Articles | Volume 12, issue 15
https://doi.org/10.5194/bg-12-4781-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-12-4781-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Late Pleistocene glacial–interglacial shell-size–isotope variability in planktonic foraminifera as a function of local hydrography
Earth and Climate Cluster, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV, the Netherlands
W. Feldmeijer
Earth and Climate Cluster, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV, the Netherlands
M. de Vringer-Picon
Earth and Climate Cluster, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV, the Netherlands
G.-J. A. Brummer
Department of Geology and Chemical Oceanography, NIOZ Royal Netherlands Institute for Sea Research, Landsdiep 4, 1797 SZ t' Horntje, Texel, the Netherlands
Earth and Climate Cluster, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV, the Netherlands
F. J. C. Peeters
Earth and Climate Cluster, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV, the Netherlands
G. M. Ganssen
Earth and Climate Cluster, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV, the Netherlands
Related authors
Bryan C. Lougheed and Brett Metcalfe
Biogeosciences, 19, 1195–1209, https://doi.org/10.5194/bg-19-1195-2022, https://doi.org/10.5194/bg-19-1195-2022, 2022
Short summary
Short summary
Measurements on sea-dwelling shelled organisms called foraminifera retrieved from deep-sea sediment cores have been used to reconstruct sea surface temperature (SST) variation. To evaluate the method, we use a computer model to simulate millions of single foraminifera and how they become mixed in the sediment after being deposited on the seafloor. We compare the SST inferred from the single foraminifera in the sediment core to the true SST in the water, thus quantifying method uncertainties.
Brett Metcalfe, Bryan C. Lougheed, Claire Waelbroeck, and Didier M. Roche
Clim. Past, 16, 885–910, https://doi.org/10.5194/cp-16-885-2020, https://doi.org/10.5194/cp-16-885-2020, 2020
Short summary
Short summary
Planktonic foraminifera construct a shell that, post mortem, settles to the seafloor, prior to collection by Palaeoclimatologists for use as proxies. Such organisms in life are sensitive to the ambient conditions (e.g. temperature, salinity), which therefore means our proxies maybe skewed toward the ecology of organisms. Using a proxy system model, Foraminifera as Modelled Entities (FAME), we assess the potential of extracting ENSO signal from tropical Pacific planktonic foraminifera.
Bryan C. Lougheed, Philippa Ascough, Andrew M. Dolman, Ludvig Löwemark, and Brett Metcalfe
Geochronology, 2, 17–31, https://doi.org/10.5194/gchron-2-17-2020, https://doi.org/10.5194/gchron-2-17-2020, 2020
Short summary
Short summary
The current geochronological state of the art for applying the radiocarbon (14C) method to deep-sea sediment archives lacks key information on sediment bioturbation, which could affect palaeoclimate interpretations made from deep-sea sediment. We use a computer model that simulates the 14C activity and bioturbation history of millions of single foraminifera at the sea floor, allowing us to evaluate the current state of the art at the most fundamental level.
Geert-Jan A. Brummer, Brett Metcalfe, Wouter Feldmeijer, Maarten A. Prins, Jasmijn van 't Hoff, and Gerald M. Ganssen
Clim. Past, 16, 265–282, https://doi.org/10.5194/cp-16-265-2020, https://doi.org/10.5194/cp-16-265-2020, 2020
Short summary
Short summary
Here, mid-ocean seasonality is resolved through time, using differences in the oxygen isotope composition between individual shells of the commonly used (sub)polar planktonic foraminifera species in ocean-climate reconstruction, N. pachyderma and G. bulloides. Single-specimen isotope measurements during the deglacial period revealed a surprising bimodality, the cause of which was investigated.
Hilde Pracht, Brett Metcalfe, and Frank J. C. Peeters
Biogeosciences, 16, 643–661, https://doi.org/10.5194/bg-16-643-2019, https://doi.org/10.5194/bg-16-643-2019, 2019
Short summary
Short summary
In palaeoceanography the shells of single-celled foraminifera are routinely used as proxies to reconstruct the temperature, salinity and circulation of the ocean in the past. Traditionally a number of specimens were pooled for a single stable isotope measurement; however, technical advances now mean that a single shell or chamber of a shell can be measured individually. Three different hypotheses regarding foraminiferal biology and ecology were tested using this approach.
Didier M. Roche, Claire Waelbroeck, Brett Metcalfe, and Thibaut Caley
Geosci. Model Dev., 11, 3587–3603, https://doi.org/10.5194/gmd-11-3587-2018, https://doi.org/10.5194/gmd-11-3587-2018, 2018
Short summary
Short summary
The oxygen-18 signal recorded in fossil planktonic foraminifers has been used for over 50 years in many geoscience applications. However, different planktonic foraminifer species from the same sediment core generally yield distinct oxygen-18 signals, as a consequence of their specific living habitat in the water column and along the year. To explicitly take into account this variability for five common planktonic species, we developed the portable module FAME (Foraminifers As Modeled Entities).
Bryan C. Lougheed, Brett Metcalfe, Ulysses S. Ninnemann, and Lukas Wacker
Clim. Past, 14, 515–526, https://doi.org/10.5194/cp-14-515-2018, https://doi.org/10.5194/cp-14-515-2018, 2018
Short summary
Short summary
Palaeoclimate reconstructions from deep-sea sediment archives provide valuable insight into past rapid climate change, but only a small proportion of the ocean is suitable for such reconstructions using the existing state of the art, i.e. the age–depth approach. We use dual radiocarbon (14C) and stable isotope analysis on single foraminifera to bypass the long-standing age–depth approach, thus facilitating past ocean chemistry reconstructions from vast, previously untapped ocean areas.
Miriam Pfeiffer, Hideko Takayanagi, Lars Reuning, Takaaki Konabe Watanabe, Saori Ito, Dieter Garbe-Schönberg, Tsuyoshi Watanabe, Chung-Che Wu, Chuan-Chou Shen, Jens Zinke, Geert-Jan Brummer, and Sri Yudawati Cahyarini
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-25, https://doi.org/10.5194/cp-2024-25, 2024
Revised manuscript accepted for CP
Short summary
Short summary
A coral reconstruction of past climate shows changes in the seasonal cycle of sea surface temperature in the SE tropical Indian Ocean. An enhanced seasonal cycle suggests that the tropical rainfall belt shifted northwards between 1855–1917. We explain this with greater warming in the NE Indian Ocean relative to the SE, which strengthens surface winds and coastal upwelling, leading to greater cooling in the eastern Indian Ocean south of the Equator.
Michal Kučera and Geert-Jan A. Brummer
J. Micropalaeontol., 42, 33–34, https://doi.org/10.5194/jm-42-33-2023, https://doi.org/10.5194/jm-42-33-2023, 2023
Geert-Jan A. Brummer and Michal Kučera
J. Micropalaeontol., 41, 29–74, https://doi.org/10.5194/jm-41-29-2022, https://doi.org/10.5194/jm-41-29-2022, 2022
Short summary
Short summary
To aid researchers working with living planktonic foraminifera, we provide a comprehensive review of names that we consider appropriate for extant species. We discuss the reasons for the decisions we made and provide a list of species and genus-level names as well as other names that have been used in the past but are considered inappropriate for living taxa, stating the reasons.
Bryan C. Lougheed and Brett Metcalfe
Biogeosciences, 19, 1195–1209, https://doi.org/10.5194/bg-19-1195-2022, https://doi.org/10.5194/bg-19-1195-2022, 2022
Short summary
Short summary
Measurements on sea-dwelling shelled organisms called foraminifera retrieved from deep-sea sediment cores have been used to reconstruct sea surface temperature (SST) variation. To evaluate the method, we use a computer model to simulate millions of single foraminifera and how they become mixed in the sediment after being deposited on the seafloor. We compare the SST inferred from the single foraminifera in the sediment core to the true SST in the water, thus quantifying method uncertainties.
Lukas Jonkers, Geert-Jan A. Brummer, Julie Meilland, Jeroen Groeneveld, and Michal Kucera
Clim. Past, 18, 89–101, https://doi.org/10.5194/cp-18-89-2022, https://doi.org/10.5194/cp-18-89-2022, 2022
Short summary
Short summary
The variability in the geochemistry among individual foraminifera is used to reconstruct seasonal to interannual climate variability. This method requires that each foraminifera shell accurately records environmental conditions, which we test here using a sediment trap time series. Even in the absence of environmental variability, planktonic foraminifera display variability in their stable isotope ratios that needs to be considered in the interpretation of individual foraminifera data.
Maike Leupold, Miriam Pfeiffer, Takaaki K. Watanabe, Lars Reuning, Dieter Garbe-Schönberg, Chuan-Chou Shen, and Geert-Jan A. Brummer
Clim. Past, 17, 151–170, https://doi.org/10.5194/cp-17-151-2021, https://doi.org/10.5194/cp-17-151-2021, 2021
Brett Metcalfe, Bryan C. Lougheed, Claire Waelbroeck, and Didier M. Roche
Clim. Past, 16, 885–910, https://doi.org/10.5194/cp-16-885-2020, https://doi.org/10.5194/cp-16-885-2020, 2020
Short summary
Short summary
Planktonic foraminifera construct a shell that, post mortem, settles to the seafloor, prior to collection by Palaeoclimatologists for use as proxies. Such organisms in life are sensitive to the ambient conditions (e.g. temperature, salinity), which therefore means our proxies maybe skewed toward the ecology of organisms. Using a proxy system model, Foraminifera as Modelled Entities (FAME), we assess the potential of extracting ENSO signal from tropical Pacific planktonic foraminifera.
Bryan C. Lougheed, Philippa Ascough, Andrew M. Dolman, Ludvig Löwemark, and Brett Metcalfe
Geochronology, 2, 17–31, https://doi.org/10.5194/gchron-2-17-2020, https://doi.org/10.5194/gchron-2-17-2020, 2020
Short summary
Short summary
The current geochronological state of the art for applying the radiocarbon (14C) method to deep-sea sediment archives lacks key information on sediment bioturbation, which could affect palaeoclimate interpretations made from deep-sea sediment. We use a computer model that simulates the 14C activity and bioturbation history of millions of single foraminifera at the sea floor, allowing us to evaluate the current state of the art at the most fundamental level.
Geert-Jan A. Brummer, Brett Metcalfe, Wouter Feldmeijer, Maarten A. Prins, Jasmijn van 't Hoff, and Gerald M. Ganssen
Clim. Past, 16, 265–282, https://doi.org/10.5194/cp-16-265-2020, https://doi.org/10.5194/cp-16-265-2020, 2020
Short summary
Short summary
Here, mid-ocean seasonality is resolved through time, using differences in the oxygen isotope composition between individual shells of the commonly used (sub)polar planktonic foraminifera species in ocean-climate reconstruction, N. pachyderma and G. bulloides. Single-specimen isotope measurements during the deglacial period revealed a surprising bimodality, the cause of which was investigated.
