Articles | Volume 6, issue 8
https://doi.org/10.5194/bg-6-1707-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/bg-6-1707-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Historical records of coastal eutrophication-induced hypoxia
A. J. Gooday
National Oceanography Centre, Southampton, SO14 3ZH, UK
F. Jorissen
Laboratory of Recent and Fossil Bio-Indicators (UPRES EA 2644 BIAF), 2 Boulevard Lavoisier, 49045 Angers Cedex, France, and LEBIM, Ile d'Yeu, France
L. A. Levin
Integrative Oceanography Division, Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA 92093-0218, USA
J. J. Middelburg
NIOO-KNAW, Centre for Estuarine and Marine Ecology, P.O. Box 140, 4400 AC Yerseke, The Netherlands
Faculty of Geosciences, Utrecht University, P.O. Box 80021, 3508 TA Utrecht, The Netherlands
S. W. A. Naqvi
National Institute of Oceanography, Dona Paula, Goa 403 004, India
N. N. Rabalais
Louisiana Universities Marine Consortium, Chauvin, Louisiana 70344, USA
M. Scranton
The School of Marine and Atmospheric Sciences (SoMAS), Stony Brook University, Stony Brook, NY 11794-5000, USA
J. Zhang
State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 Zhongshan Road North, Putuo District, Shanghai 200062, China
Related subject area
Paleobiogeoscience: Marine Record
Coupled otolith and foraminifera oxygen and carbon stable isotopes evidence paleoceanographic changes and fish metabolic responses
Ideas and perspectives: Human impacts alter the marine fossil record
Origin and role of non-skeletal carbonate in coralligenous build-ups: new geobiological perspectives in biomineralization processes
Serpulid microbialitic bioherms from the upper Sarmatian (Middle Miocene) of the central Paratethys Sea (NW Hungary) – witnesses of a microbial sea
Massive corals record deforestation in Malaysian Borneo through sediments in river discharge
Calcification response of planktic foraminifera to environmental change in the western Mediterranean Sea during the industrial era
Nature and origin of variations in pelagic carbonate production in the tropical ocean since the mid-Miocene (ODP Site 927)
Variation in calcification of Reticulofenestra coccoliths over the Oligocene–Early Miocene
The influence of near-surface sediment hydrothermalism on the TEX86 tetraether-lipid-based proxy and a new correction for ocean bottom lipid overprinting
Testing the effect of bioturbation and species abundance upon discrete-depth individual foraminifera analysis
Test-size evolution of the planktonic foraminifer Globorotalia menardii in the eastern tropical Atlantic since the Late Miocene
Distribution of coccoliths in surface sediments across the Drake Passage and calcification of Emiliania huxleyi morphotypes
Vertical distribution of planktic foraminifera through an oxygen minimum zone: how assemblages and test morphology reflect oxygen concentrations
Reconstructing past variations in environmental conditions and paleoproductivity over the last ∼ 8000 years off north-central Chile (30° S)
A 15-million-year-long record of phenotypic evolution in the heavily calcified coccolithophore Helicosphaera and its biogeochemical implications
Shell chemistry of the boreal Campanian bivalve Rastellum diluvianum (Linnaeus, 1767) reveals temperature seasonality, growth rates and life cycle of an extinct Cretaceous oyster
Southern California margin benthic foraminiferal assemblages record recent centennial-scale changes in oxygen minimum zone
Baseline for ostracod-based northwestern Pacific and Indo-Pacific shallow-marine paleoenvironmental reconstructions: ecological modeling of species distributions
Neogene Caribbean elasmobranchs: diversity, paleoecology and paleoenvironmental significance of the Cocinetas Basin assemblage (Guajira Peninsula, Colombia)
Coastal primary productivity changes over the last millennium: a case study from the Skagerrak (North Sea)
A 1500-year multiproxy record of coastal hypoxia from the northern Baltic Sea indicates unprecedented deoxygenation over the 20th century
Technical note: An empirical method for absolute calibration of coccolith thickness
Reconstructing Holocene temperature and salinity variations in the western Baltic Sea region: a multi-proxy comparison from the Little Belt (IODP Expedition 347, Site M0059)
The oxic degradation of sedimentary organic matter 1400 Ma constrains atmospheric oxygen levels
Geochemical and microstructural characterisation of two species of cool-water bivalves (Fulvia tenuicostata and Soletellina biradiata) from Western Australia
Ecological response to collapse of the biological pump following the mass extinction at the Cretaceous–Paleogene boundary
Quantifying the Cenozoic marine diatom deposition history: links to the C and Si cycles
Anthropogenically induced environmental changes in the northeastern Adriatic Sea in the last 500 years (Panzano Bay, Gulf of Trieste)
Palaeohydrological changes over the last 50 ky in the central Gulf of Cadiz: complex forcing mechanisms mixing multi-scale processes
Dinocyst assemblage constraints on oceanographic and atmospheric processes in the eastern equatorial Atlantic over the last 44 kyr
Sedimentary response to sea ice and atmospheric variability over the instrumental period off Adélie Land, East Antarctica
Equatorward phytoplankton migration during a cold spell within the Late Cretaceous super-greenhouse
Upwellings mitigated Plio-Pleistocene heat stress for reef corals on the Florida platform (USA)
Millennial changes in North Atlantic oxygen concentrations
Vanishing coccolith vital effects with alleviated carbon limitation
Late Pleistocene glacial–interglacial shell-size–isotope variability in planktonic foraminifera as a function of local hydrography
Coral records of reef-water pH across the central Great Barrier Reef, Australia: assessing the influence of river runoff on inshore reefs
Records of past mid-depth ventilation: Cretaceous ocean anoxic event 2 vs. Recent oxygen minimum zones
Organomineral nanocomposite carbon burial during Oceanic Anoxic Event 2
Non-invasive imaging methods applied to neo- and paleo-ontological cephalopod research
Icehouse–greenhouse variations in marine denitrification
Changes in calcification of coccoliths under stable atmospheric CO2
Southern Hemisphere imprint for Indo-Asian summer monsoons during the last glacial period as revealed by Arabian Sea productivity records
The calcareous nannofossil Prinsiosphaera achieved rock-forming abundances in the latest Triassic of western Tethys: consequences for the δ13C of bulk carbonate
The Little Ice Age: evidence from a sediment record in Gullmar Fjord, Swedish west coast
Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records
Quantitative reconstruction of sea-surface conditions over the last 150 yr in the Beaufort Sea based on dinoflagellate cyst assemblages: the role of large-scale atmospheric circulation patterns
Spatial linkages between coral proxies of terrestrial runoff across a large embayment in Madagascar
Pteropods from the Caribbean Sea: variations in calcification as an indicator of past ocean carbonate saturation
Sedimentary organic matter and carbonate variations in the Chukchi Borderland in association with ice sheet and ocean-atmosphere dynamics over the last 155 kyr
Konstantina Agiadi, Iuliana Vasiliev, Geanina Butiseacă, George Kontakiotis, Danae Thivaiou, Evangelia Besiou, Stergios Zarkogiannis, Efterpi Koskeridou, Assimina Antonarakou, and Andreas Mulch
Biogeosciences, 21, 3869–3881, https://doi.org/10.5194/bg-21-3869-2024, https://doi.org/10.5194/bg-21-3869-2024, 2024
Short summary
Short summary
Seven million years ago, the marine gateway connecting the Mediterranean Sea with the Atlantic Ocean started to close, and, as a result, water circulation ceased. To find out how this phenomenon affected the fish living in the Mediterranean Sea, we examined the changes in the isotopic composition of otoliths of two common fish species. Although the species living at the surface fared pretty well, the bottom-water fish starved and eventually became extinct in the Mediterranean.
Rafał Nawrot, Martin Zuschin, Adam Tomašových, Michał Kowalewski, and Daniele Scarponi
Biogeosciences, 21, 2177–2188, https://doi.org/10.5194/bg-21-2177-2024, https://doi.org/10.5194/bg-21-2177-2024, 2024
Short summary
Short summary
The youngest fossil record is a crucial source of data on the history of marine ecosystems and their long-term alteration by humans. However, human activities that reshape ecosystems also alter sedimentary and biological processes that control the formation of the geological archives recording those impacts. Thus, humans have been transforming the marine fossil record in ways that affect our ability to reconstruct past ecological and climate dynamics.
Mara Cipriani, Carmine Apollaro, Daniela Basso, Pietro Bazzicalupo, Marco Bertolino, Valentina Alice Bracchi, Fabio Bruno, Gabriele Costa, Rocco Dominici, Alessandro Gallo, Maurizio Muzzupappa, Antonietta Rosso, Rossana Sanfilippo, Francesco Sciuto, Giovanni Vespasiano, and Adriano Guido
Biogeosciences, 21, 49–72, https://doi.org/10.5194/bg-21-49-2024, https://doi.org/10.5194/bg-21-49-2024, 2024
Short summary
Short summary
Who constructs the build-ups of the Mediterranean Sea? What is the role of skeletal and soft-bodied organisms in these bioconstructions? Do bacteria play a role in their formation? In this research, for the first time, the coralligenous of the Mediterranean shelf is studied from a geobiological point of view with an interdisciplinary biological and geological approach, highlighting important biotic relationships that can be used in interpreting the fossil build-up systems.
Mathias Harzhauser, Oleg Mandic, and Werner E. Piller
Biogeosciences, 20, 4775–4794, https://doi.org/10.5194/bg-20-4775-2023, https://doi.org/10.5194/bg-20-4775-2023, 2023
Short summary
Short summary
Bowl-shaped spirorbid microbialite bioherms formed during the late Middle Miocene (Sarmatian) in the central Paratethys Sea under a warm, arid climate. The microbialites and the surrounding sediment document a predominance of microbial activity in the shallow marine environments of the sea at that time. Modern microbialites are not analogues for these unique structures, which reflect a series of growth stages with an initial “start-up stage”, massive “keep-up stage” and termination of growth.
Walid Naciri, Arnoud Boom, Matthew Payne, Nicola Browne, Noreen J. Evans, Philip Holdship, Kai Rankenburg, Ramasamy Nagarajan, Bradley J. McDonald, Jennifer McIlwain, and Jens Zinke
Biogeosciences, 20, 1587–1604, https://doi.org/10.5194/bg-20-1587-2023, https://doi.org/10.5194/bg-20-1587-2023, 2023
Short summary
Short summary
In this study, we tested the ability of massive boulder-like corals to act as archives of land use in Malaysian Borneo to palliate the lack of accurate instrumental data on deforestation before the 1980s. We used mass spectrometry to measure trace element ratios in coral cores to use as a proxy for sediment in river discharge. Results showed an extremely similar increase between our proxy and the river discharge instrumental record, demonstrating the use of these corals as reliable archives.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, José A. Flores, Javier P. Tarruella, Xavier Durrieu de Madron, Isabel Cacho, Neghar Haghipour, Aidan Hunter, and Francisco J. Sierro
Biogeosciences, 20, 1505–1528, https://doi.org/10.5194/bg-20-1505-2023, https://doi.org/10.5194/bg-20-1505-2023, 2023
Short summary
Short summary
The Mediterranean Sea is undergoing a rapid and unprecedented environmental change. Planktic foraminifera calcification is affected on different timescales. On seasonal and interannual scales, calcification trends differ according to the species and are linked mainly to sea surface temperatures and carbonate system parameters, while comparison with pre/post-industrial assemblages shows that all three species have reduced their calcification between 10 % to 35 % according to the species.
Pauline Cornuault, Thomas Westerhold, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
Biogeosciences, 20, 597–618, https://doi.org/10.5194/bg-20-597-2023, https://doi.org/10.5194/bg-20-597-2023, 2023
Short summary
Short summary
We generated high-resolution records of carbonate accumulation rate from the Miocene to the Quaternary in the tropical Atlantic Ocean to characterize the variability in pelagic carbonate production during warm climates. It follows orbital cycles, responding to local changes in tropical conditions, as well as to long-term shifts in climate and ocean chemistry. These changes were sufficiently large to play a role in the carbon cycle and global climate evolution.
José Guitián, Miguel Ángel Fuertes, José-Abel Flores, Iván Hernández-Almeida, and Heather Stoll
Biogeosciences, 19, 5007–5019, https://doi.org/10.5194/bg-19-5007-2022, https://doi.org/10.5194/bg-19-5007-2022, 2022
Short summary
Short summary
The effect of environmental conditions on the degree of calcification of marine phytoplankton remains unclear. This study implements a new microscopic approach to quantify the calcification of ancient coccolithophores, using North Atlantic sediments. Results show significant differences in the thickness and shape factor of coccoliths for samples with minimum dissolution, providing the first evaluation of phytoplankton physiology adaptation to million-year-scale variable environmental conditions.
Jeremy N. Bentley, Gregory T. Ventura, Clifford C. Walters, Stefan M. Sievert, and Jeffrey S. Seewald
Biogeosciences, 19, 4459–4477, https://doi.org/10.5194/bg-19-4459-2022, https://doi.org/10.5194/bg-19-4459-2022, 2022
Short summary
Short summary
We demonstrate the TEX86 (TetraEther indeX of 86 carbon atoms) paleoclimate proxy can become heavily impacted by the ocean floor archaeal community. The impact results from source inputs, their diagenetic and catagenetic alteration, and further overprint by the additions of lipids from the ocean floor sedimentary archaeal community. We then present a method to correct the overprints by using IPLs (intact polar lipids) extracted from both water column and subsurface archaeal communities.
