Articles | Volume 23, issue 2
https://doi.org/10.5194/bg-23-623-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-23-623-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Machine learning-based Alpine treeline ecotone detection on Xue Mountain in Taiwan
Geng-Gui Wang
Department of Civil Engineering, and Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung City 402, Taiwan
Min-Chun Liao
Taiwan Forestry Research Institute, Taipei City 100, Taiwan
Experimental Forest, National Chung Hsing University, 145 Xingda Rd., Taichung City 402, Taiwan
Department of Civil Engineering, and Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung City 402, Taiwan
Smart Sustainable New Agriculture Research Center (SMARTer), and i-Center for Advanced Science and Technology, National Chung Hsing University, Taichung City 402, Taiwan
Hsy-Yu Tzeng
Department of Forestry, National Chung Hsing University, Taichung City 402, Taiwan
Related authors
G. G. Wang and H. P. Tsai
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1033–1038, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1033-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1033-2022, 2022
G. G. Wang and H. P. Tsai
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1033–1038, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1033-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1033-2022, 2022
Cited articles
Abutaleb, K., Newete, S. W., Mangwanya, S., Adam, E., and Byrne, M. J.: Mapping eucalypts trees using high resolution multispectral images: A study comparing WorldView 2 vs. SPOT 7, Egypt. J. Remote Sens. Space Sci., 24, 333–342, https://doi.org/10.1016/j.ejrs.2020.09.001, 2021.
Bader, M. Y., Llambí, L. D., Case, B. S., Buckley, H. L., Toivonen, J. M., Camarero, J. J., Cairns, D. M., Brown, C. D., Wiegand, T., and Resler, L. M.: A global framework for linking alpine-treeline ecotone patterns to underlying processes, Ecography, 44, 265–292, https://doi.org/10.1111/ecog.05285, 2021.
Belgiu, M. and Drăguţ, L.: Random forest in remote sensing: A review of applications and future directions, ISPRS J. Photogramm. Remote Sens., 114, 24–31, https://doi.org/10.1016/j.isprsjprs.2016.01.011, 2016.
Bolyn, C., Michez, A., Gaucher, P., Lejeune, P., and Bonnet, S.: Forest mapping and species composition using supervised per pixel classification of Sentinel-2 imagery, Biotechnol. Agron. Soc., 22, https://doi.org/10.25518/1780-4507.16524, 2018.
Boston, T., Van Dijk, A., Larraondo, P. R., and Thackway, R.: Comparing CNNs and random forests for Landsat image segmentation trained on a large proxy land cover dataset, Remote Sens., 14, 3396, https://doi.org/10.3390/rs14143396, 2022.
Breiman, L.: Random forests. Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Carpenter, J. and Bithell, J.: Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians, Stat. Med., 19, 1141–1164, https://doi.org/10.1002/(sici)1097-0258(20000515)19:9<1141::aid-sim479>3.0.co;2-f, 2000.
Carrieri, E., Morresi, D., Meloni, F., Anselmetto, N., Lingua, E., Marzano, R., Urbinati, C., Vitali, A., and Garbarino, M.: Very-high resolution aerial imagery and deep learning uncover the fine-scale spatial patterns of elevational treelines, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-3757, 2024.
Chen, J., Tan, R., and Yang, Y.: Research on an innovative feature importance recognition algorithm based on GINI-OOB index, in 2023 IEEE International Conference on Image Processing and Computer Applications (ICIPCA), Changchun, China, 862–866, https://doi.org/10.1109/ICIPCA59209.2023.10257830, 2023.
Chen, W., Ding, H., Li, J., Chen, K., and Wang, H.: Alpine treelines as ecological indicators of global climate change: Who has studied? What has been studied?, Ecol. Inform., 70, 101691, https://doi.org/10.1016/j.ecoinf.2022.101691, 2022.
Chen, Y. A.: A Case Study of Rescue Sophistication of Mountain's Accidental Incident-Taking the National Park of Yangminshan in Taipei City, unpublished master's thesis, China University of Science and Technology, https://hdl.handle.net/11296/g2msxn (last access: 5 December 2024), 2017.
Chiu, C. A., Tzeng, H. Y., Lin, C. T., Chang, K. C., and Liao, M. C.: Spatial distribution and climate warming impact on Abies kawakamii forest on a subtropical island, Plants, 11, 1346, https://doi.org/10.3390/plants11101346, 2022.
