Articles | Volume 9, issue 12
https://doi.org/10.5194/bg-9-5143-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/bg-9-5143-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Management, regulation and environmental impacts of nitrogen fertilization in northwestern Europe under the Nitrates Directive; a benchmark study
H. J. M. van Grinsven
PBL Netherlands Environmental Assessment Agency, Department: Water, Agriculture and Food, Bilthoven, The Netherlands
H. F. M. ten Berge
Plant Research International, Wageningen University and Research Centre, The Netherlands
T. Dalgaard
Aarhus University, Department of Agroecology, Foulum, Denmark
B. Fraters
National Institute for Public Health and the Environment, Bilthoven, The Netherlands
P. Durand
INRA, UMR1069, Sol Agro and Hydrosysteme, 35000 Rennes, France
A. Hart
Environmental Agency, Olton, UK
G. Hofman
Ghent University, Department of Soil Management, Belgium
B. H. Jacobsen
Institute of Food and Resource Economics, University of Copenhagen, Denmark
S. T. J. Lalor
Teagasc, Crops Environment and Land Use Programme, Johnstown Castle, Wexford, Ireland
J. P. Lesschen
Alterra, Wageningen University and Research Centre, The Netherlands
B. Osterburg
Institute of Rural Studies, Johann Heinrich von Thünen-Institut (vTI), Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Germany
K. G. Richards
Teagasc, Crops Environment and Land Use Programme, Johnstown Castle, Wexford, Ireland
A.-K. Techen
Institute of Rural Studies, Johann Heinrich von Thünen-Institut (vTI), Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Germany
F. Vertès
INRA, UMR1069, Sol Agro and Hydrosysteme, 35000 Rennes, France
J. Webb
AEA Energy and Environment, Didcot, UK
W. J. Willems
PBL Netherlands Environmental Assessment Agency, Department: Water, Agriculture and Food, Bilthoven, The Netherlands
Related authors
No articles found.
M. M. R. Jahangir, K. G. Richards, M. G. Healy, L. Gill, C. Müller, P. Johnston, and O. Fenton
Hydrol. Earth Syst. Sci., 20, 109–123, https://doi.org/10.5194/hess-20-109-2016, https://doi.org/10.5194/hess-20-109-2016, 2016
Short summary
Short summary
Removal efficiency of carbon and nitrogen in constructed wetlands is inconsistent and does not reveal whether the removal processes are from physical attenuation or transformation to other reactive forms. Previous research did not consider "pollution swapping" driven by transformational processes. Herein the biogeochemical dynamics and fate of carbon and nitrogen and their potential impact on the environment, as well as novel ways in which these knowledge gaps may be eliminated, are explored.
M. Huebsch, F. Grimmeisen, M. Zemann, O. Fenton, K. G. Richards, P. Jordan, A. Sawarieh, P. Blum, and N. Goldscheider
Hydrol. Earth Syst. Sci., 19, 1589–1598, https://doi.org/10.5194/hess-19-1589-2015, https://doi.org/10.5194/hess-19-1589-2015, 2015
Short summary
Short summary
Two different in situ spectrophotometers, which were used in the field to determine highly time resolved nitrate-nitrogen (NO3-N) concentrations at two distinct spring discharge sites, are compared: a double and a multiple wavelength spectrophotometer. The objective of the study was to review the hardware options, determine ease of calibration, accuracy, influence of additional substances and to assess positive and negative aspects of the two sensors as well as troubleshooting and trade-offs.