Bryan C. Lougheed and Brett Metcalfe
Biogeosciences, 19, 1195–1209, https://doi.org/10.5194/bg-19-1195-2022, https://doi.org/10.5194/bg-19-1195-2022, 2022
Short summary
Short summary
Measurements on sea-dwelling shelled organisms called foraminifera retrieved from deep-sea sediment cores have been used to reconstruct sea surface temperature (SST) variation. To evaluate the method, we use a computer model to simulate millions of single foraminifera and how they become mixed in the sediment after being deposited on the seafloor. We compare the SST inferred from the single foraminifera in the sediment core to the true SST in the water, thus quantifying method uncertainties.
Thore Friesenhagen
Biogeosciences, 19, 777–805, https://doi.org/10.5194/bg-19-777-2022, https://doi.org/10.5194/bg-19-777-2022, 2022
Short summary
Short summary
Size measurements of the planktonic foraminifer Globorotalia menardii and related forms are used to investigate the shell-size evolution for the last 8 million years in the eastern tropical Atlantic Ocean. Long-term changes in the shell size coincide with major climatic, palaeogeographic and palaeoceanographic changes and suggest the occurrence of a new G. menardii type in the Atlantic Ocean ca. 2 million years ago.
Nele Manon Vollmar, Karl-Heinz Baumann, Mariem Saavedra-Pellitero, and Iván Hernández-Almeida
Biogeosciences, 19, 585–612, https://doi.org/10.5194/bg-19-585-2022, https://doi.org/10.5194/bg-19-585-2022, 2022
Short summary
Short summary
We studied recent (sub-)fossil remains of a type of algae (coccolithophores) off southernmost Chile and across the Drake Passage, adding to the scarce knowledge that exists in the Southern Ocean, a rapidly changing environment. We found that those can be used to reconstruct the surface ocean conditions in the north but not in the south. We also found variations in shape in the dominant species Emiliania huxleyi depending on the location, indicating subtle adaptations to environmental conditions.
Catherine V. Davis, Karen Wishner, Willem Renema, and Pincelli M. Hull
Biogeosciences, 18, 977–992, https://doi.org/10.5194/bg-18-977-2021, https://doi.org/10.5194/bg-18-977-2021, 2021
Práxedes Muñoz, Lorena Rebolledo, Laurent Dezileau, Antonio Maldonado, Christoph Mayr, Paola Cárdenas, Carina B. Lange, Katherine Lalangui, Gloria Sanchez, Marco Salamanca, Karen Araya, Ignacio Jara, Gabriel Easton, and Marcel Ramos
Biogeosciences, 17, 5763–5785, https://doi.org/10.5194/bg-17-5763-2020, https://doi.org/10.5194/bg-17-5763-2020, 2020
Short summary
Short summary
We analyze marine sedimentary records to study temporal changes in oxygen and productivity in marine waters of central Chile. We observed increasing oxygenation and decreasing productivity from 6000 kyr ago to the modern era that seem to respond to El Niño–Southern Oscillation activity. In the past centuries, deoxygenation and higher productivity are re-established, mainly in the northern zones of Chile and Peru. Meanwhile, in north-central Chile the deoxygenation trend is maintained.
Luka Šupraha and Jorijntje Henderiks
Biogeosciences, 17, 2955–2969, https://doi.org/10.5194/bg-17-2955-2020, https://doi.org/10.5194/bg-17-2955-2020, 2020
Short summary
Short summary
The cell size, degree of calcification and growth rates of coccolithophores impact their role in the carbon cycle and may also influence their adaptation to environmental change. Combining insights from culture experiments and the fossil record, we show that the selection for smaller cells over the past 15 Myr has been a common adaptive trait among different lineages. However, heavily calcified species maintained a more stable biogeochemical output than the ancestral lineage of E. huxleyi.
Niels J. de Winter, Clemens V. Ullmann, Anne M. Sørensen, Nicolas Thibault, Steven Goderis, Stijn J. M. Van Malderen, Christophe Snoeck, Stijn Goolaerts, Frank Vanhaecke, and Philippe Claeys
Biogeosciences, 17, 2897–2922, https://doi.org/10.5194/bg-17-2897-2020, https://doi.org/10.5194/bg-17-2897-2020, 2020
Short summary
Short summary
In this study, we present a detailed investigation of the chemical composition of 12 specimens of very well preserved, 78-million-year-old oyster shells from southern Sweden. The chemical data show how the oysters grew, the environment in which they lived and how old they became and also provide valuable information about which chemical measurements we can use to learn more about ancient climate and environment from such shells. In turn, this can help improve climate reconstructions and models.
Hannah M. Palmer, Tessa M. Hill, Peter D. Roopnarine, Sarah E. Myhre, Katherine R. Reyes, and Jonas T. Donnenfield
Biogeosciences, 17, 2923–2937, https://doi.org/10.5194/bg-17-2923-2020, https://doi.org/10.5194/bg-17-2923-2020, 2020
Short summary
Short summary
Modern climate change is causing expansions of low-oxygen zones, with detrimental impacts to marine life. To better predict future ocean oxygen change, we study past expansions and contractions of low-oxygen zones using microfossils of seafloor organisms. We find that, along the San Diego margin, the low-oxygen zone expanded into more shallow water in the last 400 years, but the conditions within and below the low-oxygen zone did not change significantly in the last 1500 years.
Yuanyuan Hong, Moriaki Yasuhara, Hokuto Iwatani, and Briony Mamo
Biogeosciences, 16, 585–604, https://doi.org/10.5194/bg-16-585-2019, https://doi.org/10.5194/bg-16-585-2019, 2019
Short summary
Short summary
This study analyzed microfaunal assemblages in surface sediments from 52 sites in Hong Kong marine waters. We selected 18 species for linear regression modeling to statistically reveal the relationship between species distribution and environmental factors. These results show environmental preferences of commonly distributed species on Asian coasts, providing a robust baseline for past environmental reconstruction of the broad Asian region using microfossils in sediment cores.
Jorge Domingo Carrillo-Briceño, Zoneibe Luz, Austin Hendy, László Kocsis, Orangel Aguilera, and Torsten Vennemann
Biogeosciences, 16, 33–56, https://doi.org/10.5194/bg-16-33-2019, https://doi.org/10.5194/bg-16-33-2019, 2019
Short summary
Short summary
By combining taxonomy and geochemistry, we corroborated the described paleoenvironments from a Neogene fossiliferous deposit of South America. Shark teeth specimens were used for taxonomic identification and as proxies for geochemical analyses. With a multidisciplinary approach we refined the understanding about the paleoenvironmental setting and the paleoecological characteristics of the studied groups, in our case, for the bull shark and its incursions into brackish waters.
Anna Binczewska, Bjørg Risebrobakken, Irina Polovodova Asteman, Matthias Moros, Amandine Tisserand, Eystein Jansen, and Andrzej Witkowski
Biogeosciences, 15, 5909–5928, https://doi.org/10.5194/bg-15-5909-2018, https://doi.org/10.5194/bg-15-5909-2018, 2018
Short summary
Short summary
Primary productivity is an important factor in the functioning and structuring of the coastal ecosystem. Thus, two sediment cores from the Skagerrak (North Sea) were investigated in order to obtain a comprehensive picture of primary productivity changes during the last millennium and identify associated forcing factors (e.g. anthropogenic, climate). The cores were dated and analysed for palaeoproductivity proxies and palaeothermometers.
Sami A. Jokinen, Joonas J. Virtasalo, Tom Jilbert, Jérôme Kaiser, Olaf Dellwig, Helge W. Arz, Jari Hänninen, Laura Arppe, Miia Collander, and Timo Saarinen
Biogeosciences, 15, 3975–4001, https://doi.org/10.5194/bg-15-3975-2018, https://doi.org/10.5194/bg-15-3975-2018, 2018
Short summary
Short summary
Oxygen deficiency is a major environmental problem deteriorating seafloor habitats especially in the coastal ocean with large human impact. Here we apply a wide set of chemical and physical analyses to a 1500-year long sediment record and show that, although long-term climate variability has modulated seafloor oxygenation in the coastal northern Baltic Sea, the oxygen loss over the 20th century is unprecedentedly severe, emphasizing the need to reduce anthropogenic nutrient input in the future.
Saúl González-Lemos, José Guitián, Miguel-Ángel Fuertes, José-Abel Flores, and Heather M. Stoll
Biogeosciences, 15, 1079–1091, https://doi.org/10.5194/bg-15-1079-2018, https://doi.org/10.5194/bg-15-1079-2018, 2018
Short summary
Short summary
Changes in atmospheric carbon dioxide affect ocean chemistry and the ability of marine organisms to manufacture shells from calcium carbonate. We describe a technique to obtain more reproducible measurements of the thickness of calcium carbonate shells made by microscopic marine algae called coccolithophores, which will allow researchers to compare how the shell thickness responds to variations in ocean chemistry in the past and present.
Ulrich Kotthoff, Jeroen Groeneveld, Jeanine L. Ash, Anne-Sophie Fanget, Nadine Quintana Krupinski, Odile Peyron, Anna Stepanova, Jonathan Warnock, Niels A. G. M. Van Helmond, Benjamin H. Passey, Ole Rønø Clausen, Ole Bennike, Elinor Andrén, Wojciech Granoszewski, Thomas Andrén, Helena L. Filipsson, Marit-Solveig Seidenkrantz, Caroline P. Slomp, and Thorsten Bauersachs
Biogeosciences, 14, 5607–5632, https://doi.org/10.5194/bg-14-5607-2017, https://doi.org/10.5194/bg-14-5607-2017, 2017
Short summary
Short summary
We present reconstructions of paleotemperature, paleosalinity, and paleoecology from the Little Belt (Site M0059) over the past ~ 8000 years and evaluate the applicability of numerous proxies. Conditions were lacustrine until ~ 7400 cal yr BP. A transition to brackish–marine conditions then occurred within ~ 200 years. Salinity proxies rarely allowed quantitative estimates but revealed congruent results, while quantitative temperature reconstructions differed depending on the proxies used.
Shuichang Zhang, Xiaomei Wang, Huajian Wang, Emma U. Hammarlund, Jin Su, Yu Wang, and Donald E. Canfield
Biogeosciences, 14, 2133–2149, https://doi.org/10.5194/bg-14-2133-2017, https://doi.org/10.5194/bg-14-2133-2017, 2017
Liza M. Roger, Annette D. George, Jeremy Shaw, Robert D. Hart, Malcolm Roberts, Thomas Becker, Bradley J. McDonald, and Noreen J. Evans
Biogeosciences, 14, 1721–1737, https://doi.org/10.5194/bg-14-1721-2017, https://doi.org/10.5194/bg-14-1721-2017, 2017
Short summary
Short summary
The shell compositions of bivalve species from south Western Australia are described here to better understand the factors involved in their formation. The shell composition can be used to reconstruct past environmental conditions, but certain species manifest an offset compared to the environmental parameters measured. As shown here, shells that experience the same conditions can present different compositions in relation to structure, organic composition and environmental conditions.
Johan Vellekoop, Lineke Woelders, Sanem Açikalin, Jan Smit, Bas van de Schootbrugge, Ismail Ö. Yilmaz, Henk Brinkhuis, and Robert P. Speijer
Biogeosciences, 14, 885–900, https://doi.org/10.5194/bg-14-885-2017, https://doi.org/10.5194/bg-14-885-2017, 2017
Short summary
Short summary
The Cretaceous–Paleogene boundary, ~ 66 Ma, is characterized by a mass extinction. We studied groups of both surface-dwelling and bottom-dwelling organisms to unravel the oceanographic consequences of these extinctions. Our integrated records indicate that a reduction of the transport of organic matter to the sea floor resulted in enhanced recycling of nutrients in the upper water column and decreased food supply at the sea floor in the first tens of thousands of years after the extinctions.
Johan Renaudie
Biogeosciences, 13, 6003–6014, https://doi.org/10.5194/bg-13-6003-2016, https://doi.org/10.5194/bg-13-6003-2016, 2016
Short summary
Short summary
Marine planktonic diatoms are today both the main silica and carbon exporter to the deep sea. However, 50 million years ago, radiolarians were the main silica exporter and diatoms were a rare, geographically restricted group. Quantification of their rise to dominance suggest that diatom abundance is primarily controlled by the continental weathering and has a negative feedback, observable on a geological timescale, on the carbon cycle.
Jelena Vidović, Rafał Nawrot, Ivo Gallmetzer, Alexandra Haselmair, Adam Tomašových, Michael Stachowitsch, Vlasta Ćosović, and Martin Zuschin
Biogeosciences, 13, 5965–5981, https://doi.org/10.5194/bg-13-5965-2016, https://doi.org/10.5194/bg-13-5965-2016, 2016
Short summary
Short summary
We studied the ecological history of the Gulf of Trieste. Before the 20th century, the only activity here was ore mining, releasing high amounts of mercury into its northern part, Panzano Bay. Mercury did not cause changes to microorganisms, as it is not bioavailable. In the 20th century, agriculture caused nutrient enrichment in the bay and increased diversity of microorganisms. Industrial activities increased the concentrations of pollutants, causing only minor changes to microorganisms.
Aurélie Penaud, Frédérique Eynaud, Antje Helga Luise Voelker, and Jean-Louis Turon
Biogeosciences, 13, 5357–5377, https://doi.org/10.5194/bg-13-5357-2016, https://doi.org/10.5194/bg-13-5357-2016, 2016
Short summary
Short summary
This paper presents new analyses conducted at high resolution in the Gulf of Cadiz over the last 50 ky. Palaeohydrological changes in these subtropical latitudes are discussed through dinoflagellate cyst assemblages but also dinocyst transfer function results, implying sea surface temperature and salinity as well as annual productivity reconstructions. This study is thus important for our understanding of past and future productivity regimes, also implying consequences on the biological pump.