Anna Mikis, Katharine R. Hendry, Jennifer Pike, Daniela N. Schmidt, Kirsty M. Edgar, Victoria Peck, Frank J. C. Peeters, Melanie J. Leng, Michael P. Meredith, Chloe L. C. Jones, Sharon Stammerjohn, and Hugh Ducklow
Biogeosciences, 16, 3267–3282, https://doi.org/10.5194/bg-16-3267-2019, https://doi.org/10.5194/bg-16-3267-2019, 2019
Short summary
Short summary
Antarctic marine calcifying organisms are threatened by regional climate change and ocean acidification. Future projections of regional carbonate production are challenging due to the lack of historical data combined with complex climate variability. We present a 6-year record of flux, morphology and geochemistry of an Antarctic planktonic foraminifera, which shows that their growth is most sensitive to sea ice dynamics and is linked with the El Niño–Southern Oscillation.
Marijke W. de Bar, Jenny E. Ullgren, Robert C. Thunnell, Stuart G. Wakeham, Geert-Jan A. Brummer, Jan-Berend W. Stuut, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 16, 1705–1727, https://doi.org/10.5194/bg-16-1705-2019, https://doi.org/10.5194/bg-16-1705-2019, 2019
Short summary
Short summary
We analyzed sediment traps from the Cariaco Basin, the tropical Atlantic and the Mozambique Channel to evaluate seasonal imprints in the concentrations and fluxes of long-chain diols (LDIs), in addition to the long-chain diol index proxy (sea surface temperature proxy) and the diol index (upwelling indicator). Despite significant degradation, LDI-derived temperatures were very similar for the sediment traps and seafloor sediments, and corresponded to annual mean sea surface temperatures.
Hilde Pracht, Brett Metcalfe, and Frank J. C. Peeters
Biogeosciences, 16, 643–661, https://doi.org/10.5194/bg-16-643-2019, https://doi.org/10.5194/bg-16-643-2019, 2019
Short summary
Short summary
In palaeoceanography the shells of single-celled foraminifera are routinely used as proxies to reconstruct the temperature, salinity and circulation of the ocean in the past. Traditionally a number of specimens were pooled for a single stable isotope measurement; however, technical advances now mean that a single shell or chamber of a shell can be measured individually. Three different hypotheses regarding foraminiferal biology and ecology were tested using this approach.
Laura F. Korte, Franziska Pausch, Scarlett Trimborn, Corina P. D. Brussaard, Geert-Jan A. Brummer, Michèlle van der Does, Catarina V. Guerreiro, Laura T. Schreuder, Chris I. Munday, and Jan-Berend W. Stuut
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-484, https://doi.org/10.5194/bg-2018-484, 2018
Revised manuscript not accepted
Short summary
Short summary
This paper shows the differences of nutrient release after dry and wet Saharan dust deposition in the tropical North Atlantic Ocean at 12° N. Incubation experiments were conducted along an east-west transect. Large differences were observed between both deposition types with wet deposition being the dominant source of phosphate, silicate, and iron. Both deposition types suggest that Saharan dust particles might be incorporated into marine snow aggregates and act as ballast mineral.
Didier M. Roche, Claire Waelbroeck, Brett Metcalfe, and Thibaut Caley
Geosci. Model Dev., 11, 3587–3603, https://doi.org/10.5194/gmd-11-3587-2018, https://doi.org/10.5194/gmd-11-3587-2018, 2018
Short summary
Short summary
The oxygen-18 signal recorded in fossil planktonic foraminifers has been used for over 50 years in many geoscience applications. However, different planktonic foraminifer species from the same sediment core generally yield distinct oxygen-18 signals, as a consequence of their specific living habitat in the water column and along the year. To explicitly take into account this variability for five common planktonic species, we developed the portable module FAME (Foraminifers As Modeled Entities).
Bryan C. Lougheed, Brett Metcalfe, Ulysses S. Ninnemann, and Lukas Wacker
Clim. Past, 14, 515–526, https://doi.org/10.5194/cp-14-515-2018, https://doi.org/10.5194/cp-14-515-2018, 2018
Short summary
Short summary
Palaeoclimate reconstructions from deep-sea sediment archives provide valuable insight into past rapid climate change, but only a small proportion of the ocean is suitable for such reconstructions using the existing state of the art, i.e. the age–depth approach. We use dual radiocarbon (14C) and stable isotope analysis on single foraminifera to bypass the long-standing age–depth approach, thus facilitating past ocean chemistry reconstructions from vast, previously untapped ocean areas.
Catarina V. Guerreiro, Karl-Heinz Baumann, Geert-Jan A. Brummer, Gerhard Fischer, Laura F. Korte, Ute Merkel, Carolina Sá, Henko de Stigter, and Jan-Berend W. Stuut
Biogeosciences, 14, 4577–4599, https://doi.org/10.5194/bg-14-4577-2017, https://doi.org/10.5194/bg-14-4577-2017, 2017
Short summary
Short summary
Our study provides insights into the factors governing the spatio-temporal variability of coccolithophores in the equatorial North Atlantic and illustrates how this supposedly oligotrophic and stable open-ocean region actually reveals significant ecological variability. We provide evidence for Saharan dust and the Amazon River acting as fertilizers for phytoplankton and highlight the the importance of the thermocline depth for coccolithophore productivity in the lower photic zone.
Laura F. Korte, Geert-Jan A. Brummer, Michèlle van der Does, Catarina V. Guerreiro, Rick Hennekam, Johannes A. van Hateren, Dirk Jong, Chris I. Munday, Stefan Schouten, and Jan-Berend W. Stuut
Atmos. Chem. Phys., 17, 6023–6040, https://doi.org/10.5194/acp-17-6023-2017, https://doi.org/10.5194/acp-17-6023-2017, 2017
Short summary
Short summary
We collected Saharan dust at the Mauritanian coast as well as in the deep the North Atlantic Ocean, along a transect at 12 °N, using an array of moored sediment traps. We demonstrated that the lithogenic particles collected in the ocean are from the same source as dust collected on the African coast. With increasing distance from the source, lithogenic elements associated with clay minerals become more important relative to quartz which is settling out faster. Seasonality is prominent, but weak.
Michèlle van der Does, Laura F. Korte, Chris I. Munday, Geert-Jan A. Brummer, and Jan-Berend W. Stuut
Atmos. Chem. Phys., 16, 13697–13710, https://doi.org/10.5194/acp-16-13697-2016, https://doi.org/10.5194/acp-16-13697-2016, 2016
Short summary
Short summary
We studied seasonal and spatial variations in particle size of Saharan dust deposition along a transect in the Atlantic Ocean, using an array of moored submarine sediment traps. We show a downwind decrease in particle size, but seasonal changes are also prominent. In addition, the dust is much coarser than previously suggested and incorporated into climate models.
Dana Felicitas Christine Riechelmann, Jens Fohlmeister, Rik Tjallingii, Klaus Peter Jochum, Detlev Konrad Richter, Geert-Jan A. Brummer, and Denis Scholz
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-18, https://doi.org/10.5194/cp-2016-18, 2016
Revised manuscript not accepted
J. Steinhardt, C. Cléroux, L. J. de Nooijer, G.-J. Brummer, R. Zahn, G. Ganssen, and G.-J. Reichart
Biogeosciences, 12, 2411–2429, https://doi.org/10.5194/bg-12-2411-2015, https://doi.org/10.5194/bg-12-2411-2015, 2015
Short summary
Short summary
In this paper we present, for the first time, results from single-chamber Mg/Ca analyses combined with single-shell δ18O and δ13C for four planktonic foraminiferal species from a sediment trap in the Mozambique Channel. Eddy-induced hydrographic variability is reflected in test carbonate chemistry of these different species. A species-specific depth-resolved mass balance model confirms distinctive migration and calcification patterns for each species as a function of hydrography.
W. Feldmeijer, L. J. de Nooijer, G.-J. Reichart, and G.M. Ganssen
Clim. Past Discuss., https://doi.org/10.5194/cpd-10-3847-2014, https://doi.org/10.5194/cpd-10-3847-2014, 2014
Revised manuscript not accepted
Related subject area
Paleobiogeoscience: Marine Record
Coupled otolith and foraminifera oxygen and carbon stable isotopes evidence paleoceanographic changes and fish metabolic responses
Ideas and perspectives: Human impacts alter the marine fossil record
Were early Archean carbonate factories major carbon sinks on the juvenile Earth?