Chung, M. E., Doyog, N. D., and Lin, C.: Monitoring of the trend of timberlines in Taiwan amidst climate change through multi-temporal satellite images, in 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 6488–6491, https://doi.org/10.1109/IGARSS47720.2021.9553538, 2021.
Croft, H., Chen, J. M., and Zhang, Y.: The applicability of empirical vegetation indices for determining leaf chlorophyll content over different leaf and canopy structures, Ecol. Complex., 17, 119–130, https://doi.org/10.1016/j.ecocom.2013.11.005, 2014.
Davis, E. L., Brown, R., Daniels, L., Kavanagh, T., and Gedalof, Z. E.: Regional variability in the response of alpine treelines to climate change, Clim. Change, 162, 1365–1384, https://doi.org/10.1007/s10584-020-02743-0, 2020.
Davison, A. C. and Hinkley, D. V.: Bootstrap Methods and their Applications, Cambridge University Press, Cambridge, UK, ISBN: 9780521574716, 1997.
Du, H., Liu, J., Li, M. H., Büntgen, U., Yang, Y., Wang, L., Wu, Z., and He, H. S.: Warming-induced upward migration of the alpine treeline in the Changbai Mountains, northeast China, Global Change Biol., 24, 1256–1266, https://doi.org/10.1111/gcb.13963, 2018.
Efron, B. and Tibshirani, R. J.: An Introduction to the Bootstrap, CRC Press, Boca Raton, FL, USA, ISBN 0-412-04231-2, 1994.
Engler, R., Randin, C. F., Thuiller, W., Dullinger, S., Zimmermann, N. E., Araújo, M. B., Pearman, P. B., Lay, G. L., Piedallu, C., Albert, C. H., Choler, P., Coldea, G., Lamo, X. D., Dirnböck, T., Gégout, J. C., Gómez-García, D., Grytnes, J. A., Heegaard, E., Høistad, F., Nogués-Bravo, D., Normand, S., Puşcaş, M., Sebastià, M. T., Stanisci, A., Theurillat, J. P., Trivedi, M. R., Vittoz, P., and Guisan, A.: 21st century climate change threatens mountain flora unequally across Europe, Global Change Biol., 17, 2330–2341, https://doi.org/10.1111/j.1365-2486.2010.02393.x, 2011.
Freudenberg, M., Nölke, N., Agostini, A., Urban, K., Wörgötter, F., and Kleinn, C.: Large scale palm tree detection in high resolution satellite images using U-Net, Remote Sens., 11, 312, https://doi.org/10.3390/rs11030312, 2019.
Garbarino, M., Morresi, D., Anselmetto, N., and Weisberg, P. J.: Treeline remote sensing: from tracking treeline shifts to multi-dimensional monitoring of ecotonal change, Remote Sens. Ecol. Conserv., 9, 729–742, https://doi.org/10.1002/rse2.351, 2023.
Ge, S., Zhang, J., Pan, Y., Yang, Z., and Zhu, S.: Transferable deep learning model based on the phenological matching principle for mapping crop extent, Int. J. Appl. Earth Obs. Geoinf., 102, 102451, https://doi.org/10.1016/j.jag.2021.102451, 2021.
Gillespie, A. R., Kahle, A. B., and Walker, R. E.: Color enhancement of highly correlated images, II. Channel ratio and “chromaticity” transformation techniques, Remote Sens. Environ., 22, 343–365, https://doi.org/10.1016/0034-4257(87)90088-5, 1987.
Gitelson, A. and Merzlyak, M. N.: Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves, Spectral features and relation to chlorophyll estimation, J. Plant Physiol., 143, 286–292, https://doi.org/10.1016/S0176-1617(11)81633-0, 1994.
Greenwood, S., Chen, J. C., Chen, C. T., and Jump, A. S.: Strong topographic sheltering effects lead to spatially complex treeline advance and increased forest density in a subtropical mountain region, Glob. Change Biol., 20, 3756–3766, https://doi.org/10.1111/gcb.12710, 2014.
Guo, W., Rees, G., and Hofgaard, A.: Delineation of the forest-tundra ecotone using texture-based classification of satellite imagery, Int. J. Remote Sens., 41, 6384–6408, https://doi.org/10.1080/01431161.2020.1734254, 2020.