William Hardy, Aurélie Penaud, Fabienne Marret, Germain Bayon, Tania Marsset, and Laurence Droz
Biogeosciences, 13, 4823–4841, https://doi.org/10.5194/bg-13-4823-2016, https://doi.org/10.5194/bg-13-4823-2016, 2016
Short summary
Short summary
Our approach is based on a multi-proxy study from a core collected off the Congo River and discusses surface oceanic conditions (upwelling cells, river-induced upwelling), land–sea interactions and terrestrial erosion and in particular enables us to spatially constrain the migration of atmospheric systems. This paper thus presents new data highlighting, with the highest resolution ever reached in this region, the great correlation between phytoplanktonic organisms and monsoonal mechanisms.
Philippine Campagne, Xavier Crosta, Sabine Schmidt, Marie Noëlle Houssais, Olivier Ther, and Guillaume Massé
Biogeosciences, 13, 4205–4218, https://doi.org/10.5194/bg-13-4205-2016, https://doi.org/10.5194/bg-13-4205-2016, 2016
Short summary
Short summary
Diatoms and biomarkers have been recently used for palaeoclimate reconstructions in the Southern Ocean. Few sediment-based ecological studies have investigated their relationships with environmental conditions. Here, we compare high-resolution sedimentary records with meteorological data to study relationships between our proxies and recent atmospheric and sea surface changes. Our results indicate that coupled wind pattern and sea surface variability act as the proximal forcing at that scale.
Niels A. G. M. van Helmond, Appy Sluijs, Nina M. Papadomanolaki, A. Guy Plint, Darren R. Gröcke, Martin A. Pearce, James S. Eldrett, João Trabucho-Alexandre, Ireneusz Walaszczyk, Bas van de Schootbrugge, and Henk Brinkhuis
Biogeosciences, 13, 2859–2872, https://doi.org/10.5194/bg-13-2859-2016, https://doi.org/10.5194/bg-13-2859-2016, 2016
Short summary
Short summary
Over the past decades large changes have been observed in the biogeographical dispersion of marine life resulting from climate change. To better understand present and future trends it is important to document and fully understand the biogeographical response of marine life during episodes of environmental change in the geological past.
Here we investigate the response of phytoplankton, the base of the marine food web, to a rapid cold spell, interrupting greenhouse conditions during the Cretaceous.
Thomas C. Brachert, Markus Reuter, Stefan Krüger, Julia Kirkerowicz, and James S. Klaus
Biogeosciences, 13, 1469–1489, https://doi.org/10.5194/bg-13-1469-2016, https://doi.org/10.5194/bg-13-1469-2016, 2016
Short summary
Short summary
We present stable isotope proxy data and calcification records from fossil reef corals. The corals investigated derive from the Florida carbonate platform and are of middle Pliocene to early Pleistocene age. From the data we infer an environment subject to intermittent upwelling on annual to decadal timescales. Calcification rates were enhanced during periods of upwelling. This is likely an effect of dampened SSTs during the upwelling.
B. A. A. Hoogakker, D. J. R. Thornalley, and S. Barker
Biogeosciences, 13, 211–221, https://doi.org/10.5194/bg-13-211-2016, https://doi.org/10.5194/bg-13-211-2016, 2016
Short summary
Short summary
Models predict a decrease in future ocean O2, driven by surface water warming and freshening in the polar regions, causing a reduction in ocean circulation. Here we assess this effect in the past, focussing on the response of deep and intermediate waters from the North Atlantic during large-scale ice rafting and millennial-scale cooling events of the last glacial.
Our assessment agrees with the models but also highlights the importance of biological processes driving ocean O2 change.
M. Hermoso, I. Z. X. Chan, H. L. O. McClelland, A. M. C. Heureux, and R. E. M. Rickaby
Biogeosciences, 13, 301–312, https://doi.org/10.5194/bg-13-301-2016, https://doi.org/10.5194/bg-13-301-2016, 2016
B. Metcalfe, W. Feldmeijer, M. de Vringer-Picon, G.-J. A. Brummer, F. J. C. Peeters, and G. M. Ganssen
Biogeosciences, 12, 4781–4807, https://doi.org/10.5194/bg-12-4781-2015, https://doi.org/10.5194/bg-12-4781-2015, 2015
Short summary
Short summary
Iron biogeochemical budgets during the natural ocean fertilisation experiment KEOPS-2 showed that complex circulation and transport pathways were responsible for differences in the mode and strength of iron supply, with vertical supply dominant on the plateau and lateral supply dominant in the plume. The exchange of iron between dissolved, biogenic and lithogenic pools was highly dynamic, resulting in a decoupling of iron supply and carbon export and controlling the efficiency of fertilisation.
J. P. D'Olivo, M. T. McCulloch, S. M. Eggins, and J. Trotter
Biogeosciences, 12, 1223–1236, https://doi.org/10.5194/bg-12-1223-2015, https://doi.org/10.5194/bg-12-1223-2015, 2015
Short summary
Short summary
The boron isotope composition in the skeleton of massive Porites corals from the central Great Barrier Reef is used to reconstruct the seawater pH over the 1940-2009 period. The long-term decline in the coral-reconstructed seawater pH is in close agreement with estimates based on the CO2 uptake by surface waters due to rising atmospheric levels. We also observed a significant relationship between terrestrial runoff data and the inshore coral boron isotopes records.
J. Schönfeld, W. Kuhnt, Z. Erdem, S. Flögel, N. Glock, M. Aquit, M. Frank, and A. Holbourn
Biogeosciences, 12, 1169–1189, https://doi.org/10.5194/bg-12-1169-2015, https://doi.org/10.5194/bg-12-1169-2015, 2015
Short summary
Short summary
Today’s oceans show distinct mid-depth oxygen minima while whole oceanic basins became transiently anoxic in the Mesozoic. To constrain past bottom-water oxygenation, we compared sediments from the Peruvian OMZ with the Cenomanian OAE 2 from Morocco. Corg accumulation rates in laminated OAE 2 sections match Holocene rates off Peru. Laminated deposits are found at oxygen levels of < 7µmol kg-1; crab burrows appear at 10µmol kg-1 today, both defining threshold values for palaeoreconstructions.
S. C. Löhr and M. J. Kennedy
Biogeosciences, 11, 4971–4983, https://doi.org/10.5194/bg-11-4971-2014, https://doi.org/10.5194/bg-11-4971-2014, 2014
R. Hoffmann, J. A. Schultz, R. Schellhorn, E. Rybacki, H. Keupp, S. R. Gerden, R. Lemanis, and S. Zachow
Biogeosciences, 11, 2721–2739, https://doi.org/10.5194/bg-11-2721-2014, https://doi.org/10.5194/bg-11-2721-2014, 2014
T. J. Algeo, P. A. Meyers, R. S. Robinson, H. Rowe, and G. Q. Jiang
Biogeosciences, 11, 1273–1295, https://doi.org/10.5194/bg-11-1273-2014, https://doi.org/10.5194/bg-11-1273-2014, 2014
C. Berger, K. J. S. Meier, H. Kinkel, and K.-H. Baumann
Biogeosciences, 11, 929–944, https://doi.org/10.5194/bg-11-929-2014, https://doi.org/10.5194/bg-11-929-2014, 2014
T. Caley, S. Zaragosi, J. Bourget, P. Martinez, B. Malaizé, F. Eynaud, L. Rossignol, T. Garlan, and N. Ellouz-Zimmermann
Biogeosciences, 10, 7347–7359, https://doi.org/10.5194/bg-10-7347-2013, https://doi.org/10.5194/bg-10-7347-2013, 2013
N. Preto, C. Agnini, M. Rigo, M. Sprovieri, and H. Westphal
Biogeosciences, 10, 6053–6068, https://doi.org/10.5194/bg-10-6053-2013, https://doi.org/10.5194/bg-10-6053-2013, 2013
I. Polovodova Asteman, K. Nordberg, and H. L. Filipsson
Biogeosciences, 10, 1275–1290, https://doi.org/10.5194/bg-10-1275-2013, https://doi.org/10.5194/bg-10-1275-2013, 2013
J.-E. Tesdal, E. D. Galbraith, and M. Kienast
Biogeosciences, 10, 101–118, https://doi.org/10.5194/bg-10-101-2013, https://doi.org/10.5194/bg-10-101-2013, 2013
L. Durantou, A. Rochon, D. Ledu, G. Massé, S. Schmidt, and M. Babin
Biogeosciences, 9, 5391–5406, https://doi.org/10.5194/bg-9-5391-2012, https://doi.org/10.5194/bg-9-5391-2012, 2012
C. A. Grove, J. Zinke, T. Scheufen, J. Maina, E. Epping, W. Boer, B. Randriamanantsoa, and G.-J. A. Brummer
Biogeosciences, 9, 3063–3081, https://doi.org/10.5194/bg-9-3063-2012, https://doi.org/10.5194/bg-9-3063-2012, 2012
D. Wall-Palmer, M. B. Hart, C. W. Smart, R. S. J. Sparks, A. Le Friant, G. Boudon, C. Deplus, and J. C. Komorowski
Biogeosciences, 9, 309–315, https://doi.org/10.5194/bg-9-309-2012, https://doi.org/10.5194/bg-9-309-2012, 2012
S. F. Rella and M. Uchida
Biogeosciences, 8, 3545–3553, https://doi.org/10.5194/bg-8-3545-2011, https://doi.org/10.5194/bg-8-3545-2011, 2011
Cited articles
Adelson, J. M., Helz, G. R., and Miller, C. V.: Reconstructing the rise of coastal anoxia: molybdenum in Chesapeake Bay sediments, Geochim. Cosmochim. Ac., 65, 237–252, 2001.
Agnihotri, R., Kurian, S., Fernandes, M., Reshma, K., D'Souza,W., and Naqvi, S. W. A.: Variability of subsurface denitrification and surface productivity in the coastal eastern Arabian Sea over the past seven centuries, Holocene, 18, 755–764, 2008.
Altabet, M. A. and Francois, R.: Sedimentary isotopic ratio as a recorder for surface ocean nitrate utilization, Global Biogeochem. Cy., 8, 103–116, 1994.
Alvarez Zarikian, C. A., Blackwelder, P. L., Hood, T., Nelsen, T. A., and Featherstone, C.: Ostracods as indicators of natural and anthropogenically induced changes in coastal marine environments, in: Coasts at the Millennium, Proceedings of the 17th International Conference of The Coastal Society, Portland, OR USA, July 9–12, 896–905, 2000.
Alve, E.: Variations in estuarine foraminiferal biofacies with diminishing oxygen conditions in Drammensfjord, SE Norway, in: Paleoecology, Biostratigraphy and Taxonomy of Agglutinated Foraminifera, edited by: Hemleben, C., Kaminski, M., Kuhnt, W., and Scott, D. B., Kluwer, Dordrecht, The Netherlands, 661–694, 1990.
Alve, E.: Foraminifera, climatic change, and pollution: a study of late Holocene sediments in Drammensfjord, southeast Norway, Holocene, 1, 243–261, 1991.
Alve, E.: Benthic foraminiferal responses to estuarine pollution: a review, J. Foramin. Res., 25, 190–203, 1995.
Alve, E.: Environmental stratigraphy. A case study reconstructing bottom water oxygen conditions in Frierfjord, Norway, over the past five centuries, in: Environmental Micropaleontology of Topics in Geobiology, edited by: Martin, R.E., 15, Kluwer Academic/Plenum Publishing, New York, USA, 323–350, 2000.
Alve, E.: A common opportunistic foraminiferal species as an indicator of rapidly changing conditions in a range of environments, Estuar. Coast. Shelf Sci., 57, 501–514, 2003.
Alve, E.: From blue skies science to practical application: Increasing need for retrospective in environmental micropaleontological monitoring (REMM), in: Forams 2006, Book of Abstracts, Anuário do Instituto de Geociências - UFRJ 29, 520–521, 2006.
Alve, E. and Murray, J. W.: Benthic foraminiferal distribution and abundance changes in Skagerrak surface sediments: 1937 (Höglund) and 1992/93 data compared, Marine Micropaleontol., 25, 269–288, 1995.
Andrén, E.: Changes in the composition of the marine diatom flora during the past century indicate increased eutrophication of the Oder estuary, southwestern Baltic Sea, Estuar. Coast. Shelf. S., 48, 665–676, 1999.
Andrén, E., Shimmield, G., and Brand, T.: Changes in the environment during the last centuries on the basis of siliceous microfossil records from the southwestern Baltic, Holocene, 9, 25–38, 1999.
Arnaboldi, M., and Meyers, P. A.: Trace element indicators of increased primary production and decreased water-column ventilation during deposition of latest Pliocene sapropels at five locations across the Mediterranean Sea, Palaeogeogr. Palaeocl., 249, 425–443, 2007.
Barmawidjaja, D. M., van der Zwaan, G. J., Jorissen, F. J., and Puškarik, S.: 150 years of eutrophication in the northern Adriatic Sea: Evidence from benthic foraminiferal records, Mar. Geol., 122, 367–384, 1995.
Behl, R. J.: Sedimentary facies and sedimentology of the late Quaternary Santa Barbara Basin, Site 893, Proceedings Ocean Drilling Program Scientific Results, 146, 295–308, 1995.
Behl, R. J. and Kennett, J. P.: Brief interstadial events in the Santa Barbara Basin, NE Pacific, during the last 60 kyr, Nature, 379, 243–246, 1996.