Origin and role of non-skeletal carbonate in coralligenous build-ups: new geobiological perspectives in biomineralization processes
Serpulid microbialitic bioherms from the upper Sarmatian (Middle Miocene) of the central Paratethys Sea (NW Hungary) – witnesses of a microbial sea
Massive corals record deforestation in Malaysian Borneo through sediments in river discharge
Calcification response of planktic foraminifera to environmental change in the western Mediterranean Sea during the industrial era
Nature and origin of variations in pelagic carbonate production in the tropical ocean since the mid-Miocene (ODP Site 927)
Variation in calcification of Reticulofenestra coccoliths over the Oligocene–Early Miocene
The influence of near-surface sediment hydrothermalism on the TEX86 tetraether-lipid-based proxy and a new correction for ocean bottom lipid overprinting
Testing the effect of bioturbation and species abundance upon discrete-depth individual foraminifera analysis
Test-size evolution of the planktonic foraminifer Globorotalia menardii in the eastern tropical Atlantic since the Late Miocene
Distribution of coccoliths in surface sediments across the Drake Passage and calcification of Emiliania huxleyi morphotypes
Vertical distribution of planktic foraminifera through an oxygen minimum zone: how assemblages and test morphology reflect oxygen concentrations
Reconstructing past variations in environmental conditions and paleoproductivity over the last ∼ 8000 years off north-central Chile (30° S)
A 15-million-year-long record of phenotypic evolution in the heavily calcified coccolithophore Helicosphaera and its biogeochemical implications
Shell chemistry of the boreal Campanian bivalve Rastellum diluvianum (Linnaeus, 1767) reveals temperature seasonality, growth rates and life cycle of an extinct Cretaceous oyster
Southern California margin benthic foraminiferal assemblages record recent centennial-scale changes in oxygen minimum zone
Baseline for ostracod-based northwestern Pacific and Indo-Pacific shallow-marine paleoenvironmental reconstructions: ecological modeling of species distributions
Neogene Caribbean elasmobranchs: diversity, paleoecology and paleoenvironmental significance of the Cocinetas Basin assemblage (Guajira Peninsula, Colombia)
Coastal primary productivity changes over the last millennium: a case study from the Skagerrak (North Sea)
A 1500-year multiproxy record of coastal hypoxia from the northern Baltic Sea indicates unprecedented deoxygenation over the 20th century
Technical note: An empirical method for absolute calibration of coccolith thickness
Reconstructing Holocene temperature and salinity variations in the western Baltic Sea region: a multi-proxy comparison from the Little Belt (IODP Expedition 347, Site M0059)
The oxic degradation of sedimentary organic matter 1400 Ma constrains atmospheric oxygen levels
Geochemical and microstructural characterisation of two species of cool-water bivalves (Fulvia tenuicostata and Soletellina biradiata) from Western Australia
Ecological response to collapse of the biological pump following the mass extinction at the Cretaceous–Paleogene boundary
Quantifying the Cenozoic marine diatom deposition history: links to the C and Si cycles
Anthropogenically induced environmental changes in the northeastern Adriatic Sea in the last 500 years (Panzano Bay, Gulf of Trieste)
Palaeohydrological changes over the last 50 ky in the central Gulf of Cadiz: complex forcing mechanisms mixing multi-scale processes
Dinocyst assemblage constraints on oceanographic and atmospheric processes in the eastern equatorial Atlantic over the last 44 kyr
Sedimentary response to sea ice and atmospheric variability over the instrumental period off Adélie Land, East Antarctica
Equatorward phytoplankton migration during a cold spell within the Late Cretaceous super-greenhouse
Upwellings mitigated Plio-Pleistocene heat stress for reef corals on the Florida platform (USA)
Millennial changes in North Atlantic oxygen concentrations
Vanishing coccolith vital effects with alleviated carbon limitation
Coral records of reef-water pH across the central Great Barrier Reef, Australia: assessing the influence of river runoff on inshore reefs
Records of past mid-depth ventilation: Cretaceous ocean anoxic event 2 vs. Recent oxygen minimum zones
Organomineral nanocomposite carbon burial during Oceanic Anoxic Event 2
Non-invasive imaging methods applied to neo- and paleo-ontological cephalopod research
Icehouse–greenhouse variations in marine denitrification
Changes in calcification of coccoliths under stable atmospheric CO2
Southern Hemisphere imprint for Indo-Asian summer monsoons during the last glacial period as revealed by Arabian Sea productivity records
The calcareous nannofossil Prinsiosphaera achieved rock-forming abundances in the latest Triassic of western Tethys: consequences for the δ13C of bulk carbonate
The Little Ice Age: evidence from a sediment record in Gullmar Fjord, Swedish west coast
Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records
Quantitative reconstruction of sea-surface conditions over the last 150 yr in the Beaufort Sea based on dinoflagellate cyst assemblages: the role of large-scale atmospheric circulation patterns
Spatial linkages between coral proxies of terrestrial runoff across a large embayment in Madagascar
Pteropods from the Caribbean Sea: variations in calcification as an indicator of past ocean carbonate saturation
Sedimentary organic matter and carbonate variations in the Chukchi Borderland in association with ice sheet and ocean-atmosphere dynamics over the last 155 kyr
Konstantina Agiadi, Iuliana Vasiliev, Geanina Butiseacă, George Kontakiotis, Danae Thivaiou, Evangelia Besiou, Stergios Zarkogiannis, Efterpi Koskeridou, Assimina Antonarakou, and Andreas Mulch
Biogeosciences, 21, 3869–3881, https://doi.org/10.5194/bg-21-3869-2024, https://doi.org/10.5194/bg-21-3869-2024, 2024
Short summary
Short summary
Seven million years ago, the marine gateway connecting the Mediterranean Sea with the Atlantic Ocean started to close, and, as a result, water circulation ceased. To find out how this phenomenon affected the fish living in the Mediterranean Sea, we examined the changes in the isotopic composition of otoliths of two common fish species. Although the species living at the surface fared pretty well, the bottom-water fish starved and eventually became extinct in the Mediterranean.
Rafał Nawrot, Martin Zuschin, Adam Tomašových, Michał Kowalewski, and Daniele Scarponi
Biogeosciences, 21, 2177–2188, https://doi.org/10.5194/bg-21-2177-2024, https://doi.org/10.5194/bg-21-2177-2024, 2024
Short summary
Short summary
The youngest fossil record is a crucial source of data on the history of marine ecosystems and their long-term alteration by humans. However, human activities that reshape ecosystems also alter sedimentary and biological processes that control the formation of the geological archives recording those impacts. Thus, humans have been transforming the marine fossil record in ways that affect our ability to reconstruct past ecological and climate dynamics.
Wanli Xiang, Jan-Peter Duda, Andreas Pack, Mark van Zuilen, and Joachim Reitner
EGUsphere, https://doi.org/10.5194/egusphere-2024-1007, https://doi.org/10.5194/egusphere-2024-1007, 2024
Short summary
Short summary
We investigated the formation of early Archean (~3.5–3.4 Ga) carbonates in the Pilbara Craton, Western Australia, demonstrating the presence of an oceanic crust-, an organo-carbonate-, and a microbial carbonate factory. Notably, (a)biotic organic matter as well as hydrothermal fluids were centrally involved in carbonate precipitation. Since carbonates are widespread in the Archean, they may have constituted major carbon sinks that modulated early Earth’s carbon cycle and, hence, climate system.
Mara Cipriani, Carmine Apollaro, Daniela Basso, Pietro Bazzicalupo, Marco Bertolino, Valentina Alice Bracchi, Fabio Bruno, Gabriele Costa, Rocco Dominici, Alessandro Gallo, Maurizio Muzzupappa, Antonietta Rosso, Rossana Sanfilippo, Francesco Sciuto, Giovanni Vespasiano, and Adriano Guido
Biogeosciences, 21, 49–72, https://doi.org/10.5194/bg-21-49-2024, https://doi.org/10.5194/bg-21-49-2024, 2024
Short summary
Short summary
Who constructs the build-ups of the Mediterranean Sea? What is the role of skeletal and soft-bodied organisms in these bioconstructions? Do bacteria play a role in their formation? In this research, for the first time, the coralligenous of the Mediterranean shelf is studied from a geobiological point of view with an interdisciplinary biological and geological approach, highlighting important biotic relationships that can be used in interpreting the fossil build-up systems.
Mathias Harzhauser, Oleg Mandic, and Werner E. Piller
Biogeosciences, 20, 4775–4794, https://doi.org/10.5194/bg-20-4775-2023, https://doi.org/10.5194/bg-20-4775-2023, 2023
Short summary
Short summary
Bowl-shaped spirorbid microbialite bioherms formed during the late Middle Miocene (Sarmatian) in the central Paratethys Sea under a warm, arid climate. The microbialites and the surrounding sediment document a predominance of microbial activity in the shallow marine environments of the sea at that time. Modern microbialites are not analogues for these unique structures, which reflect a series of growth stages with an initial “start-up stage”, massive “keep-up stage” and termination of growth.
Walid Naciri, Arnoud Boom, Matthew Payne, Nicola Browne, Noreen J. Evans, Philip Holdship, Kai Rankenburg, Ramasamy Nagarajan, Bradley J. McDonald, Jennifer McIlwain, and Jens Zinke
Biogeosciences, 20, 1587–1604, https://doi.org/10.5194/bg-20-1587-2023, https://doi.org/10.5194/bg-20-1587-2023, 2023
Short summary
Short summary
In this study, we tested the ability of massive boulder-like corals to act as archives of land use in Malaysian Borneo to palliate the lack of accurate instrumental data on deforestation before the 1980s. We used mass spectrometry to measure trace element ratios in coral cores to use as a proxy for sediment in river discharge. Results showed an extremely similar increase between our proxy and the river discharge instrumental record, demonstrating the use of these corals as reliable archives.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, José A. Flores, Javier P. Tarruella, Xavier Durrieu de Madron, Isabel Cacho, Neghar Haghipour, Aidan Hunter, and Francisco J. Sierro
Biogeosciences, 20, 1505–1528, https://doi.org/10.5194/bg-20-1505-2023, https://doi.org/10.5194/bg-20-1505-2023, 2023
Short summary
Short summary
The Mediterranean Sea is undergoing a rapid and unprecedented environmental change. Planktic foraminifera calcification is affected on different timescales. On seasonal and interannual scales, calcification trends differ according to the species and are linked mainly to sea surface temperatures and carbonate system parameters, while comparison with pre/post-industrial assemblages shows that all three species have reduced their calcification between 10 % to 35 % according to the species.
Pauline Cornuault, Thomas Westerhold, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
Biogeosciences, 20, 597–618, https://doi.org/10.5194/bg-20-597-2023, https://doi.org/10.5194/bg-20-597-2023, 2023
Short summary
Short summary
We generated high-resolution records of carbonate accumulation rate from the Miocene to the Quaternary in the tropical Atlantic Ocean to characterize the variability in pelagic carbonate production during warm climates. It follows orbital cycles, responding to local changes in tropical conditions, as well as to long-term shifts in climate and ocean chemistry. These changes were sufficiently large to play a role in the carbon cycle and global climate evolution.
José Guitián, Miguel Ángel Fuertes, José-Abel Flores, Iván Hernández-Almeida, and Heather Stoll
Biogeosciences, 19, 5007–5019, https://doi.org/10.5194/bg-19-5007-2022, https://doi.org/10.5194/bg-19-5007-2022, 2022
Short summary
Short summary
The effect of environmental conditions on the degree of calcification of marine phytoplankton remains unclear. This study implements a new microscopic approach to quantify the calcification of ancient coccolithophores, using North Atlantic sediments. Results show significant differences in the thickness and shape factor of coccoliths for samples with minimum dissolution, providing the first evaluation of phytoplankton physiology adaptation to million-year-scale variable environmental conditions.
Jeremy N. Bentley, Gregory T. Ventura, Clifford C. Walters, Stefan M. Sievert, and Jeffrey S. Seewald
Biogeosciences, 19, 4459–4477, https://doi.org/10.5194/bg-19-4459-2022, https://doi.org/10.5194/bg-19-4459-2022, 2022
Short summary
Short summary
We demonstrate the TEX86 (TetraEther indeX of 86 carbon atoms) paleoclimate proxy can become heavily impacted by the ocean floor archaeal community. The impact results from source inputs, their diagenetic and catagenetic alteration, and further overprint by the additions of lipids from the ocean floor sedimentary archaeal community. We then present a method to correct the overprints by using IPLs (intact polar lipids) extracted from both water column and subsurface archaeal communities.
Bryan C. Lougheed and Brett Metcalfe
Biogeosciences, 19, 1195–1209, https://doi.org/10.5194/bg-19-1195-2022, https://doi.org/10.5194/bg-19-1195-2022, 2022
Short summary
Short summary
Measurements on sea-dwelling shelled organisms called foraminifera retrieved from deep-sea sediment cores have been used to reconstruct sea surface temperature (SST) variation. To evaluate the method, we use a computer model to simulate millions of single foraminifera and how they become mixed in the sediment after being deposited on the seafloor. We compare the SST inferred from the single foraminifera in the sediment core to the true SST in the water, thus quantifying method uncertainties.
