Articles | Volume 23, issue 2
https://doi.org/10.5194/bg-23-623-2026
https://doi.org/10.5194/bg-23-623-2026
Research article
 | 
22 Jan 2026
Research article |  | 22 Jan 2026

Machine learning-based Alpine treeline ecotone detection on Xue Mountain in Taiwan

Geng-Gui Wang, Min-Chun Liao, Wei Wang, Hui Ping Tsai, and Hsy-Yu Tzeng

Related authors

USING LONG SHORT-TERM MEMORY MODEL FOR CLOUD FOREST VEGETATION GROWTH STATUS PREDICTION – A CASE STUDY IN SHEI-PA NATIONAL PARK
G. G. Wang and H. P. Tsai
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1033–1038, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1033-2022,https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1033-2022, 2022

Cited articles

Abutaleb, K., Newete, S. W., Mangwanya, S., Adam, E., and Byrne, M. J.: Mapping eucalypts trees using high resolution multispectral images: A study comparing WorldView 2 vs. SPOT 7, Egypt. J. Remote Sens. Space Sci., 24, 333–342, https://doi.org/10.1016/j.ejrs.2020.09.001, 2021. 
Bader, M. Y., Llambí, L. D., Case, B. S., Buckley, H. L., Toivonen, J. M., Camarero, J. J., Cairns, D. M., Brown, C. D., Wiegand, T., and Resler, L. M.: A global framework for linking alpine-treeline ecotone patterns to underlying processes, Ecography, 44, 265–292, https://doi.org/10.1111/ecog.05285, 2021. 
Belgiu, M. and Drăguţ, L.: Random forest in remote sensing: A review of applications and future directions, ISPRS J. Photogramm. Remote Sens., 114, 24–31, https://doi.org/10.1016/j.isprsjprs.2016.01.011, 2016. 
Bolyn, C., Michez, A., Gaucher, P., Lejeune, P., and Bonnet, S.: Forest mapping and species composition using supervised per pixel classification of Sentinel-2 imagery, Biotechnol. Agron. Soc., 22, https://doi.org/10.25518/1780-4507.16524, 2018. 
Boston, T., Van Dijk, A., Larraondo, P. R., and Thackway, R.: Comparing CNNs and random forests for Landsat image segmentation trained on a large proxy land cover dataset, Remote Sens., 14, 3396, https://doi.org/10.3390/rs14143396, 2022. 
Download
Short summary
 Taiwan is characterized by high mountains density, with over 200 peaks exceeding 3,000 meters in elevation. This study analyzes treeline changes in Xue Mountain using satellite images from 2012 and 2021. By applying machine learning methods, we found forest are growing higher, rising by 32.00 ± 4.00 m, and forest cover expanded by 10.09 hectares. These findings help us understand climate change impacts on mountain ecosystems and support sustainable conservation efforts.
Share
Altmetrics
Final-revised paper
Preprint