Bennion, H., Juggins, S., and Anderson, N. J.: Predicting epilimnetic phosphorus concentrations using an improved diatom-based transfer function and its application to lake eutrophication management, Environ. Sci. Technol., 20, 2004–2007, 1996.
Berner, R. A.: Sedimentary iron formation: An update, Geochim. Cosmochim. Ac., 48, 605–615, 1984.
Bernhard, J. M.: Distinguishing live from dead Foraminifera: methods review and proper applications, Micropaleontology, 46 (Suppl.1, Advanced in the Biology of Foraminifera), 38–46, 2000.
Bernhard, J. M. and Sen Gupta, B. K.: Foraminifera in oxygen-depleted environments, in: Modern Foraminifera, edited by: Sen Gupta, B. K., Kluwer Academic Publishers, Dordrecht, Boston, London, 201-216, 1999.
Bianchi, T. S., Engelhaupt, E., Westman, P., Andrén, T., Rolf, C., and Elmgren, R.: Cyanobacterial blooms in the Baltic Sea: natural or human-induced? Limnol. Oceanogr., 45, 716–726, 2000.
Bianchi, T. S., Johansson, B., and Elmgren, R.: Breakdown of phytoplankton pigments in Baltic sediments: effects of anoxia and loss of deposit-feeding macrofauna, J. Exp. Mar. Biol. Ecol., 251, 161–183, 2000.
Black, D. E., Abahazi, M. A., Thunell, R. C., Kaplan, A., Tappa, E. J., and Peterson, L. C.: An 8-century tropical Atlantic SST record from the Cariaco Basin: Baseline variability, twentieth-century warming, and Atlantic hurricane frequency, Paleoceanography, 22, PA4204, https://doi.org/10.1029/2007PA001427, 2007.
Blackwelder, P., Hood, T., Alvarez Zarikian, C. A., Nelsen, T. A., and McKee, B.: Benthic Foraminifera from the NECOP study area impacted by the Mississippi River plume and seasonal hypoxia, Quatern. Int., 31, 19–36, 1996.
Blazejak, A., Erseus, C., Amann, R., and Dubilier, N.: Coexistence of bacterial sulfide oxidizers, sulfate reducers and spirochetes in a gutless worm (Oligochaeta) from the Peru margin, Appl. Environ Microb., 71, 1553–61, 2005.
Boesch, D. F.: Challenges and opportunities for science in reducing nutrient over-enrichment of coastal ecosystems, Estuaries, 25, 886–900, 2002.
Brandes, J. A. and Devol, A. H.: A global marine-fixed nitrogen isotopic budget: Implications for Holocene nitrogen cycling, Global Biogeochem. Cy., 16, 1120, https://doi.org/10.1029/2001GB001856, 2002.
Brandes, J. A., Devol, A. H., Yoshinari, T., Jayakumar, A., and Naqvi, S. W. A.: Isotopic composition of nitrate in the central Arabian Sea and eastern tropical North Pacific: A tracer for mixing and nitrogen cycles, Limnol. Oceanogr., 43, 1680–1689, 1998.
Boomer, I.: Environmental applications of marine and freshwater Ostracoda, in: Quaternary Environmental Micropalaeontology, edited by: Haslett, S. K., Arnold, London, UK, 115-138, 2002.
Bratton, J. F., Colman, S. M., and Seal, R. R.: Eutrophication and carbon sources in Chesapeake Bay over the last 2700 yr: human impacts in context, Geochim. Cosmochim. Ac., 67, 3385–3402, 2003.
Bréhéret, J.-G.: Glauconitization episodes in marginal settings as echoes of mid-Cretaceous anoxic events in the Vocontian basin (SE France), in: Modern and Ancient Continental Shelf Anoxia, edited by: Tyson, R. V. and Pearson, T. H., Geol. Soc. Sp., 58, 415–425, 1991.
Briffa, K. R., Osborn, T. J. and Scheingruber, F. H.: Large-scale temperature inferences from tree rings: a review, Global Planet. Change, 40, 11–26, 2004.
Briffa, K. R., Shishov, V. V., Melvin, T. M., Vaganov, E. A., Grudd, H., Hantemirov, R. M., Eronen, M. and Naurzbaev, M. M.: Trends in recent temperature and radial tree growth spanning 2000 years across northwest Eurasia, Philos. T. Roy. Soc. B, 363, 2271–2284, 2008.
Bruland, K. W. and Lohan, M. C.: The control of trace metals in seawater, in: The Oceans and Marine Geochemistry, edited by: Elderfield, H., Treatise on Geochemistry, Elsevier- Pergamon, Oxford, UK, 6, 23-47, 2003.
Brunner, C. A., Beall, J. M., Bentley, S. J., and Furukawa, Y.: Hypoxia hotspots in the Mississippi Bight, J. Foramin. Res., 36, 95–107, 2006.
Brush, G. S.: Stratigraphic evidence of eutrophication in an estuary, Water Resour. Res., 20, 531–541, 1984.
Brush, G. S.: Natural and anthropogenic changes in Chesapeake Bay during the last 1000 years, Human Ecology and Risk Assessment, 7, 1283–1296, 2001.
Brush, G. S. and Hilgartner, W. B.: Paleoecology of the submerged macrophytes in the Upper Chesapeake Bay, Ecol. Monogr., 70, 645–667, 2000.
Calvert, S. E. and Pedersen, T. F.: Elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: interpretation and application, in: Proxies in Late Cenozoic Paleoceanography, edited by: Hillaire-Marcel, C. and de Vernal, A., Elsevier, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, 567-644, 2007.
Canfield, D. E. and Thamdrup, B.: The production of 34S-depleted sulfide during bacterial disproportionation to elemental sulfur, Science, 266, 1973–1975, 1994.
Cearreta, A., Irabien, M. J., Leorri, E., Yusta, I., Croudace, I. W., and Cundy, A. B.: Recent anthropogenic impacts on the Bilbao estuary, northern Spain: geochemical and macrofaunal evidence, Estuar. Coast. Shelf Sci., 50, 571–592, 2000.
Cearreta, A., Irabien, M. J., Leorri, E. A., Yusta, I., Quintanilla, A., and Zabaleta, A..: Environmental transformation of the Bilbao estuary, northern Spain: microfaunal and geochemical evidence in the recent sedimentary record, Mar. Pollut. Bull., 44, 487–503, 2002.
Chen, C.-C., Gong, G.-C., and Shiah, F.-K.: Hypoxia in the East China Sea: One of the largest coastal low-oxygen areas in the world, Marine Environ. Res., 64, 399–408, 2007.
Chen, N., Bianchi, T. S., McKee, B. A., and Bland, J. M.: Historical trends of hypoxia on the Louisiana shelf: applications of pigments as biomarkers, Org. Geochem., 32, 543–561, 2001.
Chmura, G. L., Santos, A., Pospelova, V., Spasojevic, Z., Lam, R., and Latimer, J.S.: Response of three paleo-primary production proxy measures to development of an urban estuary, Science Total Environ., 320, 225–243, 2004.
Clarke, A., Juggins, S., and Conley, D.: A 150-year reconstruction of the history of coastal eutrophication in Riskilde Fjord, Denmark, Mar. Pollut. Bull., 46, 1615–1629, 2003.
Clarke, A. L., Weckström, K., Conley, D. J., Anderson, N. J., Adser, F., Andrén, E., de Jonge, V. N., Ellegaard, M., Juggins, S., Kauppila, P., Korhola, A., Reuss, N., Telford, R. J., and Vaalgamaa, S.: Long-term trends in eutrophication and nutrients in the coastal zone, Limnol. Oceanogr., 51, 385–397, 2006.
Cole, M. L., Valiela, I., Kroeger, K. D., Tomasky, G. L., Cebrian, J., Wigand, C., McKinney, R. A., Grady, S. P., and Carvalho da Silva, M. H.: Assessment of a δ15N isotopic method to indicate anthropogenic eutrophication in aquatic ecosystems, J. Environ. Qual., 33, 124–132, 2004.
Colman, S. M. and Bratton, J. F..: Anthropogenically induced changes in sediment and biogenic silica fluxes in Chesapeake Bay, Geology, 31, 71–74, 2003.
Colman, S. M., Baucom, P. C., Bratton, J. F., Cronin, T. M., McGeehin, J. P., Willard, D., Zimerman, A. R., and Vogt, P. R.: Radiocarbon dating, chronologic framework, and changes in accumulation rates of Holocene estuarine sediments from Chesapeake Bay, Quaternary Res., 57, 58–70, 2002.
Conley, D. J., Björck, S., Bonsdorff, E., Carstensen, J., Destouni, G., Gustafsson, B. G., Hietanen, S., Kortekaas, M., Kuosa, H., Markus Meier, H. E., Müller-Karulis, B., Nordberg, K., Norkko, A., Nürnberg, G., Pitkänen, H., Rabalais, N. N., Rosenberg, R., Savchuk, O. P., Slomp, C. P., Voss, M., Wulff, F., and Zillén, L.: Hypoxia-related processes in the Baltic Sea, Environ. Sci. Technol., 43, 3412–3419, 2009.
Conley, D. J., Carstensen, J., $\acute{Ǽ}$rtebjerg, G., Christiansen, P. B., Dalsgaard, T., Hansen, J. L. S., and Josefson, A. B.: Long-term changes and impacts of hypoxia in Danish coastal waters, Ecol. Appl., 17(5) Supplement, S165–S184, 2007.
Cooper, S. R.: Chesapeake Bay watershed historical land use: impact on water quality and diatom communities. Ecol. Appl., 5, 703–723, 2005.
Cooper, S. R.: History of human impacts on ecology of North Carolina estuaries, in: Geological Society of America 2006 Philadelphia Annual Meeting (22–25 October 2006), Paper N. 130–13, 2006.
Cooper, S. R., and Brush, G. S.: Long term history of Chesapeake Bay anoxia, Science, 254, 992–996, 1991.
Cooper, S. R. and Brush, G. S.: A 2500-year history of anoxia and eutrophication in Chesapeake Bay, Estuaries, 16, 617–626, 1993.
Corbari, L., Mesmer-Dudons, N., Carbonel, P., and Massabuau, J. C.: Cytherella as a tool to reconstruct deep-sea paleo-oxygen levels: the respiratory physiology of the platycopid ostracod Cytherella cf. abyssorum, Mar. Biol., 147, 1377–1386, 2005.
Cornwell, J. C., Conley, D. J., Owens, M., and Stephenson, J. C.: A sediment chronology of Chesapeake Bay, Estuaries, 19, 488–499, 1996.
Cornwell, J. C., Fisher T. R., Glibert P. M., Hagy J. D., Harding L. W., Houde E. D., Kimmel D. G., Miller W. D., Newell R. I .E., Roman M. R., Smith E. M., and Stevenson J. C.: Eutrophication of Chesapeake Bay: historical trends and ecological interactions, Marine Ecol. Prog. Ser., 303, 1–29, 2005.
Cowie, G. L.: The biogeochemistry of Arabian Sea surficial sediments: A review of recent studies, Prog. Oceanogr., 65, 260–289, 2005.
Cowie, G. L. and Levin, L. A.: Benthic biological and biogeochemical patterns and processes across an oxygen minimum zone (Pakistan Margin, NW Arabian Sea), Deep-Sea Res. II, 56, 261–270, 2009.
Crosta, X. and Koç, N.: Diatoms: from micropaleontology to isotope geochemistry, in: Proxies in Late Cenozoic Paleoceanography, edited by: Hillaire-Marcel, C. and de Vernal, A., Elsevier, Amsterdam, 327–369, 2007.
Cronin, T. M. and Vann, C. D.: The sedimentary record of climatic and anthropogenic influence on the Patuxent Estuary and Chesapeake Bay ecosystems, Estuaries, 26, 196–209, 2003.
Cronin, T. M., Willard, D. A., Karlsen, A., Ishman, S., Verado, S., McGeehin, J., Kerhin, R., Holmes, C., Colman, S., and Zimmerman, A.: Climatic variability in the eastern United States over the past millennium from Chesapeake Bay sediments, Geology, 28, 3–6, 2000.
Cronin, T. M., Dwyer, D. S., Kamiya, T., Schwede, S., and Willard, D. A.: Medieval warm period, little ice age and 20th century temperature variability from Chesapeake Bay, Global Planet. Change, 36, 17–29, 2003.
Crosta, X. and Koç, N.: Diatoms: from micropaleontology to isotope geochemistry, in: Proxies in Late Cenozoic Paleoceanography, edited by: Hillaire-Marcel, C. and de Vernal, A., Elsevier, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, 327–369, 2007.
Crusius, J., Calvert, S., Pedersen, T., and Sage, D.: Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition, Earth, Planet. Sc. Lett., 145, 65–78, 1996.
D'Souza, A. W.: Reconstruction of past changes in the oxygen minimum zone of the Arabian Sea from sedimentary record. Ph.D. thesis, Goa University, 180 pp., 2007.
Dale, B.: Dinoflagellate cysts as indicators of cultural eutrophication and industrial pollution in coastal sediments, in: Environmental Micropaleontology, Volume 15 of Topics in Geobiology, edited by: Martin, R. E., Kluwer Academic/Plenum Publishing, New York, 305–321, 2000.
Dale, B. and Dale, A.: Environmental applications of dinoflagellate cysts and acritachs, in: Quaternary Environmental Micropalaeontology, edited by: Haslett, S. K., Arnold, London, UK, 207-240, 2002.
