Articles | Volume 23, issue 1
https://doi.org/10.5194/bg-23-387-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-23-387-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Fucoidan carbon is stored in coastal vegetated ecosystems
Inga Hellige
Marum Center for Environmental Research, University of Bremen, Bremen, 28359, Germany
Max-Planck Institute for Marine Microbiology, Bremen, 28359, Germany
Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, 45296, Sweden
Aman Akeerath Mundanatt
Marum Center for Environmental Research, University of Bremen, Bremen, 28359, Germany
Max-Planck Institute for Marine Microbiology, Bremen, 28359, Germany
Jana C. Massing
Marum Center for Environmental Research, University of Bremen, Bremen, 28359, Germany
Max-Planck Institute for Marine Microbiology, Bremen, 28359, Germany
Marum Center for Environmental Research, University of Bremen, Bremen, 28359, Germany
Related authors
No articles found.
Morgan Reed Raven, Nitai Amiel, Dror L. Angel, James P. Barry, Thomas M. Blattmann, Laura Boicenco, Antoine Crémière, Natalya Evans, Nora Gallarotti, Sebastian Haas, Jan-Hendrik Hehemann, Pranay Lal, David Lordkipanidze, Tiia Luostarinen, Aaron M. Martinez, Allison J. Matzelle, Selma Menabit, Mihaela Muresan, Andreas Neumann, Jean-Daniel Paris, Christopher R. Pearce, Nick Reynard, Daniel L. Sanchez, Florence Schubotz, Violeta Slabakova, Adrian Stanica, Andrew K. Sweetman, Tina Treude, Yoana G. Voynova, and D. Nikolaos Zarokanellos
EGUsphere, https://doi.org/10.5194/egusphere-2025-6086, https://doi.org/10.5194/egusphere-2025-6086, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
In addition to reducing emissions, vast quantities of CO2 will need to be removed from the atmosphere to meet climate goals. One strategy known as Marine Anoxic Carbon Storage (MACS) would bury plant carbon for thousands of years in parts in the ocean that lack oxygen, where carbon preservation can be highly efficient. We evaluate the environmental and other impacts of hypothetical large-scale MACS deployment from an interdisciplinary, international perspective and present a research roadmap.
Cited articles
Abdullah, M. I. and Fredriksen, S.: Production, respiration and exudation of dissolved organic matter by the kelp Laminaria hyperborea along the west coast of Norway, J. Mar. Biol. Ass., 84, 887–894, https://doi.org/10.1017/S002531540401015Xh, 2004.
Almahasheer, H., Serrano, O., Duarte, C. M., Arias-Ortiz, A., Masque, P., and Irigoien, X.: Low Carbon sink capacity of Red Sea mangroves, Sci. Rep., 7, 9700, https://doi.org/10.1038/s41598-017-10424-9, 2017.
Aluwihare, L. I., Repeta, D. J., and Chen, R. F.: A major biopolymeric component to dissolved organic carbon in surface sea water, Nature, 387, 166–169, https://doi.org/10.1038/387166a0, 1997.
Aluwihare, L. I., Repeta, D. J., and Chen, R. F.: Chemical composition and cycling of dissolved organic matter in the Mid-Atlantic Bight, Deep-Sea Res. Pt. II, 49, 4421–4437, https://doi.org/10.1016/S0967-0645(02)00124-8, 2002.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.r-project.org/ (last access: 13 January 2026), 2020.
Arnosti, C., Fuchs, B. M., Amann, R., and Passow, U.: Contrasting extracellular enzyme activities of particle-associated bacteria from distinct provinces of the North Atlantic Ocean, Front. Microbio., 3, https://doi.org/10.3389/fmicb.2012.00425, 2012.
Becker, S., Tebben, J., Coffinet, S., Wiltshire, K., Iversen, M. H., Harder, T., Hinrichs, K.-U., and Hehemann, J.-H.: Laminarin is a major molecule in the marine carbon cycle, P. Natl. Acad. Sci. USA, 117, 6599–6607, https://doi.org/10.1073/pnas.1917001117, 2020.
Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.: Julia: A Fresh Approach to Numerical Computing, SIAM Review, 59, 65–98, https://doi.org/10.1137/141000671, 2017.