Hall-Beyer, M.: GLCM texture: A tutorial v. 3.0 March 2017, University of Calgary, https://ucalgary.scholaris.ca/items/8833a1fc-5efb-4b9b-93a6-ac4ff268091c (last access: 14 January 2025), 2017.
Hościło, A. and Lewandowska, A.: Mapping forest type and tree species on a regional scale using multi-temporal Sentinel-2 data, Remote Sens., 11, 929, https://doi.org/10.3390/rs11080929, 2019.
Hsu, S. Y.: Texture-tone analysis for automated land-use mapping, Photogramm. Eng. Remote Sens., 44, 1393–1404, 1978.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L. G.: Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sens. Environ., 83, 195–213, https://doi.org/10.1016/S0034-4257(02)00096-2, 2002.
Huss, M., Bookhagen, B., Huggel, C., Jacobsen, D., Bradley, R. S., Clague, J. J., Vuille, M., Buytaert, W., Cayan, D. R., Greenwood, G., Mark, B. G., Milner, A. M., Weigartner, R., and Winder, M.: Toward mountains without permanent snow and ice, Earth's Future, 5, 418–435, https://doi.org/10.1002/2016EF000514, 2017.
Immitzer, M., Atzberger, C., and Koukal, T.: Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data, Remote Sens., 4, 2661–2693, https://doi.org/10.3390/rs4092661, 2012.
Immitzer, M., Neuwirth, M., Böck, S., Brenner, H., Vuolo, F., and Atzberger, C.: Optimal input features for tree species classification in Central Europe based on multi-temporal Sentinel-2 data, Remote Sens., 11, 2599, https://doi.org/10.3390/rs11222599, 2019.
Jackson, C. M. and Adam, E.: Machine learning classification of endangered tree species in a tropical submontane forest using worldview-2 multispectral satellite imagery and imbalanced dataset, Remote Sens., 13, 4970, https://doi.org/10.3390/rs13244970, 2021.
Jiang, H., Wang, S., Cao, X., Yang, C., Zhang, Z., and Wang, X.: A shadow-eliminated vegetation index (SEVI) for removal of self and cast shadow effects on vegetation in rugged terrains, Int. J. Digit. Earth, 12, 1013–1029, https://doi.org/10.1080/17538947.2018.1495770, 2019.
Johnson, J. S., Gaddis, K. D., Cairns, D. M., and Krutovsky, K. V.: Seed dispersal at alpine treeline: An assessment of seed movement within the alpine treeline ecotone, Ecosphere, 8, e01649, https://doi.org/10.1002/ecs2.1649, 2017.
Jombo, S., Adam, E., Byrne, M. J., and Newete, S. W.: Evaluating the capability of Worldview-2 imagery for mapping alien tree species in a heterogeneous urban environment, Cogent Soc. Sci., 6, 1754146, https://doi.org/10.1080/23311886.2020.1754146, 2020.
Jordan, C. F.: Derivation of leaf-area index from quality of light on the forest floor, Ecol., 50, 663–666, https://doi.org/10.2307/1936256, 1969.
Körner, C. and Hoch, G.: Not every high-latitude or high-elevation forest edge is a treeline, J. Biogeogr., 50, 838–845, https://doi.org/10.1111/jbi.14593, 2023.
Körner, C.: Treelines will be understood once the functional difference between a tree and a shrub is, Ambio, 41, 197–206, https://doi.org/10.1007/s13280-012-0313-2, 2012.
Korznikov, K. A., Kislov, D. E., Altman, J., Doležal, J., Vozmishcheva, A. S., and Krestov, P. V.: Using U-Net-like deep convolutional neural networks for precise tree recognition in very high-resolution RGB satellite images, Forests, 12, 66, https://doi.org/10.3390/f12010066, 2021.
Kudo, G., Kohyama, T. I., Chen, K. H., Hsu, T. W., and Wang, C. N.: Seasonal dynamics of floral composition and flower visitors in a subtropical alpine ecosystem in Taiwan, Ecol. Res., 39, 27–41, https://doi.org/10.1111/1440-1703.12426, 2024.
Kuo, C. C., Liu, Y. C., Su, Y., Liu, H. Y., and Lin, C. T.: Responses of alpine summit vegetation under climate change in the transition zone between subtropical and tropical humid environment, Sci. Rep., 12, 13352, https://doi.org/10.1038/s41598-022-17682-2,2022.