Dale, B., Thorsen, T. A., and Fjellså, A.: Dinoflagellate cysts as indicators of cultural eutrophication in the Oslofjord, Norway, Estuar. Coast. Shelf Sci., 48, 371–146, 1999.
Debenay, J. P., and Guillou, J.-J.: Ecological transitions indicated by foraminiferal assemblages in paralic environments, Estuaries, 25, 1107–1120, 2002.
Diaz R. J. and Rosenberg, R.: Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna, Oceanogr. Mar. Biol. Ann. Rev., 33, 245–303, 1995.
Díaz, R. J. and Rosenberg, R.: Spreading dead zones and consequences for marine ecosystems, Science, 321, 926–929, 2008.
Diaz, R. J.: Overview of hypoxia around the world, J. Environ. Qual., 30, 275–281, 2001.
Dortch, Q., Robichaux, R., Pool, S., Milstedl, D., Mire, G. Rabalais, N. N., Soniat, T. M., Fryxel, G. R., Turner, E., and Parsons, M. L.: Abundance and vertical flux of Pseudo-nitzschia in the northern Gulf of Mexico, Marine Ecol. Prog. Ser., 146, 249–264, 1997.
Duijnstee, I. A. P., Ernst, S. R., and Van der Zwaan, G. J.: Effect of anoxia on the vertical migration of benthic foraminifera, Mar. Ecol. Prog. Ser., 246, 85–94, 2003.
Eadie, B. J., McKee, B. A., Lansing, M. B., Robbins, J. A., Metz, S., and Trefry, J. H.: Records of nutrient-enhanced coastal productivity in sediments from the Louisiana continental shelf, Estuaries, 17, 754–765, 1994.
Ellegaard, M., Clarke, A. L., Reuss, N., Drew, S., Weckstrom, K., and Juggins, S., Anderson N. J., and Conley D. J.: Multi-proxy evidence of long-term changes in ecosystem structure in a Danish marine estuary, linked to increased nutrient loading, Estuar. Coast. Shelf S., 68, 567–578, 2006.
Ernst, S. R. and Van der Zwaan, G. J.: Effects of experimentally induced raised levels of organic flux and oxygen depletion on a continental slope benthic foraminiferal community, Deep-Sea Res. I, 51, 1709–1739, 2004.
Ficken, K. J. and Farrimond, P.: Sedimentary lipid geochemistry of Framvaren: impacts of a changing environment, Mar. Chem., 51, 31–43, 1995.
Filipsson, H. L. and Nordberg, K.: Climatic variations, an overlooked factor influencing the recent marine environment. An example from the Gullmar Fjord, Sweden, illustrated by benthic foraminifera and hydrographic data, Estuaries, 27, 867–881, 2004.
Fontanier, C., Jorissen, F. J., Chaillou, G., Anschutz, P., Grémare, A., and Griveaud, C.: Live foraminiferal faunas from a 2800 m deep lower canyon station from the Bay of Biscay: Faunal response to focusing of refractory organic matter, Deep-Sea Res. I, 52, 1189–1227, 2005.
Gage, J. D. and Tyler, P. A.: Deep-Sea Biology: A Natural History of Organisms at the Deep-Sea Floor, Cambridge University Press, Cambridge, 504 pp., 1991.
Geslin, E., Heinz, P., Hemleben, C., and Jorissen, F. J.: Migratory response of deep-sea benthic foraminifera to variable oxygen conditions: laboratory investigations, Marine Micropaleontol., 53, 227–243, 2004.
Gooday, A. J.: Benthic foraminifera (Protista) as tools in deep-water palaeoceanography: a review of environmental influences on faunal characteristics, Adv. Mar. Biol., 46, 1–90, 2003.
Gooday, A. J., Bernhard, J. M., Levin, L. A., and Suhr, S. B.: Foraminifera in the Arabian Sea oxygen minimum zone and other oxygen deficient settings: taxonomic composition, diversity, and relation to metazoan faunas, Deep-Sea Res. II, 47, 25–54, 2000.
Gooday, A. J., Hughes, J. A., and Levin, L. A.: The foraminiferan macrofauna from three North Carolina (USA) slope sites with contrasting carbon flux: a comparison with the metazoan macrofauna, Deep-Sea Res I, 48, 1709–1739, 2001.
Gooday, A. J., Levin, L. A., Aranda da Silva, A., Bett, B., Cowie, G., Dissard, D., Gage, J., Hughes D., Jeffreys R., Larkin K., Murty, S.J., Shumaker, S, Whitcraft, C., and Woulds, C.: Faunal responses to oxygen gradients on the Pakistan margin: a comparison of foraminifera, macrofauna and megafauna, Deep-Sea Res. II, 56, 488–502, 2009.
Grantham, B. A., Chan, F., Nielsen, K. J., Fox, D. S., Barth, J. A., Huyer, A., Lubchenco, J., and Menge, B. A.: Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific, Nature, 429, 749–754, 2004.
Gray, J. S., Wu, R. S. S. and Or, Y. Y.: Effects of hypoxia and organic enrichment on the coastal marine environment, Mar. Ecol. Prog. Ser., 238, 249–279, 2002.
Green, M. A., Aller, J. C., and Aller, J. Y.: Carbonate dissolution and temporal abundances of Foraminifera in Long Island Sound sediments, Limnol. Oceanol., 38, 331–345, 1993.
Guillard, R. R. L., Murphy, L. S., Foss, P., and Liaaen-Jensen, S.: Synechococcus spp. as likely zeaxanthin-dominant ultraphytoplankton in the North Atlantic, Limnol Oceanogr., 30, 412–414, 1985.
Guiot, J. and de Vernal, A.: Transfer functions: methods for quantitative paleoceanography based on microfossils, in: Proxies in Late Cenozoic Paleoceanography, edited by: Hillaire-Marcel, C. and de Vernal, A., Elsevier, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, 523–563, 2007.
Hagy, J. D., Boynton, W. R., Keefe, C. W., and Wood, K. V.: Hypoxia in Chesapeake Bay, 1950–2001: long-term change in relation to nutrient loading and river flow, Estuaries, 27, 634–658, 2004.
Hall, R. I. and Smol, J. P.: Diatoms as indicators of lake eutrophication, in: The Diatoms: Applications for the Environmental and Earth Sciences, edited by: Stoermer, E. F. and Smol, J. P., Cambridge University Press, Cambridge, UK, 128-168, 1999.
Harper, D. E., McKinney, L. D., Nance, J. M., and Salzer, R. R.: Recovery of two benthic assemblages following an acute hypoxic event on the Texas continental shelf, northwestern Gulf of Mexico, in: Modern and Ancient Continental Shelf Anoxia, edited by: Tyson, R. V. and Pearson, T. H., Geological Society Special Publication, 58, 49–64, 1991.
Haslett, S. K.: Quaternary Environmental Micropalaeontology. London: Arnold, 340 pp., 2002.
Helly, J. J. and Levin, L. A.: Global distribution of naturally occurring marine hypoxia on continental margins, Deep-Sea Res. I, 51, 1159-1168, 2004.
Hedges, J. I. and Keil, R. G.: Sedimentary organic-matter preservation – an assessment and speculative synthesis, Mar. Chem., 49, 81–115, 2005.
Hendy, I. L. and Pedersen, T. F.: Oxygen minimum zone expansion in the eastern tropical North Pacific during deglaciation, Geophys. Res. Lett., 33, L20602, https://doi.org/10.1029/2006GL025975, 2006.
Herguera, J. C. and Berger, W. H.: Paleoproductivity from benthic foraminifera abundance: glacial to post-glacial change in west-equatorial Pacific, Geology, 19, 1173–1176, 1991.
Hillaire-Marcel, C. and De Vernal, A. (Eds.): Proxies in Late Cenozoic Paleoceanography, Developments in Marine Geology, Vol. 1, Elsevier: Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, 843 pp., 2007.
Hughes, D. J., Lamont, P. A., Levin, L. A. Packer, M. and Gage, J. D.: Macrofaunal community structure and bioturbation across the Pakistan margin Oxygen Minimum Zone, north-east Arabian Sea, Deep-sea Res. II, 56, 334–448, 2009.
Huppert, A. and Aolow, A. R.: A method for reconstructing climate from fossil beetle assemblages, Philos. T. Roy Soc. A., 271, 1125–1128, 2004.
Husum, K. and Alve, E.: Development of dysoxia in Norwegian fjords during the 20th century: natural or anthropogenic causes, Geophys. Res. Abstracts, 8, 03976, 2006.
Ikeya, N.: Ostracoda in sediment cores from Yokohama Port, in: Changes in marine organisms and environments at Yokohama Port: research on fossils in sediment core samples, Yokohama Environmental Research Institute, Report no 116, 27–33, 1995.
Itoh, N., Tani, Y., Nagatani, T., and Soma, M.: Phototrophic activity and redox condition in Lake Hamana, Japan, indicated by sedimentary photosynthetic pigments and molybdenum over the last 250 years, J. Paleolimnol., 29, 403–422, 2003.
Jackson, J. B. C., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., Bradbury, R. H., Cooke, R., Erlandson, J., Estes, J. A., Hughes, T. P., Kidwell, S., Lange, C. B., Lenihan, H. S., Pandolfi, J. M., Peterson, C. H., Steneck, R. S., Tegner, M. J., and Warner, R. R.: Historical overfishing and the recent collapse of coastal ecosystems, Science, 293, 629–637, 2001.
Jackson, S. T.: Looking forward from the past: history, ecology and conservation, Front. Ecol. Environ., 9, p 455, 2007.
Jahn, A., Gamenick, I., and Theede, H.: Physiological adaptations of Cyprideis torosa (Crustacea, Ostracoda) to hydrogen sulphide, Mar. Ecol. Prog. Ser., 142, 215–223, 1996.
Jannink, N. T.: Seasonality, biodiversity and microhabitats in benthic foraminiferal communities, Geologica Ultraiectina, 203, 1–190, 2001.
Jonsson, P., Carmen, R., and Wulff, F.: Laminated sediments in the Baltic – a tool for evaluating nutrient mass balance, Ambio, 19, 152–158, 1990.
Jorissen, F. J.: The distribution of benthic foraminifera in the Adriatic Sea, Mar. Micropaleontol., 12, 21–48, 1987.
Jorissen, F.: Benthic foraminiferal microhabitats below the sediment-water interface, in: Modern Foraminifera, edited by: Sen Gupta, B. K., Kluwer Academic Publishers, Dordrecht, Boston, London, 161–179, 1999a.
Jorissen, F.: Benthic foraminiferal sucessions across Late Quaternary Mediterranean sapropels, Mar. Geol., 153, 91–101, 1999b.
Jorissen, F., Fontanier, C., and Thomas, E.: Paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics, in: Proxies in Late Cenozoic Paleoceanography, edited by: Hillaire-Marcel, C. and de Vernal, A., Elsevier, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, 263–325, 2007.
Jorissen, F. J., Wittling I., Peypouquet J. P., Rabouille, C., and Relexans, J. C.: Live benthic foraminiferal faunas off Cap Blanc, NW Africa: community structure and microhabitats. Deep-Sea Res. I, 45, 2157–2188, 1998.
Justi$ć$, D.: Hypoxic conditions in the northern Adriatic Sea: historical development and ecological significance, edited by: Tyson, R. V. and Pearson, T. H., Modern and Continental Shelf Anoxia, Geological Society of London Special Publication, 95-106, 1991.
Justi$ć$, D., Legovi$ć$, T., and Rottini-Sandri, L.: Trends in oxygen content 1911–1984 and occurrence of benthic mortality in the northern Adriatic Sea, Estuar. Coast. Shelf Sci., 25, 435–445, 1987.
Justi$ć$, D., Rabalais, N. N., and Turner, R. E.: Modeling the impacts of decadal changes in riverine nutrient fluxes on coastal eutrophication near the Mississippi River Delta, Ecol. Model., 152, 33–46, 2002.
Justi$ć$, D., Rabalais, N. N., and Turner, R. E.: Coupling between climate variability and marine coastal eutrophication: historical evidence and future outlook, J. Sea Res., 54, 25–35, 2005.
Kaiho, K.: Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean, Geology, 22, 719–722, 1994.
Kaiho, K.: Effect of organic carbon flux and dissolved oxygen on the benthic foraminiferal oxygen index (BFOI), Mar. Micropaleontol., 37, 67–76, 1999.
Karlsen, A. W., Cronin, T. M., Ishman, S. E., Willard, D. A., Kerhin, R., Holmes, C. W., and Marot, M.: Historical trends in Chesapeake Bay dissolved oxygen based on benthic Foraminifera from sediment cores, Estuaries, 23, 488–508, 2000.
Kauppila, P., Weckström, K., Vaalgamaa, S., Korhola, A., Pitkänen, H., Reuss, N., and Drew, S.: Tracing pollution and recovery using sediments in an urban estuary, northern Baltic Sea: are we far from ecological reference conditions? Mar. Ecol.-Prog. Ser., 290, 35–53, 2005.
Kemp, W. M., Boynton, W. R., Adolf, J. E., Boesch, D. F., Boicourt W. C., Brush G., Koopmans, M. P., Köster, J., van Kaam-Peters, H. M. E., Kenig, F., Schouten, S., Hartgers, W. A., de Leeuw, J. W., and Sinninghe Damsté, J. S. S: Diagenetic and catagenic products of isorenieratene: molecular indicators of photic zone anoxia, Geochim. Cosmochim. Ac., 60, 4467–4496, 1996.