Thore Friesenhagen
Biogeosciences, 19, 777–805, https://doi.org/10.5194/bg-19-777-2022, https://doi.org/10.5194/bg-19-777-2022, 2022
Short summary
Short summary
Size measurements of the planktonic foraminifer Globorotalia menardii and related forms are used to investigate the shell-size evolution for the last 8 million years in the eastern tropical Atlantic Ocean. Long-term changes in the shell size coincide with major climatic, palaeogeographic and palaeoceanographic changes and suggest the occurrence of a new G. menardii type in the Atlantic Ocean ca. 2 million years ago.
Nele Manon Vollmar, Karl-Heinz Baumann, Mariem Saavedra-Pellitero, and Iván Hernández-Almeida
Biogeosciences, 19, 585–612, https://doi.org/10.5194/bg-19-585-2022, https://doi.org/10.5194/bg-19-585-2022, 2022
Short summary
Short summary
We studied recent (sub-)fossil remains of a type of algae (coccolithophores) off southernmost Chile and across the Drake Passage, adding to the scarce knowledge that exists in the Southern Ocean, a rapidly changing environment. We found that those can be used to reconstruct the surface ocean conditions in the north but not in the south. We also found variations in shape in the dominant species Emiliania huxleyi depending on the location, indicating subtle adaptations to environmental conditions.
Catherine V. Davis, Karen Wishner, Willem Renema, and Pincelli M. Hull
Biogeosciences, 18, 977–992, https://doi.org/10.5194/bg-18-977-2021, https://doi.org/10.5194/bg-18-977-2021, 2021
Práxedes Muñoz, Lorena Rebolledo, Laurent Dezileau, Antonio Maldonado, Christoph Mayr, Paola Cárdenas, Carina B. Lange, Katherine Lalangui, Gloria Sanchez, Marco Salamanca, Karen Araya, Ignacio Jara, Gabriel Easton, and Marcel Ramos
Biogeosciences, 17, 5763–5785, https://doi.org/10.5194/bg-17-5763-2020, https://doi.org/10.5194/bg-17-5763-2020, 2020
Short summary
Short summary
We analyze marine sedimentary records to study temporal changes in oxygen and productivity in marine waters of central Chile. We observed increasing oxygenation and decreasing productivity from 6000 kyr ago to the modern era that seem to respond to El Niño–Southern Oscillation activity. In the past centuries, deoxygenation and higher productivity are re-established, mainly in the northern zones of Chile and Peru. Meanwhile, in north-central Chile the deoxygenation trend is maintained.
Luka Šupraha and Jorijntje Henderiks
Biogeosciences, 17, 2955–2969, https://doi.org/10.5194/bg-17-2955-2020, https://doi.org/10.5194/bg-17-2955-2020, 2020
Short summary
Short summary
The cell size, degree of calcification and growth rates of coccolithophores impact their role in the carbon cycle and may also influence their adaptation to environmental change. Combining insights from culture experiments and the fossil record, we show that the selection for smaller cells over the past 15 Myr has been a common adaptive trait among different lineages. However, heavily calcified species maintained a more stable biogeochemical output than the ancestral lineage of E. huxleyi.
Niels J. de Winter, Clemens V. Ullmann, Anne M. Sørensen, Nicolas Thibault, Steven Goderis, Stijn J. M. Van Malderen, Christophe Snoeck, Stijn Goolaerts, Frank Vanhaecke, and Philippe Claeys
Biogeosciences, 17, 2897–2922, https://doi.org/10.5194/bg-17-2897-2020, https://doi.org/10.5194/bg-17-2897-2020, 2020
Short summary
Short summary
In this study, we present a detailed investigation of the chemical composition of 12 specimens of very well preserved, 78-million-year-old oyster shells from southern Sweden. The chemical data show how the oysters grew, the environment in which they lived and how old they became and also provide valuable information about which chemical measurements we can use to learn more about ancient climate and environment from such shells. In turn, this can help improve climate reconstructions and models.
Hannah M. Palmer, Tessa M. Hill, Peter D. Roopnarine, Sarah E. Myhre, Katherine R. Reyes, and Jonas T. Donnenfield
Biogeosciences, 17, 2923–2937, https://doi.org/10.5194/bg-17-2923-2020, https://doi.org/10.5194/bg-17-2923-2020, 2020
Short summary
Short summary
Modern climate change is causing expansions of low-oxygen zones, with detrimental impacts to marine life. To better predict future ocean oxygen change, we study past expansions and contractions of low-oxygen zones using microfossils of seafloor organisms. We find that, along the San Diego margin, the low-oxygen zone expanded into more shallow water in the last 400 years, but the conditions within and below the low-oxygen zone did not change significantly in the last 1500 years.
Yuanyuan Hong, Moriaki Yasuhara, Hokuto Iwatani, and Briony Mamo
Biogeosciences, 16, 585–604, https://doi.org/10.5194/bg-16-585-2019, https://doi.org/10.5194/bg-16-585-2019, 2019
Short summary
Short summary
This study analyzed microfaunal assemblages in surface sediments from 52 sites in Hong Kong marine waters. We selected 18 species for linear regression modeling to statistically reveal the relationship between species distribution and environmental factors. These results show environmental preferences of commonly distributed species on Asian coasts, providing a robust baseline for past environmental reconstruction of the broad Asian region using microfossils in sediment cores.
Jorge Domingo Carrillo-Briceño, Zoneibe Luz, Austin Hendy, László Kocsis, Orangel Aguilera, and Torsten Vennemann
Biogeosciences, 16, 33–56, https://doi.org/10.5194/bg-16-33-2019, https://doi.org/10.5194/bg-16-33-2019, 2019
Short summary
Short summary
By combining taxonomy and geochemistry, we corroborated the described paleoenvironments from a Neogene fossiliferous deposit of South America. Shark teeth specimens were used for taxonomic identification and as proxies for geochemical analyses. With a multidisciplinary approach we refined the understanding about the paleoenvironmental setting and the paleoecological characteristics of the studied groups, in our case, for the bull shark and its incursions into brackish waters.
Anna Binczewska, Bjørg Risebrobakken, Irina Polovodova Asteman, Matthias Moros, Amandine Tisserand, Eystein Jansen, and Andrzej Witkowski
Biogeosciences, 15, 5909–5928, https://doi.org/10.5194/bg-15-5909-2018, https://doi.org/10.5194/bg-15-5909-2018, 2018
Short summary
Short summary
Primary productivity is an important factor in the functioning and structuring of the coastal ecosystem. Thus, two sediment cores from the Skagerrak (North Sea) were investigated in order to obtain a comprehensive picture of primary productivity changes during the last millennium and identify associated forcing factors (e.g. anthropogenic, climate). The cores were dated and analysed for palaeoproductivity proxies and palaeothermometers.
Sami A. Jokinen, Joonas J. Virtasalo, Tom Jilbert, Jérôme Kaiser, Olaf Dellwig, Helge W. Arz, Jari Hänninen, Laura Arppe, Miia Collander, and Timo Saarinen
Biogeosciences, 15, 3975–4001, https://doi.org/10.5194/bg-15-3975-2018, https://doi.org/10.5194/bg-15-3975-2018, 2018
Short summary
Short summary
Oxygen deficiency is a major environmental problem deteriorating seafloor habitats especially in the coastal ocean with large human impact. Here we apply a wide set of chemical and physical analyses to a 1500-year long sediment record and show that, although long-term climate variability has modulated seafloor oxygenation in the coastal northern Baltic Sea, the oxygen loss over the 20th century is unprecedentedly severe, emphasizing the need to reduce anthropogenic nutrient input in the future.
Saúl González-Lemos, José Guitián, Miguel-Ángel Fuertes, José-Abel Flores, and Heather M. Stoll
Biogeosciences, 15, 1079–1091, https://doi.org/10.5194/bg-15-1079-2018, https://doi.org/10.5194/bg-15-1079-2018, 2018
Short summary
Short summary
Changes in atmospheric carbon dioxide affect ocean chemistry and the ability of marine organisms to manufacture shells from calcium carbonate. We describe a technique to obtain more reproducible measurements of the thickness of calcium carbonate shells made by microscopic marine algae called coccolithophores, which will allow researchers to compare how the shell thickness responds to variations in ocean chemistry in the past and present.
Ulrich Kotthoff, Jeroen Groeneveld, Jeanine L. Ash, Anne-Sophie Fanget, Nadine Quintana Krupinski, Odile Peyron, Anna Stepanova, Jonathan Warnock, Niels A. G. M. Van Helmond, Benjamin H. Passey, Ole Rønø Clausen, Ole Bennike, Elinor Andrén, Wojciech Granoszewski, Thomas Andrén, Helena L. Filipsson, Marit-Solveig Seidenkrantz, Caroline P. Slomp, and Thorsten Bauersachs
Biogeosciences, 14, 5607–5632, https://doi.org/10.5194/bg-14-5607-2017, https://doi.org/10.5194/bg-14-5607-2017, 2017
Short summary
Short summary
We present reconstructions of paleotemperature, paleosalinity, and paleoecology from the Little Belt (Site M0059) over the past ~ 8000 years and evaluate the applicability of numerous proxies. Conditions were lacustrine until ~ 7400 cal yr BP. A transition to brackish–marine conditions then occurred within ~ 200 years. Salinity proxies rarely allowed quantitative estimates but revealed congruent results, while quantitative temperature reconstructions differed depending on the proxies used.
Shuichang Zhang, Xiaomei Wang, Huajian Wang, Emma U. Hammarlund, Jin Su, Yu Wang, and Donald E. Canfield
Biogeosciences, 14, 2133–2149, https://doi.org/10.5194/bg-14-2133-2017, https://doi.org/10.5194/bg-14-2133-2017, 2017
Liza M. Roger, Annette D. George, Jeremy Shaw, Robert D. Hart, Malcolm Roberts, Thomas Becker, Bradley J. McDonald, and Noreen J. Evans
Biogeosciences, 14, 1721–1737, https://doi.org/10.5194/bg-14-1721-2017, https://doi.org/10.5194/bg-14-1721-2017, 2017
Short summary
Short summary
The shell compositions of bivalve species from south Western Australia are described here to better understand the factors involved in their formation. The shell composition can be used to reconstruct past environmental conditions, but certain species manifest an offset compared to the environmental parameters measured. As shown here, shells that experience the same conditions can present different compositions in relation to structure, organic composition and environmental conditions.
Johan Vellekoop, Lineke Woelders, Sanem Açikalin, Jan Smit, Bas van de Schootbrugge, Ismail Ö. Yilmaz, Henk Brinkhuis, and Robert P. Speijer
Biogeosciences, 14, 885–900, https://doi.org/10.5194/bg-14-885-2017, https://doi.org/10.5194/bg-14-885-2017, 2017
Short summary
Short summary
The Cretaceous–Paleogene boundary, ~ 66 Ma, is characterized by a mass extinction. We studied groups of both surface-dwelling and bottom-dwelling organisms to unravel the oceanographic consequences of these extinctions. Our integrated records indicate that a reduction of the transport of organic matter to the sea floor resulted in enhanced recycling of nutrients in the upper water column and decreased food supply at the sea floor in the first tens of thousands of years after the extinctions.