Larrinaga, A. R. and Brotons, L.: Greenness indices from a low-cost UAV imagery as tools for monitoring post-fire forest recovery, Drones, 3, 6, https://doi.org/10.3390/drones3010006, 2019.
Li, M. H., Jiang, Y., Wang, A., Li, X., Zhu, W., Yan, C. F., Du, D., Shi, Z., Lei, J., Schönbeck, L., He, P., Yu, F. H., and Wang, X.: Active summer carbon storage for winter persistence in trees at the cold alpine treeline, Tree Physiolo., 38, 1345–1355, https://doi.org/10.1093/treephys/tpy020, 2018.
Li, P. H., Liao, M. C., Tzeng, H. Y., Tseng, Y. H., and Yen, T. M.: Applicability evaluation of tree volume equation for Abies kawakamii (Hayata) Ito based on stem analysis data in Taiwan, J. For. Res., 26, 336–343, https://doi.org/10.1080/13416979.2021.1927502, 2021.
Liao, M. C.: Vegetation Structure of Subalpine Ecosystem in Taiwan: A Case Study of Xue Mountain, Unpublished doctoral dissertation, National Chung Hsing University, https://hdl.handle.net/11296/7wu488 (last access: 5 December 2024), 2016.
Liao, M. C., Wang, W., and Tzeng, H. Y.: Study of the Structure and Competitive Coexistence of Subalpine Krummholz Species in Taiwan, Taiwan J. For. Sci., 38, 203–220, https://doi.org/10.7075/TJFS.202309_38(3).0002, 2023a.
Liao, M. C., Li, P. H., Wang, W., Chiu, C. A., and Tzeng, H. Y.: Structure changes of the subalpine Taiwan fir (Abies kawakamii (Hay.) Ito) forest from 2008 to 2018, J. For. Res., 28, 126–135, https://doi.org/10.1080/13416979.2022.2135523, 2023b.
Lin, J. C., Chiou, C. R., Chan, W. H., and Wu, M. S.: Valuation of forest ecosystem services in Taiwan. Forests, 12(12), 1694, https://doi.org/10.3390/f12121694, 2021.
Lu, X., Zheng, X., Liang, E., Piao, S., Babst, F., Elliott, G. P., Sigdel, S. R., Wang, T., Wang, Y., Li, X., Gao, S., Zhang, L., Sun, J., Li, J., Zhu, H., Rossi, S., Peñuelas, J., and Camarero, J. J.: Patterns, dynamics and drivers of alpine treelines and shrublines, Nat. Rev. Earth Environ., 1–14, https://doi.org/10.1038/s43017-025-00703-9, 2025.
Loranger, H., Zotz, G., and Bader, M. Y.: Early establishment of trees at the alpine treeline: Idiosyncratic species responses to temperature-moisture interactions, AoB Plants, 8, plw053, https://doi.org/10.1093/aobpla/plw053, 2016.
Mao, W., Wang, Y., and Wang, Y.: Real-time detection of between-row weeds using machine vision, in: 2003 ASAE Annual Meeting, p. 1, American Society of Agricultural and Biological Engineers, https://doi.org/10.13031/2013.15381, 2003.
Materka, A. and Strzelecki, M.: Texture analysis methods – a review, COST B11 Technical Report, Institute of Electronics, Technical University of Lodz, Lodz, Poland, 33, https://www.researchgate.net/publication/249723259_Texture_Analysis_Methods_-_A_Review (last access: 18 December 2024), 1998.
Meyer, G. E. and Neto, J. C.: Verification of color vegetation indices for automated crop imaging applications, Comput. Electron. Agric., 63, 282–293, https://doi.org/10.1016/j.compag.2008.03.009, 2008.
Meyer, G. E., Hindman, T. W., and Laksmi, K.: Machine vision detection parameters for plant species identification. In: Precision agriculture and biological quality, 14, January, 1999, 3543, 32-7-335, https://doi.org/10.1117/12.336896, 1999.
Mohapatra, J., Singh, C. P., Tripathi, O. P., and Pandya, H. A.: Remote sensing of alpine treeline ecotone dynamics and phenology in Arunachal Pradesh Himalaya, Int. J. Remote Sens., 40, 7986–8009, https://doi.org/10.1080/01431161.2019.1608383, 2019.