M. Huebsch, O. Fenton, B. Horan, D. Hennessy, K. G. Richards, P. Jordan, N. Goldscheider, C. Butscher, and P. Blum
Hydrol. Earth Syst. Sci., 18, 4423–4435, https://doi.org/10.5194/hess-18-4423-2014, https://doi.org/10.5194/hess-18-4423-2014, 2014
E. Boegh, R. Houborg, J. Bienkowski, C. F. Braban, T. Dalgaard, N. van Dijk, U. Dragosits, E. Holmes, V. Magliulo, K. Schelde, P. Di Tommasi, L. Vitale, M. R. Theobald, P. Cellier, and M. A. Sutton
Biogeosciences, 10, 6279–6307, https://doi.org/10.5194/bg-10-6279-2013, https://doi.org/10.5194/bg-10-6279-2013, 2013
T. Dalgaard, J. F. Bienkowski, A. Bleeker, U. Dragosits, J. L. Drouet, P. Durand, A. Frumau, N. J. Hutchings, A. Kedziora, V. Magliulo, J. E. Olesen, M. R. Theobald, O. Maury, N. Akkal, and P. Cellier
Biogeosciences, 9, 5303–5321, https://doi.org/10.5194/bg-9-5303-2012, https://doi.org/10.5194/bg-9-5303-2012, 2012
K. L. McGeough, R. J. Laughlin, C. J. Watson, C. Müller, M. Ernfors, E. Cahalan, and K. G. Richards
Biogeosciences, 9, 4909–4919, https://doi.org/10.5194/bg-9-4909-2012, https://doi.org/10.5194/bg-9-4909-2012, 2012
Related subject area
Biogeochemistry: Groundwater
Small-scale hydrological patterns in a Siberian permafrost ecosystem affected by drainage
Predicting the impact of spatial heterogeneity on microbially mediated nutrient cycling in the subsurface
Conversion of tropical forests to smallholder rubber and oil palm plantations impacts nutrient leaching losses and nutrient retention efficiency in highly weathered soils
Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: tracking carbon compositional change during microbial utilization
Tracking the direct impact of rainfall on groundwater at Mt. Fuji by multiple analyses including microbial DNA
Functional diversity of microbial communities in pristine aquifers inferred by PLFA- and sequencing-based approaches
Biogeochemical constraints on the origin of methane in an alluvial aquifer: evidence for the upward migration of methane from underlying coal measures
Ash leachates from some recent eruptions of Mount Etna (Italy) and Popocatépetl (Mexico) volcanoes and their impact on amphibian living freshwater organisms
Predicting the denitrification capacity of sandy aquifers from in situ measurements using push–pull 15N tracer tests
Biomass uptake and fire as controls on groundwater solute evolution on a southeast Australian granite: aboriginal land management hypothesis
17O excess traces atmospheric nitrate in paleo-groundwater of the Saharan desert
Interactions of local climatic, biotic and hydrogeochemical processes facilitate phosphorus dynamics along an Everglades forest-marsh gradient
Predicting the denitrification capacity of sandy aquifers from shorter-term incubation experiments and sediment properties
Regional analysis of groundwater nitrate concentrations and trends in Denmark in regard to agricultural influence
Denitrification and inference of nitrogen sources in the karstic Floridan Aquifer
Characterization of broom fibers for PRB in the remediation of aquifers contaminated by heavy metals
Sandra Raab, Karel Castro-Morales, Anke Hildebrandt, Martin Heimann, Jorien Elisabeth Vonk, Nikita Zimov, and Mathias Goeckede
Biogeosciences, 21, 2571–2597, https://doi.org/10.5194/bg-21-2571-2024, https://doi.org/10.5194/bg-21-2571-2024, 2024
Short summary
Short summary
Water status is an important control factor on sustainability of Arctic permafrost soils, including production and transport of carbon. We compared a drained permafrost ecosystem with a natural control area, investigating water levels, thaw depths, and lateral water flows. We found that shifts in water levels following drainage affected soil water availability and that lateral transport patterns were of major relevance. Understanding these shifts is crucial for future carbon budget studies.
Swamini Khurana, Falk Heße, Anke Hildebrandt, and Martin Thullner
Biogeosciences, 19, 665–688, https://doi.org/10.5194/bg-19-665-2022, https://doi.org/10.5194/bg-19-665-2022, 2022
Short summary
Short summary
In this study, we concluded that the residence times of solutes and the Damköhler number (Da) of the biogeochemical reactions in the domain are governing factors for evaluating the impact of spatial heterogeneity of the domain on chemical (such as carbon and nitrogen compounds) removal. We thus proposed a relationship to scale this impact governed by Da. This relationship may be applied in larger domains, thereby resulting in more accurate modelling outcomes of nutrient removal in groundwater.
Syahrul Kurniawan, Marife D. Corre, Amanda L. Matson, Hubert Schulte-Bisping, Sri Rahayu Utami, Oliver van Straaten, and Edzo Veldkamp
Biogeosciences, 15, 5131–5154, https://doi.org/10.5194/bg-15-5131-2018, https://doi.org/10.5194/bg-15-5131-2018, 2018
Short summary
Short summary
Our study generates information to aid policies and improve soil management practices for minimizing the negative impacts of forest conversion to rubber and oil palm plantations while maintaining production. Compared to forests, the fertilized areas of oil palm plantations had higher leaching of N, organic C, and base cations, whereas the unfertilized rubber plantations showed lower leaching of dissolved P and organic C. These signaled a decrease in extant soil fertility and groundwater quality.