Bligh, M., Buck-Wiese, H., Sichert, A., Bercovici, S. K., Hellige, I., Marchant, H., Iversen, M., Sauer, U., Dittmar, T., Arnosti, C., Liebeke, M., and Hehemann, J.-H.: Selective preservation of fucose-rich oligosaccharides in the North Atlantic Ocean, bioRxiv [preprint], https://doi.org/10.1101/2024.09.20.613644, 2024.
Buck-Wiese, H., Andskog, M. A., Nguyen, N. P., Bligh, M., Asmala, E., Vidal-Melgosa, S., Liebeke, M., Gustafsson, C., and Hehemann, J.-H.: Fucoid brown algae inject fucoidan carbon into the ocean, P. Natl. Acad. Sci. USA, 120, e2210561119, https://doi.org/10.1073/pnas.2210561119, 2023.
Chin, W.-C., Orellana, M. V., and Verdugo, P.: Spontaneous assembly of marine dissolved organic matter into polymer gels, Nature, 391, 568–572, https://doi.org/10.1038/35345, 1998.
Coifman, R. R., Lafon, S., Lee, A. B., Maggioni, M., Nadler, B., Warner, F., and Zucker, S. W.: Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps, P. Natl. Acad. Sci. USA, 102, 7426–7431, https://doi.org/10.1073/pnas.0500334102, 2005.
Cornuault, V., Manfield, I. W., Ralet, M., and Knox, J. P.: Epitope detection chromatography: a method to dissect the structural heterogeneity and inter-connections of plant cell-wall matrix glycans, The Plant Journal, 78, 715–722, https://doi.org/10.1111/tpj.12504, 2014.
De Brouwer, J. and Stal, L.: Short-term dynamics in microphytobenthos distribution and associated extracellular carbohydrates in surface sediments of an intertidal mudflat, Mar. Ecol. Prog. Ser., 218, 33–44, https://doi.org/10.3354/meps218033, 2001.
Dubois, M., Gilles, K., Hamilton, J. K., Rebers, P. A., and Smith, F.: A Colorimetric Method for the Determination of Sugars, Nature, 167–167, 1951.
Engel, A. and Händel, N.: A novel protocol for determining the concentration and composition of sugars in particulate and in high molecular weight dissolved organic matter (HMW-DOM) in seawater, Marine Chem., 127, 180–191, https://doi.org/10.1016/j.marchem.2011.09.004, 2011.
Engel, A., Thoms, S., Riebesell, U., Rochelle-Newall, E., and Zondervan, I.: Polysaccharide aggregation as a potential sink of marine dissolved organic carbon, Nature, 428, 929–932, https://doi.org/10.1038/nature02453, 2004.
Fahimipour, A. K. and Gross, T.: Mapping the bacterial metabolic niche space, Nat. Commun., 11, 4887, https://doi.org/10.1038/s41467-020-18695-z, 2020.
Felden, J., Möller, L., Schindler, U., Huber, R., Schumacher, S., Koppe, R., Diepenbroek, M., and Glöckner, F. O.: PANGAEA – Data Publisher for Earth & Environmental Science, Sci. Data, 10, 347, https://doi.org/10.1038/s41597-023-02269-x, 2023.
Filbee-Dexter, K. and Wernberg, T.: Substantial blue carbon in overlooked Australian kelp forests, Sci. Rep., 10, 12341, https://doi.org/10.1038/s41598-020-69258-7, 2020.
Gattuso, J.-P., Magnan, A. K., Bopp, L., Cheung, W. W. L., Duarte, C. M., Hinkel, J., Mcleod, E., Micheli, F., Oschlies, A., Williamson, P., Billé, R., Chalastani, V. I., Gates, R. D., Irisson, J.-O., Middelburg, J. J., Pörtner, H.-O., and Rau, G. H.: Ocean Solutions to Address Climate Change and Its Effects on Marine Ecosystems, Front. Mar. Sci., 5, 337, https://doi.org/10.3389/fmars.2018.00337, 2018.
Giljan, G., Brown, S., Lloyd, C. C., Ghobrial, S., Amann, R., and Arnosti, C.: Selfish bacteria are active throughout the water column of the ocean, ISME Communications, 3, 11, https://doi.org/10.1038/s43705-023-00219-7, 2023.
Hagger, V., Waltham, N. J., and Lovelock, C. E.: Opportunities for coastal wetland restoration for blue carbon with co-benefits for biodiversity, coastal fisheries, and water quality, Ecosystem Services, 55, 101423, https://doi.org/10.1016/j.ecoser.2022.101423, 2022.