Koho, K. A., Langezaal, A. M., Van Lith, Y. A., Duijnstee, I. A. P. and Van der Zwaan, G. J.: The influence of a simulated diatom bloom on deep-sea benthic foraminifera and the activity of bacteria: a mesocosm study, Deep-Sea Res. I, 55, 696–719, 2008.
Koopmans, M. P., Köster, J., van Kaam-Peters, H. M. E., Kenig, F., Schouten, S., Hartgers, W. A., de Leeuw, J. W., and Sinninghe Damsté, J. S. S: Diagenetic and catagenetic products of isorenieratene: molecular indicators of photic zone anoxia, 60, 4467–4496, 1996.
Kurian, S., Agnihotri, R., Borole, D. V., Naqvi, S. W. A., Ferreira, A. M., and Vale, C.: Possible solar control on primary production along the Indian west coast on decadal to centennial time scales, J. Quaternary Sci., 24, 109–116, 2009.
Laine, A. O., Andersin, A.-B., Leiniö, S. and Zuur, A. F.: Stratification-induced hypoxia as a structuring factor of macrozoobenthos in the open Gulf of Finland (Baltic Sea), J. Sea Res., 57, 65–77, 2007.
Larrasoaña, J. C., Roberts, A. P., Musgrave, R. J., Gracia, E., Piñero, E., Vega, M., and Martinez-Ruiz, F.: Diagenetic formation of greigite and pyrrhotite in gas hydrate marine sedimentary systems, Earth Planet. Sc. Lett., 261, 350–366, https://doi.org/10.1016/j.epsl.2007.06.032, 2007.
Leipe, T., Dippner, J. W., Hille, S., Voss, M., Christiansen, C., and Bartholdy, J.: Environmental changes in the central Baltic Sea during the past 1000 years: inferences from sediment records, hydrography and climate, Oceanologia, 50, 23–41, 2008.
Levin, L. A.: Oxygen Minimum Zone Benthos: Adaptation and Community Response to Hypoxia, Oceanogr. Mar. Biol.: an annual review, according to the web of science, 41, 1–45, 2003.
Levin, L. A. and Gage, J. D.: Relationships between oxygen, organic matter and the diversity of bathyal macrofauna, Deep-Sea Res. II, 45, 129–163, 1998.
Levin, L. A., Gage, J. D., Martin, C., and Lamont, P. A.: Macrobenthic community structure within and beneath the oxygen minimum zone, NW Arabian Sea, Deep-Sea Res. II, 47, 189–226, 2000.
Levin, L. A., Ekau, W., Gooday, A. J., Jorrisen, F., Middelburg, J., Naqvi, W., Neira, C., Rabalais, N. and Zhang, J.: Effects of Natural and Human-Induced Hypoxia on Coastal Benthos, Biogeosciences, 2009.
Levin, L. A., Whitcraft, C. R., Mendoza, G. F., Gonzalez, J. P., and Cowie, G. L.: Oxygen and organic matter thresholds for benthic faunal activity on the Pakistan Margin oxygen minimum zone (700–1100 m), Deep-Sea Res. II, 56, 449–471, 2009.
Li, D. and Daler, D.: Ocean pollution from land-based sources: East China Sea, China, Ambio, 33, 107–-113, 2004.
Lipps, J. H. (Ed.): Fossil prokaryotes and protists, Blackwell Scientific Publications Oxford, 342 pp, 1993.
Liu J., Zhu, R. X., Roberts, A. P., Li, S. Q., and Chang, J.-H.: High-resolution analysis of early diagenetic effects on magnetic minerals in post-middle-Holocene continental shelf sediments from the Korea Strait. J. Geophys. Res., 109, B03103, https://doi.org/10.1029/2003JB002813, 2004.
Liu, S. M., Ye, X. W., Zhang, J., and Zhao, Y. F.: Problems with biogenic silica measurements in marginal seas, Mar. Geol., 192, 383–392, 2002.
Loubere, P.: Benthic foraminiferal assemblage formation, organic carbon flux and oxygen concentrations on the outer continental shelf and slope, J. Foram. Res., 27, 93–100, 1997.
Loubere, P., Gary, A., and Lagoe, M.: Benthic foraminiferal microhabitats and the generation of a fossil assemblage: theory and preliminary data, Mar. Micropaleontol., 20, 165–181, 1993.
Martin, R.E. (Ed.): Environmental Micropaleontology, Volume 15 of Topics in Geobiology, Kluwer Academic/Plenum Publishing, New York, USA, 481 pp, 2000.
Martinez, P., Bertrand, P., Shimmield, G. B., Cochrane, K., Jorissen, F. J., Foster, J., and Dignan, M.: Upwelling intensity and ocean productivity changes off Cape Blanc (northwestern Africa) during the last 70 000 years: geochemical and micropalaeontological evidence, Mar. Geol., 158, 57–74, 1999.
Martins, V., Dubert, J., Jouanneau, J.-M., Weber, O., Ferreira da Silva, E., Patinha, C., Dias, J. M. A., and Rocha, F.: A multiproxy approach of the Holocene evolution of shelf-slope circulation on the NW Iberian continental shelf, Mar. Geol., 239, 1–18, 2007.
Matsuoka, K.: Eutrophication process recorded in dinoflagellate cyst assemblages: a case of Yokohama Port, Tokyo Bay, Sci. Total Environ., 231, 17–35, 1999.
McGann, M., Alexander, C. R., and Bay, S. M.: Response of benthic foraminifers to sewage discharge and remediation in Santa Monica Bay, California, Mar. Environ. Res., 56, 299–342, 2003.
McClelland, J. W. M. and Valiela, I.: Linking nitrogen in estuarine producers to land-derived sources, Limnol. Oceanogr., 43, 577–585, 1998.
McMinn, A.: Comparison of diatom preservation between oxic and anoxic basins in Ellis Fjord, Antarctica. Diatom Res., 10, 145–151, 1995.
Menzel, D., Hopmans, E. C., de Bergen, P. F., de Leeuw, J. W., and Sinninghe Damsté, J. S. S: Development of photoic zone euxinia in the eastern Mediterranean basin during deposition of Pliocene sapropels, Mar. Geol., 189, 215–226, 2002.
Middelburg, J. J. and Herman, P. M.: Organic matter processing in tidal estuaries, Mar. Chem., 106, 127–147, 2007.
Middelburg, J. J., De Lange, G. J., Van der Weijden, C. H., and Sofiyiah, S.: Sediment chemistry of Kau Bay, Halmahera (eastern Indonesia), J. Sea Res., 24, 607–613, 1989.
Middelburg, J. J.: Organic carbon, sulphur, and iron in recent semi-euxinic sediments of Kau Bay, Indonesia, Geochim. Cosmochim. Ac., 55, 815–828, 1991.
Middelburg, J. J., Calvert S. E., and Karlin R. E.: Organic-rich transitional facies in silled basins: response to sea-level changes, Geology, 19, 679–682, 1991
Middelburg, J. J., Baas, M., ten Haven, H. L., and de Leeuw, J. W.: Organic geochemical characteristics of sediments from Kau Bay, Org. Geochem., 413–417, 1994.
Mojtahid, M., Jorissen, F. J., and Pearson, T. H.: Comparison of benthic foraminiferal and macrofaunal responses to organic pollution in the Firth of Clyde (Scotland), Mar. Pollut. Bull., 56, 42–76, 2008.
Modig, H. and Ólafsson, E.: Responses of Baltic invertebrates to hypoxic events, J. Exp. Mar. Biol. Ecol., 229, 133–148, 1998.
Moodley, L., van der Zwaan, G. J., Herman, P. M. J., Kempers, L., and van Breugel, P.: Differential response of benthic meiofauna to anoxia with special reference to Foraminifera (Protista: Sarcodina), Mar. Ecol. Prog. Ser., 158, 151–163, 1997.
Murray, J. W.: Comparative studies of living and dead benthic foraminiferal distributions, in: Foraminifera Vol. 2, edited by: Hedley, R. H. and Adams, C. G., Academic Press, London, New York, San Francisco, 45–109, 1976.
Murray, J. W.: Ecology and Applications of Benthic Foraminifera, Cambridge University Press, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, 426 pp, 2006.
Murray, J. W.: The niche of benthic foraminifera, critical thresholds and proxies, Mar. Micropaleontol., 41, 1–7.
Murray, J. W. and Alve, E.: Benthic foraminifera as indicators of environmental change: marginal-marine, shelf and upper-slope environments, in: Quaternary Environmental Micropalaeontology, edited by: Haslett, S. K., Arnold, London, UK, 59–90, 2002.
Naqvi, S. W. A., Jayakumar, D. A., Narvekar, P. V., Naik, H., Sarma, V. V. S. S., D'Souza, W., Joseph, S., and George, M. D.: Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf, Nature, 408, 346–349, 2000.
Naqvi, S. W. A, Naik, H., Jayakumar, D. A., Shailaja, M. S., and Narvekar, P. V.: Seasonal oxygen deficiency over the western continental shelf of India, in: Past and Present Water Column Anoxia, NATO Science Series, edited by: Neretin, L. , IV. Earth and Environmental Sciences – Vol. 64, Springer, 195–224, 2006a.
Naqvi, S. W. A., Naik, H., Pratihary, A., D'Souza, W., Narvekar, P. V., Jayakumar, D. A., Devol, A. H., Yoshinari, T., and Saino, T.: Coastal versus open-ocean denitrification in the Arabian Sea, Biogeosciences, 3, 621–633, 2006a.
Nelsen, T. A., Blackwelder, P., Hood, T., McKee, B., Romer, N., Alvarez-Zarikian, C., and Metz, S.: Time-based correlation of biogenic, lithogenic and authigenic sediment components with anthropogenic inputs in the Gulf of Mexico NECOP study area, Estuaries, 17, 873–885, 1994.
Nikulina, A., Polovodova, I. and Schönfeld, J.: Foraminiferal response to environmental changes in Kiel Fjord, SW Baltic Sea, eEarth, 3, 37–49, 2008.
Nilsson, H. C. and Rosenberg, R.: Succession in marine benthic habitats and fauna in response to oxygen deficiency: analysed by sediment profile-imaging and by grab samples, Mar. Ecol.-Prog. Ser., 197, 139–149, 2000
Niggemann, J. and Schubert, C. J.: Fatty acid biogeochemistry of sediments from the Chilean coastal upwelling region: Sources and diagenetic changes, Org. Geochem., 37, 626–647, 2006.
Nishumira, M. and Koyama, T.: The occurrence of stanols in various living organisms and the behaviour of sterols in contemporary sediments, Geochim. Cosmochim. Ac., 41, 379–385, 1977.
Nixon, S. W.: Prehistoric nutrient inputs and productivity in Narragansett Bay, Estuaries, 20, 253–261, 1997.
Nomaki, H., Heinz, P., Hemleben, C., and Kitazato, H.: Behavior and response of deep-sea benthic foraminifera to freshly supplied organic matter: a laboratory feeding experiment in microcosm environments, J. Foram. Res., 35, 103–113, 2005. \label{subsec:nomaki}
Nordberg, K., Gustafsson, M., and Kranz, A. L.: Decreasing oxygen concentrations in the Gullmar Fjord, Sweden, as confirmed by benthic Foraminifera, and possible associations with NAO, J. Marine Syst., 23, 303–316, 2000.
Orsini, G., Capotondi, L., Colantoni, P., Galeotti, S., and Mencucci, D.: Benthic Foraminifera as indicators of environmental changes in the central Adriatic Sea, Geophys. Res. Abstracts, 8, 08098, 2006.
Orth, R. J. and Moore, K. A.: Chesapeake Bay: An unprecedented decline in submerged aquatic vegetation, Science, 222, 51–53, 1983.
Osterman, L. E.: Benthic foraminifers from the continental shelf and slope of the Gulf of Mexico: An indicator of shelf hypoxia, Estuar. Coast. Shelf Sci., 58, 17–35, 2003.
Osterman, L. E., Poore, R. Z., Swarzenski, P. W., and Turner, R. E.: Reconstructing a 180-yr record of natural and anthropogenic induced low-oxygen conditions from Louisiana continental shelf sediments, Geology, 33, 329–333, 2005.
Osterman, L. E., Poore, R. Z., and Swarzenski, P. W.: The last 1000 years of natural and anthropogenic low-oxygen bottom water on the Lousinana shelf, Gulf of Mexico, Mar. Micropaleontol., 66, 291–303, 2008.
Passier, H. F., Middelburg, J. J., van Os, B. J. H., and de Lange, G. J.: Diagenetic pyritisation under Eastern Mediterranean sapropels caused by downward sulphide diffusion, Geochim. Cosmochim. Ac., 60, 751–763, 1996.
Passier, H. F., Middelburg, J. J., de Lange, G. J., and Bottcher, M: Pyrite contents, microtextures and sulphur isotopes in the youngest eastern Mediterranean sapropel, Geology, 25, 519–522, 1997.
Parsons, M. L., Dortch, Q., and Turner, R. E.: Sedimentological evidence of an increase in Pseudo-nitzschia (Bacillariophyceae) abundance in response to coastal eutrophication, Limnol. Oceanogr., 47, 551–558, 2002.
Parsons, M. L., Dortch, Q., Turner, R. E., and Rabalais, N. N.: Salinity history of coastal marshes reconstructed from diatom remains, Estuaries, 22, 961–972, 1999
Parsons, M. L., Dortch, Q., Turner, R. E., and Rabalais, N. N.: Reconstructing the development of eutrophication in Louisiana salt marshes, Limnol. Oceanogr., 51, 534–544, 2006.