Lara E. Pracht, Malak M. Tfaily, Robert J. Ardissono, and Rebecca B. Neumann
Biogeosciences, 15, 1733–1747, https://doi.org/10.5194/bg-15-1733-2018, https://doi.org/10.5194/bg-15-1733-2018, 2018
Short summary
Short summary
Organic carbon in aquifer recharge waters and sediments can fuel microbial reactions that affect groundwater quality. We used high-resolution mass spectrometry to molecularly characterize organic carbon mobilized off sediment collected from a Bangladeshi aquifer, to reference its composition against dissolved organic carbon in aquifer recharge water, to track compositional changes during incubation, and to advance understanding of microbial processing of organic carbon in anaerobic environments.
Ayumi Sugiyama, Suguru Masuda, Kazuyo Nagaosa, Maki Tsujimura, and Kenji Kato
Biogeosciences, 15, 721–732, https://doi.org/10.5194/bg-15-721-2018, https://doi.org/10.5194/bg-15-721-2018, 2018
Short summary
Short summary
The direct impact of rainfall on groundwater at Mt. Fuji, the largest volcanic mountain in Japan, was elucidated by multiple analyses including microbial DNA. Bacterial abundance and DNA not only supported the findings on the movement of groundwater obtained from chemical analyses but also elucidated chemically unseen flow. Evidence of piston flow in deep groundwater was first shown through changes in archaeal density and diversity. Microbial analysis extends our understanding of groundwater.
Valérie F. Schwab, Martina Herrmann, Vanessa-Nina Roth, Gerd Gleixner, Robert Lehmann, Georg Pohnert, Susan Trumbore, Kirsten Küsel, and Kai U. Totsche
Biogeosciences, 14, 2697–2714, https://doi.org/10.5194/bg-14-2697-2017, https://doi.org/10.5194/bg-14-2697-2017, 2017
Short summary
Short summary
We used phospholipid fatty acids (PLFAs) to link specific microbial markers to the spatio-temporal changes of groundwater physico-chemistry. PLFA-based functional groups were directly supported by DNA/RNA results. O2 resulted in increased eukaryotic biomass and abundance of nitrite-oxidizing bacteria but impeded anammox, sulphate-reducing and iron-reducing bacteria. Our study demonstrates the power of PLFA-based approaches to study the nature and activity of microorganisms in pristine aquifers.
Charlotte P. Iverach, Sabrina Beckmann, Dioni I. Cendón, Mike Manefield, and Bryce F. J. Kelly
Biogeosciences, 14, 215–228, https://doi.org/10.5194/bg-14-215-2017, https://doi.org/10.5194/bg-14-215-2017, 2017
Short summary
Short summary
This research characterised the biogeochemical constraints on the origin of methane in an alluvial aquifer, concluding that the most likely source was the upward migration from a directly underlying coal seam. This research was undertaken due to concerns about the effect of coal seam gas production on groundwater quality in the study area. The implications include the fact that no methane is being produced in the aquifer (in situ) and that there is local natural connectivity in the study area.
M. D'Addabbo, R. Sulpizio, M. Guidi, G. Capitani, P. Mantecca, and G. Zanchetta
Biogeosciences, 12, 7087–7106, https://doi.org/10.5194/bg-12-7087-2015, https://doi.org/10.5194/bg-12-7087-2015, 2015
Short summary
Short summary
Leaching experiments were carried out on fresh ash samples from the 2012 Popocatépetl, and 2011/12 Etna eruptions, in order to investigate the release of compounds in water. Results were discussed in the light of changing pH and release of compounds for the different leachates. They were used for toxicity experiments on living biota (Xenopus laevis). They are mildly toxic, and no significant differences exist between the toxic profiles of the two leachates.