Johan Renaudie
Biogeosciences, 13, 6003–6014, https://doi.org/10.5194/bg-13-6003-2016, https://doi.org/10.5194/bg-13-6003-2016, 2016
Short summary
Short summary
Marine planktonic diatoms are today both the main silica and carbon exporter to the deep sea. However, 50 million years ago, radiolarians were the main silica exporter and diatoms were a rare, geographically restricted group. Quantification of their rise to dominance suggest that diatom abundance is primarily controlled by the continental weathering and has a negative feedback, observable on a geological timescale, on the carbon cycle.
Jelena Vidović, Rafał Nawrot, Ivo Gallmetzer, Alexandra Haselmair, Adam Tomašových, Michael Stachowitsch, Vlasta Ćosović, and Martin Zuschin
Biogeosciences, 13, 5965–5981, https://doi.org/10.5194/bg-13-5965-2016, https://doi.org/10.5194/bg-13-5965-2016, 2016
Short summary
Short summary
We studied the ecological history of the Gulf of Trieste. Before the 20th century, the only activity here was ore mining, releasing high amounts of mercury into its northern part, Panzano Bay. Mercury did not cause changes to microorganisms, as it is not bioavailable. In the 20th century, agriculture caused nutrient enrichment in the bay and increased diversity of microorganisms. Industrial activities increased the concentrations of pollutants, causing only minor changes to microorganisms.
Aurélie Penaud, Frédérique Eynaud, Antje Helga Luise Voelker, and Jean-Louis Turon
Biogeosciences, 13, 5357–5377, https://doi.org/10.5194/bg-13-5357-2016, https://doi.org/10.5194/bg-13-5357-2016, 2016
Short summary
Short summary
This paper presents new analyses conducted at high resolution in the Gulf of Cadiz over the last 50 ky. Palaeohydrological changes in these subtropical latitudes are discussed through dinoflagellate cyst assemblages but also dinocyst transfer function results, implying sea surface temperature and salinity as well as annual productivity reconstructions. This study is thus important for our understanding of past and future productivity regimes, also implying consequences on the biological pump.
William Hardy, Aurélie Penaud, Fabienne Marret, Germain Bayon, Tania Marsset, and Laurence Droz
Biogeosciences, 13, 4823–4841, https://doi.org/10.5194/bg-13-4823-2016, https://doi.org/10.5194/bg-13-4823-2016, 2016
Short summary
Short summary
Our approach is based on a multi-proxy study from a core collected off the Congo River and discusses surface oceanic conditions (upwelling cells, river-induced upwelling), land–sea interactions and terrestrial erosion and in particular enables us to spatially constrain the migration of atmospheric systems. This paper thus presents new data highlighting, with the highest resolution ever reached in this region, the great correlation between phytoplanktonic organisms and monsoonal mechanisms.
Philippine Campagne, Xavier Crosta, Sabine Schmidt, Marie Noëlle Houssais, Olivier Ther, and Guillaume Massé
Biogeosciences, 13, 4205–4218, https://doi.org/10.5194/bg-13-4205-2016, https://doi.org/10.5194/bg-13-4205-2016, 2016
Short summary
Short summary
Diatoms and biomarkers have been recently used for palaeoclimate reconstructions in the Southern Ocean. Few sediment-based ecological studies have investigated their relationships with environmental conditions. Here, we compare high-resolution sedimentary records with meteorological data to study relationships between our proxies and recent atmospheric and sea surface changes. Our results indicate that coupled wind pattern and sea surface variability act as the proximal forcing at that scale.
Niels A. G. M. van Helmond, Appy Sluijs, Nina M. Papadomanolaki, A. Guy Plint, Darren R. Gröcke, Martin A. Pearce, James S. Eldrett, João Trabucho-Alexandre, Ireneusz Walaszczyk, Bas van de Schootbrugge, and Henk Brinkhuis
Biogeosciences, 13, 2859–2872, https://doi.org/10.5194/bg-13-2859-2016, https://doi.org/10.5194/bg-13-2859-2016, 2016
Short summary
Short summary
Over the past decades large changes have been observed in the biogeographical dispersion of marine life resulting from climate change. To better understand present and future trends it is important to document and fully understand the biogeographical response of marine life during episodes of environmental change in the geological past.
Here we investigate the response of phytoplankton, the base of the marine food web, to a rapid cold spell, interrupting greenhouse conditions during the Cretaceous.
Thomas C. Brachert, Markus Reuter, Stefan Krüger, Julia Kirkerowicz, and James S. Klaus
Biogeosciences, 13, 1469–1489, https://doi.org/10.5194/bg-13-1469-2016, https://doi.org/10.5194/bg-13-1469-2016, 2016
Short summary
Short summary
We present stable isotope proxy data and calcification records from fossil reef corals. The corals investigated derive from the Florida carbonate platform and are of middle Pliocene to early Pleistocene age. From the data we infer an environment subject to intermittent upwelling on annual to decadal timescales. Calcification rates were enhanced during periods of upwelling. This is likely an effect of dampened SSTs during the upwelling.
B. A. A. Hoogakker, D. J. R. Thornalley, and S. Barker
Biogeosciences, 13, 211–221, https://doi.org/10.5194/bg-13-211-2016, https://doi.org/10.5194/bg-13-211-2016, 2016
Short summary
Short summary
Models predict a decrease in future ocean O2, driven by surface water warming and freshening in the polar regions, causing a reduction in ocean circulation. Here we assess this effect in the past, focussing on the response of deep and intermediate waters from the North Atlantic during large-scale ice rafting and millennial-scale cooling events of the last glacial.
Our assessment agrees with the models but also highlights the importance of biological processes driving ocean O2 change.
M. Hermoso, I. Z. X. Chan, H. L. O. McClelland, A. M. C. Heureux, and R. E. M. Rickaby
Biogeosciences, 13, 301–312, https://doi.org/10.5194/bg-13-301-2016, https://doi.org/10.5194/bg-13-301-2016, 2016
J. P. D'Olivo, M. T. McCulloch, S. M. Eggins, and J. Trotter
Biogeosciences, 12, 1223–1236, https://doi.org/10.5194/bg-12-1223-2015, https://doi.org/10.5194/bg-12-1223-2015, 2015
Short summary
Short summary
The boron isotope composition in the skeleton of massive Porites corals from the central Great Barrier Reef is used to reconstruct the seawater pH over the 1940-2009 period. The long-term decline in the coral-reconstructed seawater pH is in close agreement with estimates based on the CO2 uptake by surface waters due to rising atmospheric levels. We also observed a significant relationship between terrestrial runoff data and the inshore coral boron isotopes records.
J. Schönfeld, W. Kuhnt, Z. Erdem, S. Flögel, N. Glock, M. Aquit, M. Frank, and A. Holbourn
Biogeosciences, 12, 1169–1189, https://doi.org/10.5194/bg-12-1169-2015, https://doi.org/10.5194/bg-12-1169-2015, 2015
Short summary
Short summary
Today’s oceans show distinct mid-depth oxygen minima while whole oceanic basins became transiently anoxic in the Mesozoic. To constrain past bottom-water oxygenation, we compared sediments from the Peruvian OMZ with the Cenomanian OAE 2 from Morocco. Corg accumulation rates in laminated OAE 2 sections match Holocene rates off Peru. Laminated deposits are found at oxygen levels of < 7µmol kg-1; crab burrows appear at 10µmol kg-1 today, both defining threshold values for palaeoreconstructions.
S. C. Löhr and M. J. Kennedy
Biogeosciences, 11, 4971–4983, https://doi.org/10.5194/bg-11-4971-2014, https://doi.org/10.5194/bg-11-4971-2014, 2014
R. Hoffmann, J. A. Schultz, R. Schellhorn, E. Rybacki, H. Keupp, S. R. Gerden, R. Lemanis, and S. Zachow
Biogeosciences, 11, 2721–2739, https://doi.org/10.5194/bg-11-2721-2014, https://doi.org/10.5194/bg-11-2721-2014, 2014
T. J. Algeo, P. A. Meyers, R. S. Robinson, H. Rowe, and G. Q. Jiang
Biogeosciences, 11, 1273–1295, https://doi.org/10.5194/bg-11-1273-2014, https://doi.org/10.5194/bg-11-1273-2014, 2014
C. Berger, K. J. S. Meier, H. Kinkel, and K.-H. Baumann
Biogeosciences, 11, 929–944, https://doi.org/10.5194/bg-11-929-2014, https://doi.org/10.5194/bg-11-929-2014, 2014
T. Caley, S. Zaragosi, J. Bourget, P. Martinez, B. Malaizé, F. Eynaud, L. Rossignol, T. Garlan, and N. Ellouz-Zimmermann
Biogeosciences, 10, 7347–7359, https://doi.org/10.5194/bg-10-7347-2013, https://doi.org/10.5194/bg-10-7347-2013, 2013
N. Preto, C. Agnini, M. Rigo, M. Sprovieri, and H. Westphal
Biogeosciences, 10, 6053–6068, https://doi.org/10.5194/bg-10-6053-2013, https://doi.org/10.5194/bg-10-6053-2013, 2013
I. Polovodova Asteman, K. Nordberg, and H. L. Filipsson
Biogeosciences, 10, 1275–1290, https://doi.org/10.5194/bg-10-1275-2013, https://doi.org/10.5194/bg-10-1275-2013, 2013
J.-E. Tesdal, E. D. Galbraith, and M. Kienast
Biogeosciences, 10, 101–118, https://doi.org/10.5194/bg-10-101-2013, https://doi.org/10.5194/bg-10-101-2013, 2013
L. Durantou, A. Rochon, D. Ledu, G. Massé, S. Schmidt, and M. Babin
Biogeosciences, 9, 5391–5406, https://doi.org/10.5194/bg-9-5391-2012, https://doi.org/10.5194/bg-9-5391-2012, 2012
C. A. Grove, J. Zinke, T. Scheufen, J. Maina, E. Epping, W. Boer, B. Randriamanantsoa, and G.-J. A. Brummer
Biogeosciences, 9, 3063–3081, https://doi.org/10.5194/bg-9-3063-2012, https://doi.org/10.5194/bg-9-3063-2012, 2012
D. Wall-Palmer, M. B. Hart, C. W. Smart, R. S. J. Sparks, A. Le Friant, G. Boudon, C. Deplus, and J. C. Komorowski
Biogeosciences, 9, 309–315, https://doi.org/10.5194/bg-9-309-2012, https://doi.org/10.5194/bg-9-309-2012, 2012
S. F. Rella and M. Uchida
Biogeosciences, 8, 3545–3553, https://doi.org/10.5194/bg-8-3545-2011, https://doi.org/10.5194/bg-8-3545-2011, 2011
Cited articles
Balmaseda, M. A., Mogensen, K., and Weaver, A. T.: Evaluation of the ECMWF ocean reanalysis system ORAS4, Quarterly J. Roy. Meteorol. Soc., 139, 1132–1161, 2013.