Neuwirthová, E., Lhotáková, Z., Červená, L., Lukeš, P., Campbell, P., and Albrechtová, J.: Asymmetry of leaf internal structure affects PLSR modelling of anatomical traits using VIS-NIR leaf level spectra, Eur. J. Remote Sens., 57, 2292154, https://doi.org/10.1080/22797254.2023.2292154, 2024.
Nguyen, T.-A., Kellenberger, B., and Tuia, D.: Mapping forest in the Swiss Alps treeline ecotone with explainable deep learning, Remote Sens. Environ., 280, 113189, https://doi.org/10.1016/j.rse.2022.113217, 2022.
Nigar, A., Li, Y., Jat Baloch, M. Y., Alrefaei, A. F., and Almutairi, M. H.: Comparison of machine and deep learning algorithms using Google Earth Engine and Python for land classifications, Front. Environ. Sci., 12, 1378443, https://doi.org/10.3389/fenvs.2024.1378443, 2024.
Richardson, A. J. and Wiegand, C. L.: Distinguishing vegetation from soil background information, Photogramm. Eng. Remote Sens., 43, 1541–1552, 1977.
Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G., Hauenstein, S., Lahoz-Monfort, J. J., Schröder, B., Thuiller, W., Warton, D. I., Wintle, B. A., Hartig, F., and Dormann, C. F.: Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure, Ecography, 40, 913-929, https://doi.org/10.1111/ecog.02881, 2017.
Ronneberger, O., Fischer, P., and Brox, T.: U-net: Convolutional networks for biomedical image segmentation, in: Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, 5–9, October, 2015, proceedings, part III 18, Springer international publishing, edited by: Navab, N., Hornegger, J., Wells, W., and Frangi, A., Springer, Cham, 234–241, https://doi.org/10.1007/978-3-319-24574-4_28, 2015.
Rösch, M., Sonnenschein, R., Buchelt, S., and Ullmann, T.: Comparing PlanetScope and Sentinel-2 imagery for mapping mountain pines in the Sarntal Alps, Italy, Remote Sens., 14, 3190, https://doi.org/10.3390/rs14133190, 2022.
Rouse, J. W., Haas, R. H., Schell, J. A., and Deering, D. W.: Monitoring vegetation systems in the Great Plains with ERTS, in: Third Earth Resources Technology Satellite-1 Symposium, Volume I: Technical Presentations, NASA SP-351, NASA, Washington, D.C., 309–317, available at: https://ntrs.nasa.gov/citations/19740022614 (last access: 14 January 2025), 1974.
Rubner, Y., Puzicha, J., Tomasi, C., and Buhmann, J. M.: Empirical evaluation of dissimilarity measures for color and texture, Comput. Vis. Image Underst., 84, 25–43, https://doi.org/10.1006/cviu.2001.0934, 2001.
Rumpf, S. B., Gravey, M., Brönnimann, O., Luoto, M., Cianfrani, C., Mariethoz, G., and Guisan, A.: From white to green: Snow cover loss and increased vegetation productivity in the European Alps, Science, 376, 1119–1122, https://doi.org/10.1126/science.abn6697, 2022.
Sibiya, B., Lottering, R., and Odindi, J.: Discriminating commercial forest species using image texture computed from a worldview-2 pan-sharpened image and partial least squares discriminant analysis, Remote Sens. Appl.: Soc. Environ., 23, 100605, https://doi.org/10.1016/j.rsase.2021.100605, 2021.
Sonnentag, O., Hufkens, K., Teshera-Sterne, C., Young, A. M., Friedl, M., Braswell, B. H., Milliman, T., O'Keefe, J., and Richardson, A. D.: Digital repeat photography for phenological research in forest ecosystems, Agric. Forest Meteorol., 152, 159–177, https://doi.org/10.1016/j.agrformet.2011.09.009, 2012.
Špundová, M., Kučerová, Z., Nožková, V., Opatíková, M., Procházková, L., Klimeš, P., and Nauš, J.: What to Choose for Estimating Leaf Water Status – Spectral Reflectance or In vivo Chlorophyll Fluorescence?, Plant Phenomics, 6, 0243, https://doi.org/10.34133/plantphenomics.0243, 2024.
Stritih, A., Senf, C., Marsoner, T., and Seidl, R.: Mapping the natural disturbance risk to protective forests across the European Alps, J. Environ. Manage., 366, 121659, https://doi.org/10.1016/j.jenvman.2024.121659, 2024.