W. Eschenbach, R. Well, and W. Walther
Biogeosciences, 12, 2327–2346, https://doi.org/10.5194/bg-12-2327-2015, https://doi.org/10.5194/bg-12-2327-2015, 2015
J. F. Dean, J. A. Webb, G. E. Jacobsen, R. Chisari, and P. E. Dresel
Biogeosciences, 11, 4099–4114, https://doi.org/10.5194/bg-11-4099-2014, https://doi.org/10.5194/bg-11-4099-2014, 2014
M. Dietzel, A. Leis, R. Abdalla, J. Savarino, S. Morin, M. E. Böttcher, and S. Köhler
Biogeosciences, 11, 3149–3161, https://doi.org/10.5194/bg-11-3149-2014, https://doi.org/10.5194/bg-11-3149-2014, 2014
T. G. Troxler, C. Coronado-Molina, D. N. Rondeau, S. Krupa, S. Newman, M. Manna, R. M. Price, and F. H. Sklar
Biogeosciences, 11, 899–914, https://doi.org/10.5194/bg-11-899-2014, https://doi.org/10.5194/bg-11-899-2014, 2014
W. Eschenbach and R. Well
Biogeosciences, 10, 1013–1035, https://doi.org/10.5194/bg-10-1013-2013, https://doi.org/10.5194/bg-10-1013-2013, 2013
B. Hansen, T. Dalgaard, L. Thorling, B. Sørensen, and M. Erlandsen
Biogeosciences, 9, 3277–3286, https://doi.org/10.5194/bg-9-3277-2012, https://doi.org/10.5194/bg-9-3277-2012, 2012
J. B. Heffernan, A. R. Albertin, M. L. Fork, B. G. Katz, and M. J. Cohen
Biogeosciences, 9, 1671–1690, https://doi.org/10.5194/bg-9-1671-2012, https://doi.org/10.5194/bg-9-1671-2012, 2012
C. Fallico, S. Troisi, A. Molinari, and M. F. Rivera
Biogeosciences, 7, 2545–2556, https://doi.org/10.5194/bg-7-2545-2010, https://doi.org/10.5194/bg-7-2545-2010, 2010
Cited articles
Agreste: Bilan azote et phosphore – Résultats 2010, Ministère de l'agriculture, Direction Régionale de l'agroalimentaire et de la forêt de Bretagne, Service de Statistique Agricole (Agreste), available at: http://draf.bretagne.agriculture.gouv.fr/IMG/pdf/44-45_azote_phosphore_cle4b161d.pdf, 2012.
Anonymous: Bilan de la mise en oevre de la Directive Nitrates en France (2004–2007), Ministère de l' Écologie, de l' Énergie, du Développement Durable et de l'Amenagement du Territoire, 2008a.
Anonymous: Directive Nitrates (91/676), Rapport vise a l'articele 10, Partie I, Bilan et evolution de la qualité des eaux et des pratiques agricoles en Région Wallonne, Ministère de la Région Wallonne, Direction Génerale des Ressources Naturelles en de l'Environnement, 2008b.
Anonymous: Article 10 Nitrates Report 91/676/EEC Nitrates Report for Ireland 2004–2007, 2008c.
Anonymous: Bericht gemä{ß} Artikel 10 der Richtlinie 91/676/EWG des Rates vom 12 Dezember 1991 zum Schutz der Gewässer vor Verunreinigungen durch Nitrat aus landwirtschaftlichen Quellen, Mitteilung der Regierung der Bundesrepublik Deutschland, 2008d.
Anonymous: Status and trends of aquatic environment and agricultural practice, Danish monitoring and action programmes in accordance with the Nitrates Directive (1991/676/EEC), Preliminary Summary Report to the European Commission, Danish Environmental Protection Agency, 2008e.
Anonymous: Statutory Instrument S.I. No. 610 of 2010, Stationary Office, Dublin, Ireland, 2010.
Anonymous: Normen en richtwaarden, Vlaamse Landmaatschappij, 2011.
Bodemkundige Dienst van België: Wegwijs in de bodemvruchtbaarheid van de Belgische akkerbouw- en weilandpercelen (2008–2011), Heverlee, Belgium, 2012.
Bouraoui, F., Grizzetti, B., and Aloe, A.: Long term nutrient loads entering European seas, European Commission Joint Research Centre, Institute for Environment and Sustainability, Ispra, Italy, 2011.
Cardoso, A. C., Duchemin, J., Magoarou, P., and Premazzi, G.: Criteria for the identification of freshwaters subject to eutrophication: their use for the implementation of the Nitrates and Urban Waste Water treatment Directives, EUR Report 19810 EN, European Commission Joint Research Centre, Luxembourg, 2001.
COMIFER: Calcul de la fertilisation azotée: guide méthodologique pour l'établissement des prescriptions locales, cultures annuelles et prairies Edn. 2011, available at: http://www.comifer.asso.fr/images/stories/pdf/brochure azote maj mars%202012.pdf, 2011.