Bard, E.: Paleoceanographic implications of the difference in deep-sea sediment mixing between large and fine particles, Paleoceanography, 16, 235–239, 2001.
Bard, E., Arnold, M., Duprat, J., Moyes, J., and Duplessy, J.-C.: Reconstruction of the last deglaciation: deconvolved records of &delta:18O profiles, micropaleontological variations and accelerator mass spectrometric 14C dating, Clim. Dynam., 1, 101–112, 1987.
Bauch, H. A.: Paleoceanography of the North Atlantic Ocean (68–76° N) during the past 450 ky deduced from planktic foraminiferal assemblages and stable isotopes, Contribut. Micropaleontol. Paleoceanogr. North. North Atlantic, 5, 83–100, 1997.
Bé, A. W. H.: Planktonic Foraminifera, in: Distribution of Selected Groups of Marine Invertebrates in Waters South of 35° S latitude, Antarctic Map Folio Series, Am. Geograph. Soc., 1969.
Bé, A. W. H.: An ecological, zoogeographic, and taxonomic review of recent Planktonic Foraminifera, in: Oceanic Micropalaeontology, edited by: Ramsay, A. T. S., Academic Press, London, 1–100, 1977.
Bé, A. W. H. and Ericson, D. B.: Aspects of calcification in planktonic foraminifera (Sarcodina)*, Ann. New York Acad. Sci., 109, 65–81, 1963.
Bé, A. W. H. and Lott, L.: Shell growth and structure of planktonic foraminifera, Science, 145, 823–824, 1964.
Bé, A. W. H. and Tolderlund, D. S.: Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Oceans, in: Micropaleontology of Oceans, edited by: Funnell, B. M. and Riedel, W. R., Cambridge University Press, London, 105–149, 1971.
Bé, A. W. H., McIntyre, A., and Breger, D. L.: Shell Microstructure of a Planktonic Foraminifer, Globorotalia menardii (d'Orbigny), Eclogae geologicae Helvetiae, 59, 885–896, 1966.
Bé, A. W. H., Harrison, S. M., and Lott, L.: Orbulina universa d'Orbigny in the Indian Ocean, Micropaleontology, 19, 150–192 1973.
Bé, A. W. H., Hemleben, C., Anderson, O. R., Spindler, M., Hacunda, J., and Tuntivate-Choy, S.: Laboratory and field observations of living planktonic foraminifera, Micropaleontology, 23, 155–179, 1977.
Bé, A. W. H., Caron, D. A., and Anderson, O. R.: Effects of feeding frequency on life processes of the planktonic foraminifer Globigerinoides sacculifer in laboratory culture, J. Mar. Biol. Assoc. UK, 61, 257–277, 1981.
Bemis, B. E., Spero, H. J., Lea, D. W., and Bijma, J.: Temperature influence on the carbon isotopic composition of Globigerina bulloides and Orbulina universa (planktonic foraminifera), Mar. Micropaleontol., 38, 213–228, 2000.
Berger, A., Loutre, M. F., and Mélice, J. L.: Equatorial insolation: from precession harmonics to eccentricity frequencies, Clim. Past, 2, 131–136, https://doi.org/10.5194/cp-2-131-2006, 2006.
Berger, W. H.: Ecologic patterns of living planktonic Foraminifera, Deep-Sea Res. Oceanogr. Abstr., 16, 1–24, 1969.
Berger, W. H.: Sedimentation of planktonic foraminifera, Mar. Geol., 11, 325–358, 1971.
Berger, W. H.: Preservation of foraminifera, Houston, 105–155, 1979.
Berger, W. H. and Jansen, E.: Younger Dryas episode: ice collapse and super fjord heat pump, in: The Younger Dryas, edited by: Troelstra, S. R., Van Hinte, J. E., and Ganssen, G. M., Koninklijke Nederlandse Akademie van Wetenschappen verhandelingen, Afd. Natuurkunde, 1, Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam, 1995.
Berger, W. H., Diesterhaass, L., and Killingley, J. S.: Upwelling off northwest africa-holocene decrease as seen in carbon isotopes and sedimentological indicators, Oceanol. Acta, 1, 3–7, 1978a.
Berger, W. H., Killingley, J. S., and Vincent, E.: Stable isotopes in deep-sea carbonates: Box Core ERDC-92, west equatorial Pacific, Oceanol. Acta, 1, 203–216, 1978b.
Bijma, J., Faber, W. W., and Hemleben, C.: Temperature and salinity limits for growth and survival of some planktonic foraminifers in laboratory cultures, J. Foramin. Res., 20, 95–116, 1990.
Bijma, J., Hemleben, C., Oberhaensli, H., and Spindler, M.: The effects of increased water fertility on tropical spinose planktonic foraminifers in laboratory cultures, J. Foramin. Res., 22, 242–256, 1992.
Bijma, J., Spero, H. J., and Lea, D. W.: Reassessing foraminiferal stable isotope geochemistry: Impacts of the oceanic carbonate system (Experimental results), in: Use of Proxies in Paleoceanography: Examples from the South Atlantic, edited by: Fischer, G. and Wefer, G., Springer-Verlag, Berlin Heidelberg, 489–512, 1999.
Billups, K. and Spero, H. J.: Relationship between shell size, thickness and stable isotopes in individual planktonic foraminifera from two equatorial Atlantic cores, J. Foramin. Res., 25, 24–37, 1995.
Birch, H., Coxall, H. K., Pearson, P. N., Kroon, D., and O'Regan, M.: Planktonic foraminifera stable isotopes and water column structure: Disentangling ecological signals, Mar. Micropaleontol., 101, 127–145, https://doi.org/10.1016/j.marmicro.2013.02.002, 2013.
Bonneau, M.-C., Vergnaud-Grazzini, C., and Berger, W. H.: Stable isotope fractionation and differential dissolution in recent planktonic foraminifera from Pacific box-cores, Oceanol. Acta, 3, 377–382, 1980.
Bouvier-Soumagnac, Y. and Duplessy, Y.: Carbon and oxygen isotopic composition of planktonic foraminifera from laboratory culture, plankton tows and recent sediment: implications for the reconstruction of paleoclimatic conditions and of the global carbon cycle, J. Foramin. Res., 15, 302–320, 1985.
Broecker, W. S. and Henderson, G. M.: The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial CO2 changes, Paleoceanography, 13, 352–364, 1998
Broerse, A. T. C., Ziveri, P., Van Hinte, J. E., and Honjo, S.: Coccolithophore export production, species composition, and coccolith-CaCO3 fluxes in the NE Atlantic (34° N, 21° W and 48° N, 21° W), Deep-Sea Res. Pt. II, 47, 1877–1906, 2000.
Brummer, G.-J. A., Hemleben, C., and Spindler, M.: Planktonic foraminiferal ontogeny and new perspectives for micropalaeontology, Nature Publishing Group, 1986.
Brummer, G.-J. A., Hemleben, C., and Spindler, M.: Ontogeny of extant spinose planktonic foraminifera (Globigerinidae): A concept exemplified by Globigerinoides sacculifer (Brady) and G. ruber (d'Orbigny), Mar. Micropaleontol., 12, 357–381, 1987.
Caron, D. A., Bé, A. W. H., and O. R., A.: Effects of variations in light intensity on life processes of the planktonic foraminifera Globigerinoides sacculifer in laboratory culture, J. Mar. Biol. Assoc. UK, 62, 435–451, 1981.
Cifelli, R. and Smith, R. K.: Distribution of Planktonic Foraminifera in the Vicinity of the North Atlantic Current, Smithsonian Contributions to Paleobiology, 4, p. 51, 1970.
Cléroux, C., Cortijo, E., Duplessy, J.-C., and Zahn, R.: Deep-dwelling foraminifera as thermocline temperature recorders, Geochem., Geophys. Geosys., 8, Q04N11, https://doi.org/10.1029/2006GC001474, 2007.
Cléroux, C., Cortijo, E., Anand, P., Labeyrie, L., Bassinot, F., Caillon, N., and Duplessy, J.-C.: Mg / Ca and Sr / Ca ratios in planktonic foraminifera: Proxies for upper water column temperature reconstruction, Paleoceanography, 23, PA3214, https://doi.org/10.1029/2007PA001505, 2008.
Curry, W. B. and Matthews, R.: Equilibrium 18O fractionation in small size fraction planktonic foraminifera:evidence from recent Indian Ocean sediments, Mar. Micropaleontol., 6, 327–337, 1981.
DeNiro, M. J. and Epstein, S.: Influence of diet on the distribution of carbon isotopes in animals, Geochim. Cosmochim. Acta, 42, 495–506, 1978.
Deuser, W. G. and Ross, E. H.: Seasonally abundant planktonic foraminifera of the Sargasso Sea: Succession, deep-water fluxes, isotopic compositions, and paleoceanographic implications, J. Foramin. Res., 19, 268–293, 1989.
de Villiers, S.: Optimum growth conditions as opposed to calcite saturation as a control on the calcification rate and shell-weight of marine foraminifera, Mar. Biol., 144, 45–49, 2004.
Duplessy, J. C., Bé, A. W. H., and Blanc, P. L.: Oxygen and carbon isotopic composition and biogeographic distribution of planktonic foraminifera in the Indian Ocean, Palaeogeogr. Palaeoclimatol. Palaeoecol., 33, 9–46, 1981.
Elderfield, H. and Ganssen, G. M.: Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg / Ca ratios, Nature, 405, 442–445, 2000.
Elderfield, H., Vautravers, M., and Cooper, M.: The relationship between shell size and Mg / Ca, Sr / Ca, 18O, and 13C of species of planktonic foraminifera, Geochem. Geophys. Geosys., 3, 1–13, 2002.
Emiliani, C.: Depth habitats of some species of pelagic foraminifera as indicated by oxygen isotope ratios, Am. J. Sci., 252, 149–158, 1954.
Emiliani, C.: Pleistocene Temperatures, J. Geol., 63, 538–578, 1955.
Emiliani, C.: Isotopic paleotemperatures and shell morphology of Globigerinoides rubra in the type section of the Pliocene-Pleistocene boundary, Micropaleontology, 17, 233–237, 1971.
Fairbanks, R. G., Wiebe, P. H., and Bé, A. W. H.: Vertical distribution and Isotopic Composition of Living Planktonic Foraminifera in the Western North Atlantic, Science, 207, 61–63, 1980.
Fairbanks, R. G., Sverdlove, M., Free, R., Wiebe, P. H., and Bé, A. W. H.: Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin, Nature, 298, 841–844, 1982.