Hellige, I.: Algal-Derived Carbon Transported into Coastal Vegetated Ecosystems. Created in BioRender, https://BioRender.com/x10y435, last access: 28 July 2025.
Hellige, I., Akeerath Mundanatt, A., Fett, T.-M., Wölfelschneider, M., Prugger, Je., Geuer, J. K., and Reents, S.: Total carbohydrates quantified in sediment cores from coastal vegetated ecosystems, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.979910, 2025a.
Hellige, I., Akeerath Mundanatt, A., Fett, T.-M., Wölfelschneider, M., Prugger, J., Geuer, J. K., and Reents, S.: Polysaccharides quantified in sediment cores from coastal vegetated ecosystems, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.979911, 2025b.
Hellige, I., Akeerath Mundanatt, A., Fett, T.-M., Wölfelschneider, M., Prugger, J., Geuer, J. K., and Reents, S.: Monosaccharides quantified in sediment cores from coastal vegetated ecosystems, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.979909, 2025c.
Hellige, I., Akeerath Mundanatt, A., Fett, T.-M., Wölfelschneider, M., Prugger, J., Geuer, J. K., and Reents, S.: Polysaccharide fucoidan BAM1 and arabinogalactan-protein glycan JIM13 antibody binding in sediment cores from coastal vegetated ecosystems, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.979912, 2025d.
Hellige, I., Baiko, D., Geuer, J. K., and Imai, B.: Monosaccharides quantified in porewater samples from coastal vegetated ecosystems, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.975016, 2025e.
Hellige, I., Baiko, D., Geuer, J. K., and Imai, B.: Polysaccharide fucoidan BAM1 antibody binding in porewater samples from coastal vegetated ecosystems, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.977549, 2025f.
Huang, G., Vidal-Melgosa, S., Sichert, A., Becker, S., Fang, Y., Niggemann, J., Iversen, M. H., Cao, Y., and Hehemann, J.: Secretion of sulfated fucans by diatoms may contribute to marine aggregate formation, Limnol. Oceanogr., 66, 3768–3782, https://doi.org/10.1002/lno.11917, 2021.
Iversen, M. H.: Carbon Export in the Ocean: A Biologist's Perspective, Annu. Rev. Mar. Sci., 15, 357–381, https://doi.org/10.1146/annurev-marine-032122-035153, 2023.
Jennerjahn, T. C. and Ittekkot, V.: Relevance of mangroves for the production and deposition of organic matter along tropical continental margins, Naturwissenschaften, 89, 23–30, https://doi.org/10.1007/s00114-001-0283-x, 2002.
Karimi, Z., Abdi, E., Deljouei, A., Cislaghi, A., Shirvany, A., Schwarz, M., and Hales, T. C.: Vegetation-induced soil stabilization in coastal area: An example from a natural mangrove forest, CATENA, 216, 106410, https://doi.org/10.1016/j.catena.2022.106410, 2022.
Kennedy, H., Beggins, J., Duarte, C. M., Fourqurean, J. W., Holmer, M., Marbà, N., and Middelburg, J. J.: Seagrass sediments as a global carbon sink: Isotopic constraints, Global Biogeochemical Cycles, 24, 2010GB003848, https://doi.org/10.1029/2010GB003848, 2010.
Koch, H., Dürwald, A., Schweder, T., Noriega-Ortega, B., Vidal-Melgosa, S., Hehemann, J.-H., Dittmar, T., Freese, H. M., Becher, D., Simon, M., and Wietz, M.: Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides, The ISME Journal, 13, 92–103, https://doi.org/10.1038/s41396-018-0252-4, 2019.
Krause-Jensen, D. and Duarte, C. M.: Substantial role of macroalgae in marine carbon sequestration, Nat. Geosci., 9, 737–742, https://doi.org/10.1038/ngeo2790, 2016.
Krause-Jensen, D., Lavery, P., Serrano, O., Marbà, N., Masque, P., and Duarte, C. M.: Sequestration of macroalgal carbon: the elephant in the Blue Carbon room, Biol. Lett., 14, 20180236, https://doi.org/10.1098/rsbl.2018.0236, 2018.
Lloyd, C. C., Brown, S., Balmonte, J. P., Hoarfrost, A., Ghobrial, S., and Arnosti, C.: Particles act as `specialty centers' with expanded enzymatic function throughout the water column in the western North Atlantic, Front. Microbiol., 13, 882333, https://doi.org/10.3389/fmicb.2022.882333, 2022.
Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., and Silliman, B. R.: A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2, Front. Ecol. Environ., 9, 552–560, https://doi.org/10.1890/110004, 2011.
Mengis, N., Paul, A., and Fernández-Méndez, M.: Counting (on) blue carbon – Challenges and ways forward for carbon accounting of ecosystem-based carbon removal in marine environments, PLOS Clim., 2, e0000148, https://doi.org/10.1371/journal.pclm.0000148, 2023.
Miksch, S., Orellana, L. H., Oggerin De Orube, M., Vidal-Melgosa, S., Solanki, V., Hehemann, J.-H., Amann, R., and Knittel, K.: Taxonomic and functional stability overrules seasonality in polar benthic microbiomes, The ISME Journal, 18, wrad005, https://doi.org/10.1093/ismejo/wrad005, 2024.
Moncreiff, C. and Sullivan, M.: Trophic importance of epiphytic algae in subtropical seagrass beds: evidence from multiple stable isotope analyses, Mar. Ecol. Prog. Ser., 215, 93–106, https://doi.org/10.3354/meps215093, 2001.
Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Borman, T., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H. B. A., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M. O., Lahti, L., Martino, C., McGlinn, D., Ouellette, M.-H., Ribeiro Cunha, E., Smith, T., Stier, A., Ter Braak, C. J. F., and Weedon, J.: vegan: Community Ecology Package, CRAN [code], https://doi.org/10.32614/CRAN.package.vegan, 2001.
Ortega, A., Geraldi, N. R., Alam, I., Kamau, A. A., Acinas, S. G., Logares, R., Gasol, J. M., Massana, R., Krause-Jensen, D., and Duarte, C. M.: Important contribution of macroalgae to oceanic carbon sequestration, Nat. Geosci., 12, 748–754, https://doi.org/10.1038/s41561-019-0421-8, 2019.
Paine, E. R., Schmid, M., Boyd, P. W., Diaz-Pulido, G., and Hurd, C. L.: Rate and fate of dissolved organic carbon release by seaweeds: A missing link in the coastal ocean carbon cycle, J. Phycol., 57, 1375–1391, https://doi.org/10.1111/jpy.13198, 2021.
Pante, E. and Simon-Bouhet, B.: marmap: A Package for Importing, Plotting and Analyzing Bathymetric and Topographic Data in R, PLoS ONE, 8, e73051, https://doi.org/10.1371/journal.pone.0073051, 2013.
Priest, T., Vidal-Melgosa, S., Hehemann, J.-H., Amann, R., and Fuchs, B. M.: Carbohydrates and carbohydrate degradation gene abundance and transcription in Atlantic waters of the Arctic, ISME Communications, 3, 130, https://doi.org/10.1038/s43705-023-00324-7, 2023.
Reed, D. C., Carlson, C. A., Halewood, E. R., Nelson, J. C., Harrer, S. L., Rassweiler, A., and Miller, R. J.: Patterns and controls of reef-scale production of dissolved organic carbon by giant kelp Macrocystis pyrifera, Limnol. Oceanogr., 60, 1996–2008, https://doi.org/10.1002/lno.10154, 2015.
Salmeán, A. A., Willats, W. G. T., Ribeiro, S., Andersen, T. J., and Ellegaard, M.: Over 100-Year Preservation and Temporal Fluctuations of Cell Wall Polysaccharides in Marine Sediments, Front. Plant Sci., 13, 785902, https://doi.org/10.3389/fpls.2022.785902, 2022.
Sichert, A., Corzett, C. H., Schechter, M. S., Unfried, F., Markert, S., Becher, D., Fernandez-Guerra, A., Liebeke, M., Schweder, T., Polz, M. F., and Hehemann, J.-H.: Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan, Nat. Microbiol., 5, 1026–1039, https://doi.org/10.1038/s41564-020-0720-2, 2020.
Smith, D. J. and Underwood, G. J. C.: Exopolymer production by intertidal epipelic diatoms, Limnol. Oceanogr., 43, 1578–1591, https://doi.org/10.4319/lo.1998.43.7.1578, 1998.