Coulter, B. S. and Lalor, S. (Eds.): Major and micro nutrient advice for productive agricultural crops, 3rd Ed., Teagasc, Johnstown Castle, Wexford, 2008.
Csatho, P. and Radimszky, L.: Two Worlds within EU27: Sharp Contrasts in Organic and Mineral Nitrogen-Phosphorus Use, Nitrogen-Phosphorus Balances, and Soil Phosphorus Status: Widening and Deepening Gap between Western and Central Europe, Comm. Soil Sci. Plant Anal. 40, 999–1019, 2009.
Dalgaard, T., Olesen, J. E., Petersen, S. O., Petersen, B. M., Jørgensen, U., Kristensen, T., Hutchings, N. J., Gyldenkærne, S., and Hermansen, J. E.: Developments in greenhouse gas emissions and net energy use in Danish agriculture – How to achieve substantial CO2 reductions?, Environ. Pollut., 159, 3193–3203, 2011.
Dalgaard, T., Bienkowski, J. F., Bleeker, A., Drouet, J. L., Durand, P., Dragosits, U., Frumau, A., Hutchings, N. J., Kedziora, A., Magliulo, V., Olesen, J. E., Theobald, M. R., Maury, O., Akkal, N., and Cellier, P.: Farm nitrogen balances in six European agricultural landscapes – a method for farming system assessment, emission hotspot identification, and mitigation measure evaluation, Biogeosciences Discuss., 9, 8859–8904, https://doi.org/10.5194/bgd-9-8859-2012, 2012.
De Clercq, P., Gertsis, A. C., Hofman G., Jarvis, S. C., Neeteson, J. J., and Sinabell, F. (Eds.): Nutrient Management Legislation in European Countries, Wageningen Press, The Netherlands, 2001.
de Vries, W., Leip, A., Reinds, G. J., Kros, J., Lesschen, J. P., and Bouwman, A. F.: Comparison of land nitrogen budgets for European agriculture by various modeling approaches, Environ. Pollut., 159, 3254–3268, 2011.
DEFRA: Fertiliser Manual (RB209), 8th Edition, United Kingdom, 2010.
Desimpelaere, K., Lesage, E., Eppinge, r R., and Van Hoof, K.: Vierjaarlijks verslag in het kader van de Nitraatrichtlijn (91/676/EEG) voor het Vlaams Gewest, Vlaamse Landmaatschappij en Vlaams Milieumaatschappij, 2008.
EFMA: Forecast of food, farming and fertilizer use in the European Union 2008–2018. European Fertilizer Manufacturers Association (now Fertilizers Europe), Volume 1, Executive summary and regional data, 2008.
EMEP: EMEP Measurement Database. The Co-operative Programme for the Monitoring and Evaluation of the Long-Range Transmission of Air Pollutants in Europe, http://www.emep.int/, 2010.
European Commission: Report from the commission to the Council and the European Parliament on implementation of the Council Directive 91/676/EEC concerning the protection of water against pollution caused by nitrates from agricultural sources for the period 2000–2003 SEC(2007)339/COM/2007/0120 final, Brussels, 2007.
European Commission: Report from the commission to the Council and the European Parliament on implementation of the Council Directive 91/676/EEC concerning the protection of water against pollution caused by nitrates from agricultural sources for the period 2004-2007 SEC(2010)118, COM(2007)47 final/2, Brussels, 2011.
Eurostat, Pocketbook: Food from farm to fork, 2011.
Eurostat, Nitrogen balance in agriculture (data September 2011), http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Nitrogen_balance_in_agriculture, 17 January, 2012.
Fenton, O., Richards, K. G., Kirwan, L., Khalil, M. I., and Healy, M. G.: Factors affecting nitrate distribution in shallow groundwater under a beef farm in South Eastern Ireland, J. Environ. Manage., 90, 3135–3146, 2009.
Fenton, O., Schulte, R. P. O., Jordan, P., Lalor, S. T. J., and Richards, K. G.: Lag time: a methodology for the estimation of vertical and horizontal travel & flushing timescales to nitrate threshold concentrations in Irish aquifers, Environ. Sci. Policy, 14, 419–431, 2011.
Fernal, D. and Murray, A.: UK TAPAS Action Soil Nutrient Balances Final Report, DEFRA, 2009.