Farmer, E. J., Chapman, M. R., and Andrews, J. E.: Holocene temperature evolution of the subpolar North Atlantic recorded in the Mg / Ca ratios of surface and thermocline dwelling planktonic foraminifers, Glob. Planet. Change, 79, 234–243, 2011.
Feldmeijer, W., Metcalfe, B., Brummer, G. J. A., and Ganssen, G. M.: Reconstructing the depth of the permanent thermocline through the morphology and geochemistry of the deep dwelling planktonic foraminifer Globorotalia truncatulinoides, Paleoceanography, 30, PA002687, https://doi.org/10.1002/2014PA002687, 2015.
Franco-Fraguas, P., Costa, K. B., and Toledo, F. A. L.: Relationship between isotopic composition (δ18O and δ13C) and plaktonic foraminifera test size in core tops from the Brazilian Continental Margin, Braz. J. Oceanogr., 59, 327–338, 2011.
Friedrich, O., Schiebel, R., Wilson, P. A., Weldeab, S., Beer, C. J., Cooper, M. J., and Fiebig, J.: Influence of test size, water depth, and ecology on Mg / Ca, Sr / Ca, δ18O and δ13C in nine modern species of planktic foraminifers, Earth Planet. Sci. Lett., 319/320, 133–145, 2012.
Ganssen, G. M. and Kroon, D.: The isotopic signature of planktonic foraminifera from NE Atlantic surface sediments: implications for the reconstruction of past oceanic conditions, J. Geol. Soc., 157, 693–699, 2000.
Ganssen, G. M. and Sarnthein, M.: Stable-isotope composition of foraminifers: the surface and bottom water record of coastal upwelling. In: Coastal Upwelling Its Sediment Record, Springer, 1983.
Ganssen, G. M., Peeters, F. J. C., Metcalfe, B., Anand, P., Jung, S. J. A., Kroon, D., and Brummer, G.-J. A.: Quantifying sea surface temperature ranges of the Arabian Sea for the past 20 000 years, Clim. Past, 7, 1337–1349, https://doi.org/10.5194/cp-7-1337-2011, 2011.
Groeneveld, J. and Chiessi, C. M.: Mg / Ca of Globorotalia inflata as a recorder of permanent thermocline temperatures in the South Atlantic, Paleoceanography, 26, PA2203, https://doi.org/10.1029/2010PA001940, 2011.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: PAST: Paleontological Statistics software package for education and data analysis, Palaeontol. Electron., 4, 1–9, 2001.
Hecht, A. D.: The oxygen isotopic record of foraminifera in deep-sea sediment, Foraminifera, Academic Press, London, 1–43, 1974.
Hecht, A. D., Bé, A. W. H., and Lott, L.: Ecologic and paleoclimatic implications of morphologic variation of Orbulina universa in the Indian Ocean, Science, 194, 422–424, 1976.
Hemleben, C. and Bijma, J.: Foraminiferal population dynamics and stable carbon isotopes, in: Carbon Cycling in the Glacial Ocean: Constraints on the Ocean's Role in Global Change, Springer, 1994.
Hemleben, C. and Spindler, M.: Recent advances in research on living planktonic foraminifera, in: Reconstruction of marine Paleoenvironments, edited by: Meulenkamp, J. E., Utrecht Micropaleontological Bulletins, 141–170, 1983.
Hemleben, C., Spindler, M., Breitinger, I., and Deuser, W. G.: Field and laboratory studies on the ontogeny and ecology of some globorotaliid species from the Sargasso Sea off Bermuda, The J. Foramin. Res., 15, 254–272, 1985.
Hemleben, C., Spindler, M., Breitinger, I., and Ott, R.: Morphological and physiological responses of Globigerinoides sacculifer (Brady) under varying laboratory conditions, Mar. Micropaleontol., 12, 305–324, 1987.
Hemleben, C., Spindler, M., and Anderson, O. R.: Modern Planktonic Foraminifera, Springer-Verlag, New York, 1989.
Hillaire-Marcel, C., de Vernal A., Polyak, L., and Darby, D.: Size-dependent isotopic composition of planktic foraminifers from Chukchi Sea vs. NW Atlantic sediments—implications for the Holocene paleoceanography of the western Arctic, Quarternary Sci. Revi., 23, 245–260, 2004
Hodell, D. A. and Curtis, J. H.: Oxygen and carbon isotopes of detrital carbonate in North Atlantic Heinrich Events, Mar. Geol., 256, 30–35, 2008.
Ishimura, T., Tsunogai, U., and Nakagawa, F.: Grain-scale heterogeneities in the stable carbon and oxygen isotopic compositions of the international standard calcite materials (NBS 19, NBS 18, IAEA-CO-1, and IAEA-CO-8), Rapid Commun. Mass Sp., 22, 1925–1932, 2008.
Kahn, M. I.: Non-equilibrium oxygen and carbon isotopic fractionation in tests of living planktonic-foraminifera, Oceanol., 2, 195–208, 1979.
Kennett, J. P.: Latitudinal variation in Globigerina pachyderma (Ehrenberg) in surface sediments of the southwest Pacific Ocean, Micropaleontology, 14, 305–318, 1968.
Killingley, J. S., Johnson, R. F., and Berger, W. H.: Oxygen and carbon isotopes of individual shells of planktonic foraminifera from Ontong-Java plateau, equatorial pacific, Palaeogeogr. Palaeoclimatol. Palaeoecol. 33, 193–204, 1981.
Kozdon, R., Ushikubo, T., Kita, N. T., Spicuzza, M., and Valley, J. W.: Intratest oxygen isotope variability in the planktonic foraminifer N. pachyderma: Real vs. apparent vital effects by ion microprobe, Chem. Geol., 258, 327–337, 2009.
Kroon, D. and Darling, K.: Size and upwelling control of the stable isotope composition of Neogloboquadrina dutertrei (D'Orbigny), Globigerinoides ruber (D'Orbigny) and Globigerina bulloides D'Orbigny: Examples from the Panama Basin and Arabian Sea, J. Foramin. Res., 25, 39–52, 1995.
Lohmann, G. P.: Increasing seasonal upwelling in the subtropical South Atlantic over the past 700 000 yrs: Evidence from deep-living planktonic foraminifera, Mar. Micropaleontol., 19, 1–12, 1992.
Lohmann, G. P.: A Model for Variation in the Chemistry of Planktonic Foraminifera Due to Secondary Calcification and Selective Dissolution, Paleoceanography, 10, 445–457, 1995.
Lohmann, G. P. and Schweitzer, P. N.: Globorotalia truncatulinoides Growth and chemistry as probes of the past thermocline: 1. Shell size, Paleoceanography, 5, 55–75, 1990.
Lončarić, N., Peeters, F. J. C., Kroon, D., and Brummer, G.-J. A.: Oxygen isotope ecology of recent planktic foraminifera at the central Walvis Ridge (SE Atlantic), Paleoceanography, 21, PA3009, https://doi.org/10.1029/2005PA001207, 2006.
Lototskaya, A. and Ganssen, G. M.: The structure of Termination II (penultimate deglaciation and Eemian) in the North Atlantic, Quaternary Sci. Rev., 18, 1641–1654, 1999.
Lototskaya, A., Ziveri, P., Ganssen, G. M., and van Hinte, J. E.: Calcareous nannofloral response to Termination II at 45° N, 25° W (northeast Atlantic), Mar. Micropaleontol., 34, 47–70, 1998.
Löwemark, L., Konstantinou, K. I., and Steinke, S.: Bias in foraminiferal multispecies reconstructions of paleohydrographic conditions caused by foraminiferal abundance variations and bioturbational mixing: A model approach, Mar. Geol., 256, 101–106, 2008.
Macdonald, R. W., Paton, D. W., Carmack, E. C., and Omstedt, A.: The freshwater budget and under-ice spreading of Mackenzie River water in the Canadian Beaufort Sea based on salinity and 18O / 16O measurements in water and ice, J. Geophys. Res.-Oceans (1978–2012), 100, 895–919, 1995.
Malmgren, B. and Kennett, J. P.: Biometric analysis of phenotypic variation in Recent Globigerina bulloides d'Orbigny in the southern Indian Ocean, Mar. Micropaleontol., 1, 3–25, 1976.
McConnaughey, T. and McRoy, C. P.: 13C label identifies eelgrass (Zostera marina) carbon in an Alaskan estuarine food web, Mar. Biol., 53, 263–269, 1979a.
McConnaughey, T. and McRoy, C. P.: Food-web structure and the fractionation of carbon isotopes in the Bering Sea, Mar. Biol., 53, 257–262, 1979b.
McIntyre, A., Kipp, N. G., Bé, A. W. H., Crowley, T., Kellogg, T., Gardner, J. V., Prell, W. L., and Ruddiman, W. F.: Glacial North Atlantic 18 000 years ago: A CLIMAP reconstruction, Geol. Soc. Am. Memoirs, 145, 43–76, 1976.
McKenna, V. S. and Prell, W. L.: Calibration of the Mg / Ca of Globorotalia truncatulinoides (R) for the reconstruction of marine temperature gradients, Paleoceanography, 19, PA2006, https://doi.org/10.1029/2000PA000604, 2004.
Mortyn, P. G. and Charles, C. D.: Planktonic foraminiferal depth habitat and 18O calibrations: Plankton tow results from the Atlantic Sector of the Southern Ocean, Paleoceanography, 18, 1037, https://doi.org/10.1029/2001PA000637, 2003.
Mulitza, S., Dürkoop, A., Hale, W., Wefer, G., and Stefan Niebler, H.: Planktonic foraminifera as recorders of past surface-water stratification, Geology, 25, 335–338, 1997.
Oppo, D. W. and Fairbanks, R. G.: Carbon isotope composition of tropical surface water during the past 22 000 years, Paleoceanography, 4, 333–351, 1989.
Ortiz, J. D., Mix, A. C., Rugh, W., Watkins, J. M., and Collier, R. W.: Deep-dwelling planktonic foraminifera of the northeastern Pacific Ocean reveal environmental control of oxygen and carbon isotopic disequilibria, Geochim. Cosmochim. Acta, 60, 4509–4523, 1996.
Ottens, J.: Planktic foraminifera as indicators of ocean environments in the Northeast Atlantic, PhD Academisch Proefschrift, Department of Sedimentary Geology, VU University Amsterdam, Amsterdam, 189 pp., 1992.
Park, M.-H.: Abrupt climatic changes induced by ice-rafting events in the eastern North Atlantic during the late Quarternary: stable isotope and X-ray mineralogical analyses, Geosci. J., 2, 59–67, 1998.
Peeters, F. J. C., Ivanova, E., Conan, S. M. H., Brummer, G.-J. A., Ganssen, G. M., Troelstra, S., and van Hinte, J.: A size analysis of planktic foraminifera from the Arabian Sea, Mar. Micropaleontol., 36, 31–63, 1999.
