagrass restoration projects. J. Appl. Ecol., 50, 1341–1349, https://doi.org/10.1111/1365-2664.12155, 2013.
Egea, L., Infantes, E., and Jiménez-Ramos, R.: Loss of POC and DOC on seagrass sediments by hydrodynamics, Sci. Total Environ., 901, 165976, https://doi.org/10.1016/j.scitotenv.2023.165976, 2023.
Enríquez, S. and Schubert, N.: Direct contribution of the seagrass Thalassia testudinum to lime mud production, Nat. Commun., 5, 3835, https://doi.org/10.1038/ncomms4835, 2014.
Eyre, B. D. and Ferguson, A. J. P.: Benthic metabolism and nitrogen cycling in a subtropical east Australian estuary (Brunswick): Temporal variability and controlling factors, Limnol. Oceanogr., 50, 81–96, https://doi.org/10.4319/lo.2005.50.1.0081, 2005.
Eyre, B. D., Rysgaard, S., Dalsgaard, T., Christensen, P. B.: Comparison of isotope pairing and N2: Ar methods for measuring sediment denitrification – assumptions, modifications, and implications, Estuaries, 25, 1077–1087, https://doi.org/10.4319/lo.2002.47.4.1043, 2002.
Eyre, B. D. and Ferguson, A. J. P.: Benthic metabolism and nitrogen cycling in a subtropical east Australian estuary (Brunswick): temporal variability and controlling factors, Limnol. Oceanogr., 50, 81–96, https://doi.org/10.4319/lo.2005.50.1.0081, 2005.
Eyre, B. D., Ferguson, A. J. P., Webb, A., Maher, D., and Oakes, J. M.: Denitrification, N-fixation and nitrogen and phosphorus fluxes in different benthic habitats and their contribution to the nitrogen and phosphorus budgets of a shallow oligotrophic sub-tropical coastal system (southern Moreton Bay, Australia), Biogeochemistry, 102, 111–133, https://doi.org/10.1007/s10533-010-9425-6, 2011.
Eyre, B. D., Andersson, A. J., and Cyronak, T.: Benthic coral reef calcium carbonate dissolution in an acidifying ocean, Nat. Clim. Change, 4, 969–976, https://doi.org/10.1038/nclimate2380, 2014.
Fan, L.-F., Kang, E.-C., Natividad, M. B., Hung, C.-C., Shih, Y.-Y., Huang, W.-J., and Chou, W.-C.: The role of benthic TA and DIC fluxes on carbon sequestration in seagrass meadows of Dongsha Island, J. Mar. Sci. Eng., 12, 2061, https://doi.org/10.3390/jmse12112061, 2024.
Ferguson, A., Eyre, B., and Gay, J.: Benthic nutrient fluxes in euphotic sediments along shallow sub-tropical estuaries, northern New South Wales, Australia, Aquat. Microb. Ecol., 37, 219–235, https://doi.org/10.3354/ame037219, 2004.
Frankignoulle, M., Canon, C., and Gattuso, J.-P.: Marine calcification as a source of carbon dioxide: Positive feedback of increasing atmospheric CO2, Limnol. Oceanogr., 39, 458–462, 1994.
Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marbà, N., Holmer, M., Mateo, M. A., Apostolaki, E. T., Kendrick, G. A., Krause-Jensen, D., McGlathery, K. J., and Serrano, O.: Seagrass ecosystems as a globally significant carbon stock, Nat. Geosci., 5, 505–509, https://doi.org/10.1038/ngeo1477, 2012.
Ganguly, D., Singh, G., Ramachandran, P., Selvam, A. P., Banerjee, K., and Ramachandran, R.: Seagrass metabolism and carbon dynamics in a tropical coastal embayment, Ambio. Oct., 46, 667–679, https://doi.org/10.1007/s13280-017-0916-8, 2017.
Gattuso, J.-P., Frankignoulle, M., and Wollast, R.: Carbon and carbonate metabolism in coastal aquatic ecosystems, Annu. Rev. Ecol. Syst., 29, 405–434, https://doi.org/10.1146/annurev.ecolsys.29.1.405, 1998.
Greiner, J. T., McGlathery, K. J., Gunnell, J., and McKee, B. A.: Seagrass restoration enhances “Blue carbon” sequestration in coastal waters, PLoS One, 8, e72469, https://doi.org/10.1371/journal.pone.0072469, 2013.
Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M. R., Herrero, M., Kiesecker, J., Landis, E., Laestadius, L., Leavitt, S. M., Minnemeyer, S., Polasky, S., Potapov, P., Putz, F. E., Sanderman, J., Silvius, M., Wollenberg, E., and Fargione, J: Natural climate solutions, P. Natl. A Sci., 114, 11645–11650, https://doi.org/10.1073/pnas.1710465114, 2017.