Sogin, E. M., Michellod, D., Gruber-Vodicka, H. R., Bourceau, P., Geier, B., Meier, D. V., Seidel, M., Ahmerkamp, S., Schorn, S., D'Angelo, G., Procaccini, G., Dubilier, N., and Liebeke, M.: Sugars dominate the seagrass rhizosphere, Nat. Ecol. Evol., 6, 866–877, https://doi.org/10.1038/s41559-022-01740-z, 2022.
Temmink, R. J. M., Lamers, L. P. M., Angelini, C., Bouma, T. J., Fritz, C., Van De Koppel, J., Lexmond, R., Rietkerk, M., Silliman, B. R., Joosten, H., and Van Der Heide, T.: Recovering wetland biogeomorphic feedbacks to restore the world's biotic carbon hotspots, Science, 376, eabn1479, https://doi.org/10.1126/science.abn1479, 2022.
Thomas, F., Le Duff, N., Wu, T.-D., Cébron, A., Uroz, S., Riera, P., Leroux, C., Tanguy, G., Legeay, E., and Guerquin-Kern, J.-L.: Isotopic tracing reveals single-cell assimilation of a macroalgal polysaccharide by a few marine Flavobacteria and Gammaproteobacteria, The ISME Journal, 15, 3062–3075, https://doi.org/10.1038/s41396-021-00987-x, 2021.
Vidal-Melgosa, S., Sichert, A., Francis, T. B., Bartosik, D., Niggemann, J., Wichels, A., Willats, W. G. T., Fuchs, B. M., Teeling, H., Becher, D., Schweder, T., Amann, R., and Hehemann, J.-H.: Diatom fucan polysaccharide precipitates carbon during algal blooms, Nat. Commun., 12, 1150, https://doi.org/10.1038/s41467-021-21009-6, 2021.
Vidal-Melgosa, S., Lagator, M., Sichert, A., Priest, T., Pätzold, J., and Hehemann, J.-H.: Not digested: algal glycans move carbon dioxide into the deep-sea, bioRxiv [preprint], https://doi.org/10.1101/2022.03.04.483023, 2022.
Volkman, J. K., Revill, A. T., Holdsworth, D. G., and Fredericks, D.: Organic matter sources in an enclosed coastal inlet assessed using lipid biomarkers and stable isotopes, Organic Geochemistry, 39, 689–710, https://doi.org/10.1016/j.orggeochem.2008.02.014, 2008.
Voragen, A. G. J., Coenen, G.-J., Verhoef, R. P., and Schols, H. A.: Pectin, a versatile polysaccharide present in plant cell walls, Struct. Chem., 20, 263–275, https://doi.org/10.1007/s11224-009-9442-z, 2009.
Wada, S. and Hama, T.: Contribution of macroalgae to coastal dissolved organic matter pool, Estuar. Coast. Shelf Sci., 129, 77–85, https://doi.org/10.1016/j.ecss.2013.06.007, 2013.
Wada, S., Aoki, M. N., Tsuchiya, Y., Sato, T., Shinagawa, H., and Hama, T.: Quantitative and qualitative analyses of dissolved organic matter released from Ecklonia cava Kjellman, in Oura Bay, Shimoda, Izu Peninsula, Japan, Journal of Experimental Marine Biology and Ecology, 349, 344–358, https://doi.org/10.1016/j.jembe.2007.05.024, 2007.
Wada, S., Aoki, M., Mikami, A., Komatsu, T., Tsuchiya, Y., Sato, T., Shinagawa, H., and Hama, T.: Bioavailability of macroalgal dissolved organic matter in seawater, Mar. Ecol. Prog. Ser., 370, 33–44, https://doi.org/10.3354/meps07645, 2008.
Watanabe, K., Yoshida, G., Hori, M., Umezawa, Y., Moki, H., and Kuwae, T.: Macroalgal metabolism and lateral carbon flows can create significant carbon sinks, Biogeosciences, 17, 2425–2440, https://doi.org/10.5194/bg-17-2425-2020, 2020.
Short summary
Coastal plant habitats such as mangroves, seagrass meadows and saltmarshes store carbon. While these plants absorb carbon dioxide and trap carbon in sediments via their roots, we also discovered that carbon from algae is transported into these systems and preserved in the soil. By analyzing sugars from plants and algae, we show that restoring these ecosystems helps lock away both local and distant carbon, offering powerful benefits for climate and biodiversity.
Coastal plant habitats such as mangroves, seagrass meadows and saltmarshes store carbon. While...
Altmetrics
Final-revised paper
Preprint