Passier, H. F., Bosch, H.-J., Nijenhuis, I. A., Lourens, L. J., Böttcher, M. E., Leenders, A., Sinninghe Damsté, J. S., de Lange, G. J., and de Leeuw, J. W.: Sulphidic Mediterranean surface waters during Pliocene sapropel formation, Nature, 397, 146–149, 1999.
Pawlowski, J., Bowser, S. S., and Gooday, A. J.: A note on the genetic similarity between shallow- and deep-water Epistominella vitrea (Foraminifera) in the Antarctic, Deep-Sea Res. II, 54, 1720–1726, 2007.
Persson, J. and Jonsson, P.: Historical development of laminated sediments – an approach to detect soft sediment ecosystem changes in the Baltic Sea, Mar. Pollut. Bull., 40, 122–124, 2000.
Phleger, F. B.: Benthic Foraminifera as indicators of organic production in marginal marine areas, in: 1st International Symposium on Benthic Foraminifera of Continental Margins, Part A: Ecology and Biology, Maritime Sediments Special Publication, 1, 107–117, 1976.
Phleger, F. B. and Soutar, A.: Production of benthic foraminifera in three east Pacific oxygen minima, Micropaleontol., 19, 110–115, 1973.
Pike, J., Bernhard, J. M., Moreton, S. G., and Butler, I. B.: Microirrigation of marine sediments in dysoxic environments: implications for early sediment fabric formation and diagenetic processes, Geology, 29, 923–926, 2001.
Pinturier-Geiss, L., Méjanelle, L., Dale, B., and Karlsen, D. A.: Lipids as indicators of eutrophication in marine coastal sediments, J. Microbiol. Meth., 48, 239–257, 2002.
Platon, E. and Sen Gupta, B. K.: Foraminiferal communities of oxygen-stressed environments on the Louisiana continental shelf, in: Coastal Hypoxia: Consequences for Living Resources and Ecosystems, edited by: Rabalais, N. N. and Turner, R. E., Coastal and Estuarine Studies 58, American Geophysical Union, Washington, DC, 147–163, 2001.
Platon, E., Sen Gupta, B. K., Rabalais, N. N., and Turner, R. E.: Effect of seasonal hypoxia on the benthic foraminiferal community of the Louisiana inner continental shelf: the 20th century record, Mar. Micropaleont., 54, 263–283, 2005.
Pospelova, V., Chmura, G. L., Boothman, W. S., and Latimer, J. S.: Dinoflagellate cyst records and human disturbance in two neighboring estuaries, New Bedford Harbor and Apponagansett, Bay, Massachusetts (USA), Sci. Total Environ., 298, 81–102, 2002.
Pucci, F., Geslin, E., Barras, C., Morigi, C., Sabbatini, A., Negri, A. and Jorissen, F. J. : Survival of benthic foraminifera under hypoxic conditions: Results of an experimental study using the Cell Tracker Green method. Mar. Poll. Bull., in press, 2009.
Puškari$ć$, S., Berger, G. W., and Jorissen, F. J.: Sucessive appearance of subfossil phytoplankton species of the northern Adriatic Sea and its relation to increased eutrophication pressure, Estuar. Coast. Shelf S., 31, 177–187, 1990.
Rabalais, N. N.: Hipoxia en el Golfo de México, in: Diagnóstico Ambiental del Golfo de México Vol. II, edited by: Caso, M., Pisanty, I. and Excurra, E., Instituto Nacional de Ecología, Mexico, DF, 478–489, 2004.
Rabalais, N. N. and Gilbert, D.: Distribution and consequences of hypoxia, in: Watersheds, bays, and bounded seas: The science and management of semi-enclosed marine systems, edited by: Urban, E. R. J., Sundby, B., Malanotte-Rizzoli, P., and Mellilo, J., vol. 70 of Scientific Committee on Problems of the Environment (SCOPE) Series, chap. 11, pp. 209–225, Island Press, Washington, DC, 2009.
Rabalais N. N. and Turner, R. E.: Hypoxia in the northern Gulf of Mexico: description, causes and change, in: Coastal hypoxia: consequences for living resources an decosystems, edited by: Rabalais, N. N. and Turner, R. E., Coast. Estuar. Stud., 58, American Geophysical Union, Washington DC, USA, 1–36, 2001.
Rabalais, N. N., Smith, L. E., Harper, D. E., and Justic, D.: Effects of seasonal hypoxia on continental shelf benthos, in: Coastal hypoxia: consequences for living resources an decosystems, edited by: Rabalais, N. N., and Turner, R. E., Coast. Estuar. Stud., 58, American Geophysical Union, Washington DC, USA, 211–240, 2001..
Rabalais, N. N., Turner, R. E., and Scavia, D.: Beyond science into policy: Gulf of Mexico hypoxia and the Mississippi River, BioScience, 52, 129–142, 2002.
Rabalais, N. N., Turner, R. E., Sen Gupta, B. K., Platon, E., and Parsons, M. L.: Sediments tell the history of eutrophication and hypoxia in the northern Gulf of Mexico, in: Nutrient Enrichment of Estuarine and Coastal Marine Environments, Ecol. Appl., 17, Supplement, S129–S143, 2007.
Rabalais, N. N. Turner, R. E., Justi$ć$, D., Dortch, Q., Wiseman Jr., W. J., and Sen Gupta, B. K.: Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf, Estuaries, 19, 386–407, 1996.
Rabalais, N. N., Atilla, N., Normandeau, C., and Turner, R. E.: Ecosystem history of the Mississippi River-influenced continental shelf revealed through preserved phytoplankton pigments, Mar. Pollut. Bull., 49, 537–547, 2004.
Radi, T. and de Vernal, A.: Dinocysts as proxy of primary productivity in mid-high latitudes of the Northern Hemisphere, Marine Micropaleonotol., 68, 84–114, 2008.
Radi, T., Pospelova, V., de Vernal, A., and Barrie, J. V.: Dinoflagellate cysts as indicators of water quality and productivity in British Columbia estuarine environments, Marine Micropaleontol., 62, 269–297, 2007.
Raiswell, R., Buckley, F., Berner, R. A., and Anderson, T. F.: Degree of pyritization of iron as a paleoenvironmental indicator of bottom water oxygenation, J. Sediment. Petrol., 58, 812–819, 1988.
Rathburn, A. E. and Corliss, B. H.: The ecology of living (stained) deep-sea benthic foraminifera from the Sulu Sea, Paleoceanography, 9, 87–150, 1994.
Reuss, N., Conley, D. J., and Bianchi, T. S.: Preservation conditions and the use of sediment pigments as a tool for recent ecological reconstruction in four Northern European estuaries, Mar. Chem., 95, 283–302, 2005.
Rhoads, D. C., Mulsow, S. G., Gutschick, R., Baldwin, C. T., and Stolz, J. F.: The dysaerobic zone revisited: a magnetic facies?, in: Modern and Ancient Contiental Shelf Anoxia, edited by: Tyson, R. V. and Pearson, T. H., Geological Society, London, Special Publication, 58, 187–199, 1991.
Rhoads, D. C. and Morse, J. W.: Evolutionary and ecological significance of oxygen-deficient marine basins, Lethaia, 4, 413–428, 1971.
Risgaard-Petersen, N., Langezaal, A. M., Ingvardsen, I., Schmid, M. C., Jetten, M. S. M., Op den Camp, H. J. M., Derksen, J. W. M., Piña-Ochoa, E., Eriksson, S. P., Nielsen, L. P., Revsbech, N. P., Cedhagen, T., and van der Zwaan, G. J.: Evidence for complete denitrification in a benthic foraminifer, Nature, 443, 93–96, 2006.
Robinson S. G. and Sahota J. T. S.: Rock-magnetic characterization of early, redoxomorphic diagenesis in turbiditic sedments from the Madeira Abyssal Plain, Sedimentology, 47, 367–394, 2000.
Roberts, A. P., and Weaver, R.: Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4), Earth Planet. Sc. Lett., 231, 263–277, 2005.
Rosenberg, R.: Marine benthic faunal successional stages and related sedimentary activity, Scientia Marina, 65 (supplement 2), 107–119, 2001.
Round, F. E., Crawford, R. M., and Mann, D. G.: The Diatoms: Biology and Morphology of the Genera, Cambridge University Press, Cambridge, UK, 747 pp., 1990.
Ruiz, F., Abad, M., Bodergat, A. M., Carbonel, P., Rodriguez-Lázaro, J., and Yasuhara, M.: Marine and brackish-water ostracods as sentinels of anthropogenic impacts, Earth Sci. Rev., 72, 89–111, 2005.
Saenger, C., Cronin, T., Thunnel, R., and Vann, C.: Modeling river discharge and precipiation from estuarine salinity in the northern Chesapeake Bay: application to Holocene paleoclimate, Holocene,16, 1–11, 2006.
Sangiorgi, S., and Donders, T.H.: Reconstructing 150 years of eutrophication in the north-west Adriatic Sea (Italy) using dinoflagellate cysts, pollen and spores, Estuar., Coast. Shelf Sci., 60, 69–79, 2004.
Sato, H.: Diatom assemblages in core samples from Yokohama Port, in: Changes in marine organisms and environments at Yokohama Port: research on fossils in sediment core samples, Yokohama Environmental Research Institute, Report no. 116, 63–76, 1995.
Savrda, C. E. and Bottjer, D. J.: The exaerobic zone: a new oxygen-deficient marine biofacies, Nature, 327, 54–56, 1987.
Savrda, C. E. and Bottjer, D. J.: Oxygen-related biofacies in marine strata: an overview and update, in: Modern and ancient continental shelf anoxia, edited by: Tyson, R. V. and Pearson, T. H., Geological Society Special Publication, 58, 201-219, 1991.
Savrda, C. E., Bottjer, D. J., and Gorsline, D. S.: Development of a comprehensive oxygen-deficient marine biofacies model; evidence from Santa Monica, San Pedro, and Santa Barbara basins, California continental borderland, AAPG Bull., 58, 1179–1192, 1984.
Schaffner, L. C., Jonsson P., Diaz, R. J., Rosenberg, R., and Gapcynski, P.: Benthic communities and bioturbation history of estuarine and coastal systems: effects of hypoxia and anoxia, Sci. Total Environ. (supplement), 1001-1017, 1992.
Schulte, S., Mangelsdorf, K., and Rullkotter, J.: Organic matter preservation on the Pakistan continental margin as revealed by biomarker geochemistry, Org. Geochem., 31, 1005–1022, 2000.
Schmiedl, G., Mitschele, A., Beck, S., Emeis, K. C., Hemleben, C., Schulz, H., Sperling, M., and Weldeab, S.: Benthic foraminiferal record of ecosystem variability in the eastern Mediterranean Sea during times of sapropel S5 and S6 deposition, Palaeogeogr. Palaeocl., 190, 139–164, 2003.
Schweizer, M., Pawlowski, J., Kouwenhoven, T. J., Guiard, J., and van der Zwaan, B.: Molecular phylogeny of Rotaliida (Foraminifera) based on complete small subunit rDNA sequences, Mar. Micropaleontol., 66, 233–246, 2008
Sen Gupta, B. K. and Platon, E.: Tracking past sedimentary records of oxygen depletion in coastal waters: use of the Ammonia-Elphidium foraminiferal index, J. Coast. Res., Special Issue, 39, 1351–1355, 2006.
Sen Gupta, B. K., Lee, R. F., and May, M. S.: Upwelling and an unusual assemblage of benthic foraminifera on the northern Florida continental slope, J. Paleontol., 55, 853–857, 1981.
Sen Gupta, B. K. and Machain-Castillo, M. L.: Benthic foraminifera in oxygen-poor habitats, Mar. Micropaleontol., 20, 183–201, 1993.
Sen Gupta, B. K., Turner, R. E., and Rabalais, N. N.: Seasonal oxygen depletion in continental-shelf waters of Louisiana: Historical record of benthic foraminifers, Geology, 24, 227–230, 1996.
Shankle, A. M., Goericke, R., Franks, P. J. S., and Levin, L. A.: Chlorin distribution and degradation in sediments within and below the Arabian Sea oxygen minimum zone, Deep-Sea Res. I, 49, 953–969, 2002.
Sinninghe Damsté J. S. S., Wakeham, S. G., Kohnen, M. E. L., Hayes, J. M., and de Leeuw, J. W.: A 6000 year sedimentary molecular record of chemocline excursions in the Black Sea, Nature, 362, 827–829, 1993.
Sinninghe Damsté J. S. S., Rijpstra W. I. C., and Reichart G. J.: The influence of oxic degradation on the sedimentary biomarker record II. Evidence from Arabian Sea sediments, Geochim. Cosmochim. Ac., 66, 2737–2754, 2002.
Sinninghe Damsté, J. S. S., Kuypers, M. M. M., Schouten, S., Schulte, S., and Rullkotter, J.: The lycopane/C31 n-alkane ratio as a proxy to assess palaeoxicity during sediment deposition, Earth, Planet. Sc. Lett., 209, 215–226, 2003.
Smith, V.H.: Eutrophication of freshwater and coastal marine ecosystems: A global problem, Environ. Sci. Pollut. R., 10, 126-139, 2003
Smittenberg, R.H., Baas, M., Green, M.J., Hopmans, E.C., Schouten, S., and Sinninghe Damsté, J.S.S.: Pre- ad post-industrial environmental changes as revealed by the biogeochemical sedimentary record of Drammensfjord, Norway, Mar. Geol., 214, 177–200, 2005.
Smittenberg, R. H., Pancost, R. D., Hopmans, E. C., Paetzel, M., and Sinninghe Damsté, J. S. S.: A 400-year record of environmental change in an euxenic fjord as revealed by the sedimentary biomarker record, Palaeogeogr. Palaeocl., 202, 331–351.