Hendriks, I. E., Olsen, Y. S., Ramajo, L., Basso, L., Steckbauer, A., Moore, T. S., Howard, J., and Duarte, C. M.: Photosynthetic activity buffers ocean acidification in seagrass meadows, Biogeosciences, 11, 333–346, https://doi.org/10.5194/bg-11-333-2014, 2014.
Humphreys, M. P., Daniels, C. J., Wolf-Gladrow, D. A., Tyrrell, T., and Achterberg, E. P.: On the influence of marine biogeochemical processes over CO2 exchange between the atmosphere and ocean, Mar. Chem., 199, 1–11, https://doi.org/10.1016/j.marchem.2017.12.006, 2018.
Johannessen, S. C.: How to quantify blue carbon sequestration rates in seagrass meadow sediment: geochemical method and troubleshooting, Carbon Footprints, 2, https://doi.org/10.20517/cf.2023.37, 2023.
Juska, I. and Berg, P.: Variation in seagrass meadow respiration measured by aquatic eddy covariance Limnol. Oceanogr. Lett. 7, 410–418, https://doi.org/10.1002/lol2.10276, 2022.
Kennedy, H., Beggins, J., Duarte, C. M., Fourqurean, J. W., Holmer, M., Marbà, N., and Middelburg, J. J.: Seagrass sediments as a global carbon sink: Isotopic constraints, Global Biogeochem. Cy., 24, https://doi.org/10.1029/2010gb003848, 2010.
Kindeberg, T., Ørberg, S. B., Röhr, M. E., Holmer, M., and Krause-Jensen, D.: Sediment stocks of carbon, nitrogen, and phosphorus in Danish eelgrass meadows, Front. Mar. Sci., 5, 474, https://doi.org/10.3389/fmars.2018.00474, 2018.
Kindeberg, T., Bates, N. R., Courtney, T. A., Cyronak, T., Griffin, A., Mackenzie, F. T., Paulsen, M. L., and Andersson, A. J.: Porewater carbonate chemistry dynamics in a temperate and a subtropical seagrass system, Aquat. Geochem., 26, 375–399, https://doi.org/10.1007/s10498-020-09378-8, 2020.
Kindeberg, T., Attard, K. M., Hüller, J., Müller, J., Quintana, C. O., and Infantes, E.: Structural complexity and benthic metabolism: resolving the links between carbon cycling and biodiversity in restored seagrass meadows, Biogeosciences, 21, 1685–1705, https://doi.org/10.5194/bg-21-1685-2024, 2024.
Kleypas, J. A., Buddemeier, R. W., and Gattuso, J. P.: The future of coral reefs in an age of global change, Int. J. Earth Sci., 90, 426–437, https://doi.org/10.1007/s005310000125, 2001.
Koch, M., Bowes, G., Ross, C., and Zhang, X.: Climate change and ocean acidification effects on seagrasses and marine macroalgae, Glob. Change Biol., 19, 103–132, https://doi.org/10.1111/j.1365-2486.2012.02791.x, 2012.
Kraemer, G. P. and Alberte, R. S.: Age-related patterns of metabolism and biomass in subterranean tissues of Zostera marina L. (eelgrass), Mar. Ecol. Prog. Ser., 95, 193–203, 1993.
Land, L. S. Carbonate mud; production by epibiont growth on Thalassia testudinum, J. Sediment. Res., 40, 1361–1363, https://doi.org/10.1306/74D721B7-2B21-11D7-8648000102C1865D, 1970.
Lee, K., Park, S. R., and Kim, Y. K.: Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: A review. J. Exp. Mar. Biol. Ecol., 350, 144–175, https://doi.org/10.1016/j.jembe.2007.06.016, 2007.
Macreadie, P. I., Baird, M. E., Trevathan-Tackett, S. M., Larkum, A. W. D., and Ralph, P. J.: Quantifying and modelling the carbon sequestration capacity of seagrass meadows – A critical assessment, Mar. Pollut. Bull., 83, 430–439, https://doi.org/10.1016/j.marpolbul.2013.07.038, 2013.
Maher, D. and Eyre, B.: Benthic carbon metabolism in southeast Australian estuaries: habitat importance, driving forces, and application of artificial neural network models, Mar. Ecol. Prog. Ser., 439, 97–115, https://doi.org/10.3354/meps09336, 2011.
Mallon, J., Cyronak, T., Hall, E. R., Banaszak, A. T., Exton, D. A., and Bass, A. M.: Light-driven dynamics between calcification and production in functionally diverse coral reef calcifiers, Limnol. Oceanogr., 67, 434–449, https://doi.org/10.1002/lno.12002, 2022.
Marbà, N., Arias-Ortiz, A., Masqué, P., Kendrick, G. A., Mazarrasa, I., Bastyan, G. R., Garcia-Orellana, J., and Duarte, C. M.: Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks, J. Ecol., 103, 296–302, https://doi.org/10.1111/1365-2745.12370, 2015.