Terskaia, A., Dial, R. J., and Sullivan, P. F.: Pathways of tundra encroachment by trees and tall shrubs in the western Brooks Range of Alaska, Ecography, 43, 769–778, https://doi.org/10.1111/ecog.05015, 2020.
Wagner, F. H., Sanchez, A., Tarabalka, Y., Lotte, R. G., Ferreira, M. P., Aidar, M. P. M., Gloor, E., Phillips, O. L., and Aragão, L. E. O. C.: Using the U-net convolutional network to map forest types and disturbance in the Atlantic rainforest with very high resolution images, Remote Sens. Ecol. Conserv., 5, 360–375, https://doi.org/10.1002/rse2.111, 2019.
Wang, H., Zhao, Y., Pu, R., and Zhang, Z.: Mapping Robinia pseudoacacia forest health conditions by using combined spectral, spatial, and textural information extracted from IKONOS imagery and random forest classifier, Remote Sens., 7, 9020–9044, https://doi.org/10.3390/rs70709020, 2015.
Wang, W., Liao, M. C., and Tzeng, H. Y.: Competition in Abies kawakamii forests at subtropical high mountain in Taiwan, PLoS ONE, 16, e0254791, https://doi.org/10.1371/journal.pone.0254791, 2021.
Wang, X., Wang, T., Xu, J., Shen, Z., Yang, Y., Chen, A., Wang, S., Liang, E., and Piao, S.: Enhanced habitat loss of the Himalayan endemic flora driven by warming-forced upslope tree expansion, Nat. Ecol. Evol., 6, 890-899, https://doi.org/10.1038/s41559-022-01774-3, 2022.
Wang, Y., Pederson, N., Ellison, A. M., Buckley, H. L., Case, B. S., Liang, E., and Julio Camarero, J.: Increased stem density and competition may diminish the positive effects of warming at alpine treeline, Ecology, 97, 1668–1679, https://doi.org/10.1890/15-1264.1, 2016.
Woebbecke, D. M., Meyer, G. E., Von Bargen, K., and Mortensen, D. A.: Color indices for weed identification under various soil, residue, and lighting conditions, Transactions of the ASAE, 38, 259–269, https://doi.org/10.13031/2013.27838, 1995.
Xu, D., Geng, Q., Jin, C., Xu, Z., and Xu, X.: Tree line identification and dynamics under climate change in Wuyishan National Park based on Landsat images, Remote Sens., 12, 2890, https://doi.org/10.3390/rs12182890, 2020.
Xu, K., Yang, W., and Ye, H.: Thermal infrared reflectance characteristics of natural leaves in 8–14 µm region: Mechanistic modeling and relationships with leaf water content, Remote Sens. Environ., 294, 113631, https://doi.org/10.1016/j.rse.2023.113631, 2023.
Yuan, X., King, D., and Vlcek, J.: Sugar maple decline assessment based on spectral and textural analysis of multispectral aerial videography, Remote Sens. Environ., 37, 47–54, https://doi.org/10.1016/0034-4257(91)90049-C, 1991.
Zheng, Z., Zhu, W., and Zhang, Y.: Seasonally and spatially varied controls of climatic factors on net primary productivity in alpine grasslands on the Tibetan Plateau, Glob. Ecol. Conserv., 21, e00814, https://doi.org/10.1016/j.gecco.2019.e00814, 2020.
Zou, F., Li, G., Xu, G., Fan, Z., Pei, T., Xu, X., and Wang, L.: Alpine treeline dynamics and the special exposure effect in the Hengduan Mountains, Front Plant Sci., 13, 861231, https://doi.org/10.3389/fpls.2022.861231, 2022.
Short summary
Taiwan is characterized by high mountains density, with over 200 peaks exceeding 3,000 meters in elevation. This study analyzes treeline changes in Xue Mountain using satellite images from 2012 and 2021. By applying machine learning methods, we found forest are growing higher, rising by 32.00 ± 4.00 m, and forest cover expanded by 10.09 hectares. These findings help us understand climate change impacts on mountain ecosystems and support sustainable conservation efforts.
Taiwan is characterized by high mountains density, with over 200 peaks exceeding 3,000 meters...
Altmetrics
Final-revised paper
Preprint