Fraters, D., Kovar, K., Grant, R., Thorling, L., and Reijs, J. W.: Developments in monitoring the effectiveness of the EU Nitrates Directive Action Programmes, Bilthoven National Institute of Public Health and Environment, 2011.
Grant, R., Blicher-Mathiesen, G., Jensen, P.G., Hansen, B., and Thorling, L.: Catchment monitoring 2009 – NOVANA, National Environmental Research Institute (NERI) & Geological Survey for Denmark and Greenland (GEUS), NERI report nr. 802, 2010.
Gybels, K., Wustenberghs, H., Claeys, D. Verhaegen, E., Lauwers, L., and Kestemont, B.: Nutrient Balance for Nitrogen, Eurostat Grant Agreement 67101.2006.001-2007.093, Working paper no 22, Statistics Belgium, 2009.
Hansen, B., Thorling, L., Dalgaard, T., and Erlandsen, M.: Trend reversal of nitrate in Danish groundwater, a reflection of agricultural practices and nitrogen surpluses since 1950, Environ. Sci. Technol., 45, 228–234, 2011.
Hansen, B., Dalgaard, T., Thorling, L., Sørensen, B., and Erlandsen, M.: Regional analysis of groundwater nitrate concentrations and trends in Denmark in regard to agricultural influence, Biogeosciences, 9, 3277–3286, https://doi.org/10.5194/bg-9-3277-2012, 2012.
Hoekstra, N. J., Lalor, S., Richards, K. G., O'Hea, N., Dungait, J., Schulte, R. P. O., and Schmidt, O.: The fate of slurry N fractions in herbage and soil during two growing seasons following application, Plant Soil, 342, 83–96, 2011.
Howden, N. J. K., Burt, T. P. Worrall, F., Whelan, M. J., and Bieroza, M.: Nitrate concentrations and fluxes in the river Thames over 140 years (1868–2008): are increases irreversible?, Hydrol. Process., 24, 2657–2662, 2010.
Klimont, Z. and Brink, C.: Modelling of Emissions of Air Pollutants and Greenhouse Gases from Agricultural Sources in Europe, IIASA IR 04-048, Laxenburg, Austria, 2004.
Kronvang, B., Andersen, H. E., Børgesen, C., Dalgaard, T., Larsen, S. E., Bøgestrand, J., and Blicher-Mathiasen, G.: Effects of policy measures implemented in Denmark on nitrogen pollution of the aquatic environment, Environ. Sci. Policy, 11, 144–152, 2008.
Leip, A., Marchi, G., Koeble, R., Kempen, M., Britz, W., and Li, C.: Linking an economic model for European agriculture with a mechanistic model to estimate nitrogen and carbon losses from arable soils in Europe, Biogeosciences, 5, 73–94, https://doi.org/10.5194/bg-5-73-2008, 2008.
Lenders S., D'hooghe J., and Overloop S.: Bodembalans van de Vlaamse landbouw, cijfers voor 2007–2009, Departement Landbouw en Visserij and Vlaamse Milieumaatschappij, Brussel, 2012.
Lerner, D.: Guidelines for estimating urban loads of nitrogen to groundwater, Defra project report NT 1845, 2000.
Lesschen, J. P., Witzke, H. P., Berg, M. van den, Westhoek, H., and Oenema, O.: Greenhouse gas emission profiles of the European livestock sectors, Anim. Feed Sci.Tech., 166–167, 16–28, 2011.
Lord, E. and Anthony, S.: MAGPIE: a modelling framework for evaluating nitrate losses at national and catchment scales, Soil Use Manage., 16, 167–174, 2000.
Mikkelsen, S. A., Iversen, T. M., Jacobsen, B. H., and Kjoer, S. S.: Reducing nutrient losses from intensive livestock operations, in: Livestock in a changing landscape, experiences and regional perspectives, edited by: Gerber, P., Mooney, H. A., Dijkman, J., Tarawal, S., and De Haan, C., Island Press, Washington, 140–153, 2010.
Nimmo Smith, R. J., Glegg, G. A., Parkinson, R., and Richards, J. P.: Evaluating the Implementation of the Nitrates Directive in Denmark and England using an Actor-Orientated Approach, Eur. Env., 17, 124–144, 2007.
OECD: OECD and EUROSTAT Gross nitrogen balances handbook, 2007.
Oenema, O.: Governmental policies and measures regulating nitrogen and phosphorus from animal manure in European agriculture, J Anim. Sci., 82, 196–206, 2004.