Mazarrasa, I., Marbà, N., Lovelock, C. E., Serrano, O., Lavery, P. S., Fourqurean, J. W., Kennedy, H., Mateo, M. A., Krause-Jensen, D., Steven, A. D. L., and Duarte, C. M.: Seagrass meadows as a globally significant carbonate reservoir, Biogeosciences, 12, 4993–5003, https://doi.org/10.5194/bg-12-4993-2015, 2015.
Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., and Silliman, B. R.: A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2, Front. Ecol. Environ., 9, 552–560, https://doi.org/10.1890/110004, 2011.
Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicx, R. M.: Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897–907, https://doi.org/10.4319/lo.1973.18.6.0897, 1973.
Morse, J. W., Andersson, A. J., and Mackenzie, F. T.: Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification”: Role of high-Mg calcites, Geochim. Cosmochim. Ac., 70, 5814–5830, https://doi.org/10.1016/j.gca.2006.08.017, 2006.
Natividad, M. B., Chen, J.-J., Chou, H.-Y., Fan, L.-F., Shen, Y. L., and Chou, W.-C.: Estimation of metabolic dynamics of restored seagrass meadows in a Southeast Asia Islet: Insights from ex situ benthic incubation, Dryad [data set], https://doi.org/https://doi.org/10.5061/dryad.d7wm37qd0, 2025.
Odum, H. T.: Primary production in flowing waters, Limnol. Oceanogr., 1, 102–117, 1956.
Olivé, I., Silva, J., Costa, M. M., and Santos, R.: Estimating seagrass community metabolism using benthic chambers: The effect of incubation time, Estuar. Coasts, 39, 138–144, https://doi.org/10.1007/s12237-015-9973-z, 2016.
Oreska, M. P. J., Wilkinson, G. M., McGlathery, K. J., Bost, M., and McKee, B. A.: Non-seagrass carbon contributions to seagrass sediment blue carbon, Limnol. Oceanogr., 63, https://doi.org/10.1002/lno.10718, 2017.
Orth, R. J., Carruthers, T. J. B., Dennison, W. C., Duarte, C. M., Fourqurean, J. W., Heck, K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Olyarnik, S., Short, F. T., Waycott, M., and Williams, S. L.: A global crisis for seagrass ecosystems, OUP Academic., https://doi.org/10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO;2, 2006.
Patriquin, D.G: The origin of nitrogen and phosphorus for growth of the marine angiosperm Thalassia testudinum, Mar. Biol. 15, 35–46, https://doi.org/10.1007/BF00347435, 1972.
Pelletier, G., Lewis, E., and Wallace, D. W. R.: CO2SYS. XLS: A Calculator for the CO2 System in Seawater for Microsoft Excel/VBA, Version 16, Washington State Department of Ecology, Washington DC, https://www.ecy.wa.gov/programs/eap/models.html (last access: 22 September 2025), 2011.
Ralph, P., Durako, M., Enríquez, S., Collier, C., and Doblin, M.: Impact of light limitation on seagrasses, J. Exp. Mar. Biol. Ecol., 350, 176–193, https://doi.org/10.1016/j.jembe.2007.06.017, 2007.
Ren, Y., Liu, S., Luo, H., Jiang, Z., Liang, J., Wu, Y., Huang, X., and Macreadie, P. I.: Seagrass decline weakens sediment organic carbon stability, Sci. Total Environ., 937, 173523, https://doi.org/10.1016/j.scitotenv.2024.173523, 2024.
Rheuban, J. E., Berg, P., and McGlathery, K. J.: Ecosystem metabolism along a colonization gradient of eelgrass (Zostera marina) measured by eddy correlation, Limnol. Oceanogr., 59, 1376–1387, 2014.
Roth, F., Wild, C., Carvalho, S., Rädecker, N., Voolstra, C. R., Kürten, B., Anlauf, H., El-Khaled, Y. C., Carolan, R., and Jones, B. H.: An in situ approach for measuring biogeochemical fluxes in structurally complex benthic communities, Methods Ecol. Evol., 10, 712–725, https://doi.org/10.1111/2041-210x.13151, 2019.
Saderne, V., Geraldi, N. R., Macreadie, P. I., Maher, D. T., Middelburg, J. J., Serrano, O., Almahasheer, H., Arias-Ortiz, A., Cusack, M., Eyre, B. D., Fourqurean, J. W., Kennedy, H., Krause-Jensen, D., Kuwae, T., Lavery, P. S., Lovelock, C. E., Marbà, N., Masqué, P., Mateo, M. A., Mazarrasa, I., McGlathery, K. J., Oreska, M. P. J., Sanders, C. J., Santos, I. R., Smoak, J. M., Tanaya, T., Watanabe, K., and Duarte, C. M.: Role of carbonate burial in Blue Carbon budgets, Nat. Commun., 10, 1106, https://doi.org/10.1038/s41467-019-08842-6, 2019.