Soetaert, K., Middelburg J. J., Heip C., Meire P., Van Damme S., and Maris, T.: Long term change in dissolved inorganic nutrients in the heterotrophic Scheldt estuary (Belgium , the Netherlands), Limnol. Oceanogr., 51, 409–423, 2006.
Stoermer, E. F. and Smol, J. P.: The Diatoms: Applications for Environmental and Earth Sciences, Cambridge University Press, 482 pp, 1999
Stott, L. D., Berelson, W., Douglas, R., and Gorsline, D.: Increased dissolved oxygen in Pacific intermediate waters due to lower rates of carbon oxidation in sediments, Nature, 407, 367–370, 2000.
Struck, U., Emeis, K.-C., Voss, M., Christiansen, C., and Kunzendorf, H.: Records of southern and central Baltic Sea eutrophication in δ15N of sedimentary organic matter, Mar. Geol., 164, 157–171, 2000.
Suess, H.E.: Radiocarbon concentration in modern wood, Science, 122, 415–417, 1955.
Swarzenski, P. W., Campbell, P. L., Osterman, L. E. and Poore, R. Z.: A 1000-year sediment record of recurring hypoxia off the Mississippi River: the potential role of terrestrially-derived organic matter inputs, Mar. Chem., 109, 130–142, 2008
Taylor, S. R.: The abundance of chemical elements in the continental crust – a new table, Geochim. Cosmochim. Ac., 28, 1273–1285, 1964.
Thibodeau, B., de Vernal, A., and Mucci, A.: Recent eutrophication and consequent hypoxia of the Lower St. Lawrence Estuary: Micropaleontological and geochemical evidence, Mar. Geol., 231, 37–50, 2006.
Thomas, E.: Multiproxy records of eutrophication in Long Island Sound, Geological Society of America 2006 Philadelphia Annual Meeting (22–25 October 2006), Paper N. 130–10, 2006.
Thomas, E., Abramson, I., Varekamp, J. C., and Buchholtz ten Brink, M. R.: Eutrophication of Long Island Sound as traced by benthic foraminifera, Sixth Biennual LIS Research Conference Proceedings, 87–91, 2004.
Thomas, E., Gapotchenko, T., Varekamp, J. C., Mecray, E. L., and Buchholtz ten Brink, M. R.: Benthic Foraminifera and environmental changes in Long Island Sound, J. Coast. Res., 16, 641–645, 2000.
Thorsen, T. A., and Dale, B.: Dinoflagellate cysts as indicators of pollution and past climate in a Norwegian fjord, Holocene, 7, 433–446, 1997.
Thunnell, R. C., Tappa, E., and Anderson, D. M.: Sediment fluxes and varve formation in Santa Barbara Basin, offshore California, Geology, 23, 1083–1086, 1995.
Toyoda, K. and Kitazato, H.: Paleoenvironmental changes in Yokohama Port since 1870 based on benthic foraminiferal fossils, in: Changes in marine organisms and environments at Yokohama Port: research on fossils in sediment core samples, Yokohama Environmental Research Institute, Report 116, 11–26, 1995.
Tribovillard, N., Algeo T. J., Lyons T., and Riboulleau A.: Trace metals as paleoredox and paleoproductivity proxies: An update, Chem. Geol., 232, 12–32, 2006.
Tsuchiya, M., Grimm, G. W., Heinz, P., Stögerer, K., Ertan, K. T., Collen, J., Brüchert, V., Hemleben, C., Hemleben, V., and Kitazato, H.: Ribosomal DNA shows extremely low genetic divergence in a world-wide distributed, but disjunct and highly adapted marine protozoan (Virgulinella fragilis, Foraminiferida), Marine Micropaleontol., 70, 8–19, 2009.
Tsujimoto, A., Nomura, R., Yasuhara, M., and Yoshikawa, S.: Benthic foraminiferal assemblages in Osaka Bay, southwestern Japan: faunal changes over the last 50 years, Paleontol. Res., 10, 141–161, 2006a.
Tsujimoto, A., Nomura, R., Yasuhara, M., Yamazaki, H., and Yoshikawa, S.: Impact of eutrophication on shallow marine benthic foraminifers over the last 150 years in Osaka Bay, Japan, Marine Micropaleontol., 60, 258–268, 2006b
Tsujimoto, A., Yasuhara, M., Nomura, R., Yamazaki, H., Sampai, Y., Hirose, K. and Yoshikawa, S.: Development of modern benthic ecosystems in eutrophic coastal oceans: the foraminiferal record over the last 200 years, Osaka Bay, Japan, Marine Micropaleontol., 69, 225–239, 2008.
Turner, R. E. and Rabalais, N. N.: Coastal eutrophication near the Mississippi river delta, Nature, 368, 619–621, 1994.
Turner, R. E. and Rabalais, N.N.: Changes in Mississippi River water quality this century and implications for coastal food webs, BioScience, 41, 140–147, 1991.
Turner, R. E. and Rabalais, N. N.: Linking landscape and water quality in the Mississippi River basin for 200 years, BioScience, 53, 563–572, 2003.
Turner, R. E., Milan, C. S., and Rabalais, N. N.: A retrospective analysis of trace metals, C, N and diatom remnants in sediments from the Mississippi River delta shelf, Mar. Pollut. Bull., 49, 548–556, 2004.
Turner, R. E., Rabalais, N. N., Justi$ć$, D., and Dortch, Q.: Future aquatic nutrient limitations, Mar. Pollut. Bull., 46, 1032–1034, 2003a.
Turner, R. E., Rabalais, N. N., Justi$ć$, D., and Dortch, Q.: Global patterns of dissolved N, P and Si in large rivers, Biogeochemistry, 64, 297-317, 2003b.
Turner, R. E., Rabalais, N. N., Fry, B., Atilla, N., Milan, C. S., Lee, J. M., Normandeau, C., Oswald, T. A., Swenson, E. M., and Tomasko, D. A.: Paleo-indicators and water quality change in the Charlotte Harbor Estuary (Florida), Limnol. Oceanogr., 51, 518–533, 2006.
Tyson, R. V. and Pearson, T. H.: Modern and ancient continental shelf anoxia: an overview, in: Modern and ancient continental shelf anoxia, edited by: Tyson, R. V. and Pearson, T. H., Geological Society Special Publication, 58, 1–24, 1991.
Van Geen, A., Zheng, Y., Bernhard, J. M., Cannariato, K. G., Carriquiry, J., Dean, W. E., Eakins, B. W., Ortiz, J. D., and Pike, J.: On the preservation of laminated sediments along the western margin of North America, Paleoceanography, 18, 22–1 to 22–17, 2003.
Van der Zwaan, G. J.: Variation in natural vs. anthropogenic eutrophication of shelf areas in front of major rivers, in: Environmental Micropaleontology, edited by: Martin, R. E., Vol. 15 of Topics in Geobiology, Kluwer Academic/Plenum Publishing, New York, USA, 385–404, 2000.
Van der Zwaan, G. J. and Jorissen., F. J.: Biofacial patterns in river induced shelf anoxia, in: Modern and Ancient Continental Shelf Anoxia, edited by: Tyson, R. V. and Pearson, T. H., Geological Society Special Publication, 58, 415–425, 1991.
Vásquez-Bedoya, L. F., Radi, T., Ruiz-Fernández, A. C., de Vernal, A., Machain-Castillo, M. L., Kielt, J. F. and Hillaire-Marcel, C.: organic-walled donoflagellate cysts and benthic foraminifera in coastal sediments of the last century from the Gulf of Tehuantepec, South Pacific coast of Mexico, Marine Micropaleontol., 68, 49–65, 2008.
Verburg, P.: The need to correct for the Suess effect in the application of δ13C in sediment of sutotrophic Lake Tanganyika, as a productivity proxy in the Anthropocene, J. Paleolimnol., 37, 591–602, 2007.
de Vernal, A., and Marret, F.: Organic-walled dinoflagellate cysts: tracers of sea-surface conditions, in: Proxies in Late Cenozoic Paleoceanography, edited by: Hillaire-Marcel, C. and de Vernal, A., Elsevier, Amsterdam, 371–408, 2007.
de Vernal, A., Rochon, A., and Radi, T.: Dinoflagellates, in: Encyclopedia of Quaternary Science Paleoceanography, edited by: Elias, S. A., Biological Proxies, 3, 652–1667, 2006
Versteegh, G. J. M. and Zonneveld, K. A. F.: Use of selective degradation to separate preservation from productivity, Geology, 30, 615–618, 2003.
Voss, M. and Struck, U.: Stable nitrogen and carbon isotopes as indicators of eutrophication of the Oder river (Baltic Sea), Mar. Chem., 59, 35–49, 1997.
Voss, M., Larsen, B., Leivuori, M., and Vallius, H.: Stable isotope signals of eutrophication in Baltic Sea sediments, J. Marine Syst., 25, 287–298, 2000.
Wada, E. and Hattori, A.: Nitrogen in the sea: forms, abundances, and rate processes, CRC Press, Boca Raton, 208 pp, 1991.
Warning, B. and Brumsack, H.-J.: Trace metal signatures of eastern Mediterranean sapropels, Palaeogeogr. Palaeocl., 158, 293–309, 2000.
Wei, H., He, Y., Li, Q., Liu, Z., and Wang, H.: Summer hypoxia adjacent to the Changjiang Estuary, J. Marine Syst., 67, 292–303, 2007.
Whatley, R. C., Pyne, R. S., and Wilkinson, I. P.: Ostracoda and palaeo-oxygen levels, with particular reference to the Upper Cretaceous of East Anglia, Palaeogeogr. Palaeocl., 194, 355–386, 2003.
Wijsman, J. W. M., Middelburg, J. J., and Heip, C. H. R.: Reactive iron in Black Sea sediments, Mar. Geol., 172, 167–180, 2001a.
Wijsman J. W. M., Middelburg J. J., Herman P. M. J., Bottcher, M., and Heip, C. H. R.: Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea, Mar. Chem., 74, 261–278, 2001b.
Wilkins, R. T., Barnes, H. L., and Brantley, S. L.: The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions, Geochim. Cosmochim. Ac., 60, 3897–3912, 1996.
Willard, D. A. and Cronin, T. M.: Paleoecology and ecosystem restoration: case studies from Chesapeake Bay and the Florida Everglades, Front. Ecol. Environ., 5, 491–498, https://doi.org/10.1890/070015, 2007.
Willard, D. A., Cronin, T. M., and Verado, S.: Late-Holocene climate and ecosystem history from Chesapeake Bay sediment cores, USA, Holocene, 13, 201–214, 2003.
Woulds, C., Cowie, G. L., Levin, L. A., Andersson, H., Vandewiele, S., Lamont, P .A., Larkin, K. E., Gooday, A. J., and Schumacher, S.: Oxygen as a control on the biological cycling of organic matter, Limnol. Oceanogr., 52, 1698–1709, 2007.
Wright, S.W., and Jeffrey, S. W.: Fucoxanthin pigment markers of marine phytoplankton analysed by HPLC and HPTLC, Mar. Ecol.-Prog. Ser., 38, 259–268, 1987.
Yadav, R. R. and Singh, J.: Tree-ring-based spring temperature patterns over the past four centuries in western Himalya, Quaternary Res., 57, 299–305, 2002.
Yasuhara, M. and Yamazaki, H.: The impact of 150 years of anthropogenic pollution on the shallow marine ostracode fauna, Osaka Bay, Japan, Mar. Micropaleontol., 55, 63–74, 2005.
Yasuhara, M., Yamazaki, H., Irizuki, T., and Yoshikawa, S.: Temporal changes in ostracod assemblages and anthropogenic pollution during the last 100 years, in sediment cores from Hiroshima Bay, Japan, Holocene, 13, 527–536, 2003.
Yasuhara, M., Yamazaki, H., Tsujimoto, A., and Horose, K.: The effect of long-term spatiotemporal variations in urbanization-induced eutrophication on a benthic ecosystem, Osaka Bay, Japan, Limnol. Oceanogr., 52, 1633–1644, 2007.
Zheng, Y., Weinman, B., Cronin, T., Fleisher, M. Q., and Anderson, R. F.: A rapid procedure for the determination of thorium, uranium, cadmium and molybdenum in small sediment samples by inductively coupled plasma-mass spectrometry: application in Chesapeake Bay, Appl. Geochem., 18, 539–549, 2003.
Zillén, L., Conley, D. J., Andrén, T., Andrén, E., and Björck, S.: Past occurrences of hypoxia in the Baltic Sea and the role of climate variability, environmental change and human impact, Earth-Sci. Rev., 91, 77–92, 2008.
Zimmerman, A. R. and Canuel, E. A.: A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments, Mar. Chem., 69, 117–137, 2000.
Zimmerman, A. R. and Canuel, E. A.: Bulk organic matter and lipid biomarker composition of Chesapeake Bay surficial sediments as indicators of environmental processes, Estuar. Coast. Shelf Sci., 53, 319–341, 2001.
Zimmerman, A. R. and Canuel, E. A.: Sediment geochemical records of eutrophication in the mesohaline Chesapeake Bay. Limnol. Oceanogr., 47, 1084–1093, 2002.
Zonneveld, K. A. F., Versteegh, G. J. M., and de Lange, G. J.: Preservation of organic-walled dinoflagellate cysts in different oxygen regimes: a 10 000 year natural experiment, Mar. Micropaleontol., 29, 393–405, 1997.
Special issue
Altmetrics
Final-revised paper
Preprint