Panten, K., Rogasik, J., Godlinski, F., Funder, U., Greef, J.-M., and Schnug, E.: Gross soil surface nutrient balances: The OECD approach implemented under German conditions, Agr. Forest. Res., 1, 19–28, 2009.
Schröder, J. J., Scholefield, D., Cabral, F., and Hofman, G.: The effects of nutrient losses from agriculture on ground and surface water quality: the position of science in developing indicators for regulation, Environ. Sci. Policy, 7, 15–23, 2004.
Sutton, M. A., Oenema, O., Erisman, J. W., Leip, A., Grinsven, H. van, and Winiwarter, W.: Too much of a good thing, Nature, 472, 159–161, 2011.
ten Berge, H. and van Dijk, W.: Management of nitrogen inputs on farm within the EU regulatory framework, International Fertilizer Society – Publication Proceedings Proceeding 654, available at: http://www.fertiliser-society.org/Content/Publications.asp, 2009.
Tiktak, A., Boesten, J. J. T. I., van der Linden, A. M. A., and Vanclooster, M.: Mapping groundwater vulnerability to pesticide leaching with a process-based metamodel of EuroPEARL, J. Environ. Qual., 35, 1213–1226, 2006.
van Dijk, W. and ten Berge, H.: Agricultural nitrogen use in selected EU countries: a comparison of N recommendation, and restriction in response to the EU Nitrates Directive, Wageningen Plant Research International B.V., 2009.
van Grinsven, H., Eerdt, M., van, Willems, J., Hubeek, F., and Mulleneers, E.: Evaluation of the Dutch manure and fertilizer policy, 1998–2002, in: Evaluating Agri-Environmental Policies: Design, Practice and Results, 398-410, ISBN 92-6401010-6, OECD, 2005.
van Grinsven, H., Rabl, A., and de Kok, T. M.: Estimation of incidence and social cost of colon cancer due to nitrate in drinking water in the EU: a tentative cost-benefit assessment cost–benefit assessment, Environ. Health, 9, https://doi.org/10.1186/1476-069X-9-58, 2010.
Velthof, G. L., Oudendag, D., Witzke, H. P., Asman, W. A. H., Klimont, Z., and Oenema, O.: Integrated assessment of nitrogen losses from agriculture in EU-27 using MITERRA, J. Environ. Qual., 38, 402–417, 2009.
Velthof, G. L., Lesschen, J. P., Webb, J., Pietrzak, S., Miatkowski, Z., Kros, J., Pinto, M., and Oenema, O.: The impact of the Nitrates Directive on gaseous N emissions Effects of measures in nitrates action programme on gaseous N emissions, Contract ENV.B.1/ETU/2010/0009 http://ec.europa.eu/environment/water/water-nitrates/pdf/Final_report_impact_Nitrates_Directive_def.pdf, 2012.
Wang, L.,Stuart, M. E., Bloomfield, J. P., Butcher, A. S., Gooddy, D. C., McKenzie, A., Lewis, M. A., and Williams, A. T.: Prediction of the arrival of peak nitrate concentrations at the water table at the regional scale in Great Britain, Hydrol. Process., 26, 226–239, 2012.
Webb, J., Sørensen, P., Velthof, G., Amon, B., Pinto, M., Rodhe, L., Salomon, E., Hutchings, N., Burczyk, P., Menzi, H., and Reid, J. L.: Assessment of the variation of manure N efficiency throughout Europe and an appraisal of means to increase manure N efficiency, Adv. Agron., accepted, 2013.
Wolter, R., Osterburg, B., and Tetzlaff, B.: Developments in monitoring the effectiveness of the EU Nitrates Directive Action Programmes: Approach by Germany, in: Developments in monitoring the effectiveness of the EU Nitrates Directive Action Programmes, edited by: Fraters, B., Kovar, K., Grant, R., Thorling, L., and Reijs, J. W., Bilthoven, National Institute of Public Health and Environment, 211–256, 2011.
Zwart, M. H., Hooijboer, A. E. J., Fraters, B., Kotte, M., Duin, R. N. M., Daatselaar, C. H. G., Olsthoorn, C. S. M., and Bosma, J. N.: Agricultural practice and water quality in The Netherlands in the 1992–2006 period, National Institute for Public Health and the Environment, Bilthoven, 2008.
Special issue
Altmetrics
Final-revised paper
Preprint