Schneider, K., Levy, O., Dubinsky, Z., and Erez, J.: In situ diel cycles of photosynthesis and calcification in hermatypic corals, Limnol. Oceanogr., 54, 1995–2002, https://doi.org/10.4319/lo.2009.54.6.1995, 2009.
Short, F. T., Polidoro, B., Livingstone, S. R., Carpenter, K. E., Bandeira, S., Bujang, J. S., Calumpong, H. P., Carruthers, T. J. B., Coles, R. G., Dennison, W. C., Erftemeijer, P. L. A., Fortes, M. D., Freeman, A. S., Jagtap, T. G., Kamal, A. H. M., Kendrick, G. A., Kenworthy, W. J., La Nafie, Y. A., Nasution, I. M., Orth, R. J., Prathep, A., Sanciangco, J. C., van Tussenbroek, B., Vergara, S. G., Waycott, M., and Zieman, J. C.: Extinction risk assessment of the world’s seagrass species, Biol. Conserv., 144, 1961–1971, https://doi.org/10.1016/j.biocon.2011.04.010, 2011.
Smith, S. V.: Parsing the oceanic calcium carbonate cycle: a net atmospheric carbon dioxide source, or a sink?, L&O e-Books, Association for the Sciences of Limnology and Oceanography (ASLO), Waco, TX, ISBN 978-0-9845591-2-1, https://doi.org/10.4319/svsmith.2013.978-0-9845591-2-1, 2013.
Takeshita, Y., McGillis, W., Briggs, E. M., Carter, A. L., Donham, E. M., Martz, T. R., Price, N. N., and Smith, J. E.: Assessment of net community production and calcification of a coral reef using a boundary layer approach, J. Geophys. Res.-Oceans, 121, 5655–5671, 2016.
Van Dam, B. R., Lopes, C., Osburn, C. L., and Fourqurean, J. W.: Net heterotrophy and carbonate dissolution in two subtropical seagrass meadows, Biogeosciences, 16, 4411–4428, https://doi.org/10.5194/bg-16-4411-2019, 2019.
Van Dam, B. R., Zeller, M. A., Lopes, C., Smyth, A. R., Böttcher, M. E., Osburn, C. L., Zimmerman, T., Pröfrock, D., Fourqurean, J. W., and Thomas, H.: Calcification-driven CO2 emissions exceed “Blue Carbon” sequestration in a carbonate seagrass meadow, Sci. Adv., 7, https://doi.org/10.1126/sciadv.abj1372, 2021.
Walker, D. and Woelkerling, W.: Quantitative study of sediment contribution by epiphytic coralline red algae in seagrass meadows in Shark Bay, Western Australia, Mar. Ecol. Prog. Ser., 43, 71–77, 1988.
Ward, M., Kindinger, T. L., Hirsh, H. K., Hill, T. M., Jellison, B. M., Lummis, S., Rivest, E. B., Waldbusser, G. G., Gaylord, B., and Kroeker, K. J.: Reviews and syntheses: Spatial and temporal patterns in seagrass metabolic fluxes, Biogeosciences, 19, 689–699, https://doi.org/10.5194/bg-19-689-2022, 2022.
Waycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., Calladine, A., Fourqurean, J. W., Heck, K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Short, F. T., and Williams, S. L.: Accelerating loss of seagrasses across the globe threatens coastal ecosystems, P. Natl. A. Sci., 106, 12377–12381, https://doi.org/10.1073/pnas.0905620106, 2009.
Yang, Y.-P., Fong, S.-C., and Liu, H.-Y.: Taxonomy and distribution of seagrasses in Taiwan, Taiwania, 47, 54–61, 2002.
Yates, K. K. and Halley, R. B.: Measuring coral reef community metabolism using new benthic chamber technology, Coral Reefs, 22, 247–255, https://doi.org/10.1007/s00338-003-0314-5, 2003.
Yates, K. K. and Halley, R. B.: Diurnal variation in rates of calcification and carbonates sediment dissolution in Florida Bay, Estuar. Coasts, 29, 24–39, 2006.
Short summary
Seagrass restoration serves as a nature-based solution for carbon dioxide removal. We examined the organic carbon and carbonate dynamics of restored seagrass (SG) and bare sediment (BS) using ex situ core incubations. SG exhibited higher net ecosystem metabolism compared to BS, while no significant difference was observed in net ecosystem calcification. Consequently, SG demonstrated a significantly enhanced overall capacity for carbon uptake.
Seagrass restoration serves as a nature-based solution for carbon dioxide removal. We examined...
Altmetrics
Final-revised paper
Preprint