Peeters, F. J. C., Brummer, G.-J. A., and Ganssen, G. M.: The effect of upwelling on the distribution and stable isotope composition of Globigerina bulloides and Globigerinoides ruber planktic foraminifera) in modern surface waters of the NW Arabian Sea, Glob. Planet. Change, 34, 269–291, 2002.
Phleger, F. B., Parker, F. L., and Peirson, J. F.: North Atlantic Foraminifera, Elanders Boktryckeri Aktiebolag, 1953.
Ravelo, A. C. and Fairbanks, R. G.: Oxygen isotopic composition of multiple species of planktonic foraminifera: recorders of the modern photic zone temperature gradient, Paleoceanography, 7, 815–831, 1992.
Ravelo, A. C. and Fairbanks, R. G.: Carbon isotopic fractionation in multiple species of planktonic foraminifera from core-tops in the tropical Atlantic, J. Foramin. Res., 25, 53–74, 1995.
Rink, S., Kühl, M., Bijma, J., and Spero, H. J.: Microsensor studies of photosynthesis and respiration in the symbiotic foraminifer Orbulina universa, Mar. Biol., 131, 583–595, 1998.
Rohling, E. J. and Bigg, G. R.: Paleosalinity and δ18O: a critical assessment, J. Geophys. Res.-Oceans (1978–2012), 103, 1307–1318, 1998.
Rosenthal, Y., Lohmann, G. P., Lohmann, K. C., and Sherrell, R. M.: Incorporation and preservation of Mg in Globigerinoides sacculifer: implications for reconstructing the temperature and 18O / 16O of seawater, Paleoceanography, 15, 135–145, 2000.
Roucoux, K. H., Tzedakis, P. C., De Abreu, L., and Shackleton, N. J.: Climate and vegetation changes 180 000 to 345 000 years ago recorded in a deep-sea core off Portugal, Earth Planet. Sci. Lett., 249, 307–325, 2006.
Ruddiman, W. F. and McIntyre, A.: Northeast Atlantic paleoclimatic changes over the past 600 000 years, Geol. Soc. Am. Memoirs, 145, 111–146, 1976.
Ruddiman, W. F. and McIntyre, A.: The North Atlantic Ocean during the last deglaciation, Palaeogeography, Palaeoclimatology, Palaeoecology, 35, 145–214, 1981.
Ruddiman, W. F., Raymo, M., and McIntyre, A.: Matuyama 41 000-year cycles: North Atlantic Ocean and northern hemisphere ice sheets, Earth Planet. Sci. Lett., 80, 117–129, 1986.
Salmon, K. H., Anand, P., Sexton, P. F., and Conte, M.: Upper ocean mixing controls the seasonality of planktonic foraminifer fluxes and associated strength of the carbonate pump in the oligotrophic North Atlantic, Biogeosciences, 12, 223–235, https://doi.org/10.5194/bg-12-223-2015, 2015.
Sarkar, A., Ramesh, R., and Bhattacharya, S. K.: Effect of sample pretreatment and size fraction on the Δ18O and Δ13C values of foraminifera in Arabian Sea sediments, Terra Nova, 2, 488–493, 1990.
Schiebel, R. and Hemleben, C.: Modern planktic foraminifera, Paläontologische Zeitschrift, 79, 135–148, 2005.
Schmidt, D. N., Thierstein, H. R., Bollmann, J., and Schiebel, R.: Abiotic Forcing of Plankton Evolution in the Cenozoic, Science, 303, 207–210, 2004.
Schmidt, D. N., Lazarus, D., Young, J. R., and Kucera, M.: Biogeography and evolution of body size in marine plankton, Earth-Sci. Rev., 78, 239–266, 2006.
Schmidt, D. N., Elliott, T., and Kasemann, S. A.: The influences of growth rates on planktic foraminifers as proxies for palaeostudies a review, Geological Society, London, Special Publications, 303, 73–85, 2008.
Shackleton, N. J.: The high-precision isotopic analysis of oxygen and carbon in carbon dioxide, J. Sci. Instrum., 42, 689–692, 1965.
Shackleton, N. J.: Attainment of isotopic equilibrium between ocean water and the benthonic foraminiferal genus Uvigerina: isotopic changes in the ocean during the last glacial, Cent. Nat. Rech. Sci. Colloq. Int., 219, 203–209, 1974.
Shackleton, N. J. and Opdyke, N. D.: Oxygen isotope and palaeomagnetic stratigraphy of Equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale, Quaternary Res., 3, 39–55, 1973.
Shackleton, N. J. and Vincent, E.: Oxygen and carbon isotope studies in recent foraminifera from the southwest Indian Ocean, Mar. Micropaleontol., 3, 1–13, 1978.
Spear, J. W., Poore, R. Z., and Quinn, T. M.: Globorotalia truncatulinoides (dextral) Mg / Ca as a proxy for Gulf of Mexico winter mixed-layer temperature: Evidence from a sediment trap in the northern Gulf of Mexico, Mar. Micropaleontol., 80, 53–61, 2011.
Spero, H. J. and DeNiro, M. J.: The influence of symbiont photosynthesis on the δ18O and δ13C values of planktonic foraminiferal s hell calcite, Symbiosis, 4, 213–228, 1987.
Spero, H. J. and Lea, D. W.: Experimental determination of stable isotope variability in Globigerina bulloides: implications for paleoceanographic reconstructions, Mar. Micropaleontol., 28, 231–246, 1996.
Spero, H. J., Bijma, J., Lea, D. W., and Bemis, B. E.: Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes, Nature, 390, 497–500, 1997.
Stone, S. W.: Some ecologic data relating to pelagic foraminifera, Micropaleontology, 2, 361–370, 1956.
Strain, P. M. and Tan, F. C.: Seasonal evolution of oxygen isotope-salinity relationships in high-latitude surface waters, J. Geophys. Res.-Oceans (1978–2012), 98, 14589–14598, 1993.
Telford, R. J., Li, C., and Kucera, M.: Mismatch between the depth habitat of planktonic foraminifera and the calibration depth of SST transfer functions may bias reconstructions, Clim. Past, 9, 859–870, https://doi.org/10.5194/cp-9-859-2013, 2013.
Thiede, J.: Planktonische Foraminiferen in sedimenten vom ibero-marokkanischen Kontinentalrand, Meteor Forschungsergebnisse C, 15–102, 1971.
Thiede, J.: Shell- and skeleton-producing plankton and nekton in the eastern North Atlantic Ocean, "Meteor" Forschungsergebnisse Herausgegeben von der Deutschen Forschungsgemeinschaft, C, 33–79, 1975.
Tolderlund, D. S. and Bé, A. W. H.: Seasonal distribution of planktonic foraminifera in the western North Atlantic, Micropaleontology, 17, 297–329, 1971.
van Sebille, E., Scussolini, P., Durgadoo, J., Peeters, F. J. C., Biastoch, A., Weijer, W., Turney, C., Paris, C. B., and Zahn, R.: Ocean currents generate large footprints in marine palaeoclimate proxies, Nature Communications, 6, 2015.
Vergnaud Grazzini, C.: Non-equilibrium isotopic compositions of shells of planktonic foraminifera in the Mediteranean Sea, Palaeogeography, Palaeoclimatology, Palaeoecology, 20, 263–276, 1976.
Vetter, L., Kozdon, R., Mora, C. L., Eggins, S. M., Valley, J. W., Hönisch, B., and Spero, H. J.: Micron-scale intrashell oxygen isotope variation in cultured planktic foraminifers, Geochim. Cosmochim. Acta, 107, 267–278, 2013.
Vincent, E. and Berger, W. H.: Planktonic foraminifera and their use in palaeoceanography, in: The Sea, edited by: Emiliani, C., Wiley-Interscience, New York, 1025–1119, 1981.
Volten, H., De Haan, J. F., Hovenier, J. W., Schreurs, R., Vassen, W., Dekker, A. G., Hoogenboom, H. J., Charlton, F., and Wouts, R.: Laboratory measurements of angular distributions of light scattered by phytoplankton and silt, Limnol. Oceanogr., 43, 1180–1197, 1998.
Waelbroeck, C., Mulitza, S., Spero, H. J., Dokken, T., Kiefer, T., and Cortijo, E.: A global compilation of late Holocene planktonic foraminiferal 18O: relationship between surface water temperature and 18O, Quaternary Sci. Rev., 24, 853–868, 2005.
Weiner, S.: The carbon isotopic composition of the eastern Mediterranean planktonic foraminifera Orbulina universa and the phenotypes of Globigerinoides ruber, Palaeogeogr. Palaeoclimatol. Palaeoecol., 17, 149–156, 1975.
Weinkauf, M. F. G., Moller, T., Koch, M. C., and Kučera, M.: Calcification intensity in planktonic Foraminifera reflects ambient conditions irrespective of environmental stress, Biogeosciences, 10, 6639–6655, https://doi.org/10.5194/bg-10-6639-2013, 2013.
Wefer, G., Berger, W. H., Bickert, T., Donner, B., Fischer, G., von Mücke, S. K., Meinecke, G., Müller, P. J., Mulitza, S., and Niebler, H.-S.: Late Quaternary surface circulation of the South Atlantic: The stable isotope record and implications for heat transport and productivity, in: The South Atlantic, Springer, 461–502, 1996.
Weyl, P. K.: Micropaleontology and Ocean Surface Climate, Science, 202, 475–481, 1978.
Wilke, I., Bickert, T., and Peeters, F. J. C.: The influence of seawater carbonate ion concentration [CO32&minus] on the stable carbon isotope composition of the planktic foraminifera species Globorotalia inflata, Mar. Micropaleontol., 58, 243–258, 2006.
Williams, D. F., Bé, A. W. H., and Fairbanks, R. G.: Seasonal oxygen isotopic variations in living planktonic foraminifera off Bermuda, Science, 206, 447–449, 1979.
Williams, D. F., Bé, A. W. H., and Fairbanks, R.: Seasonal stable isotopic variations in living planktonic foraminifera from Bermuda plankton tows, Palaeogeogr. Palaeoclimatol. Palaeoecol., 33, 71–102, 1981.
Williams, D. F., Ehrlich, R., Spero, H. J., Healy-Williams, N., and Gray, A. C.: Shape and isotopic differences between conspecific foraminiferal morphotypes and resolution of paleoceanographic events, Palaeogeogr. Palaeoclimatol., Palaeoecol., 64, 153–162, 1988.
Wit, J. C., Reichart, G. J., and Ganssen, G. M.: Unmixing of stable isotope signals using single specimen δ18O analyses, Geochem. Geophys. Geosys., 14, https://doi.org/10.1002/ggge.20101, 2013.
Wolfteich, C. M.: Satellite-derived sea surface temperature, mesoscale variability, and foraminiferal production in the North Atlantic, M.Sc., Massachusetts Institute of Technology/Woodshole Oceanographic Institution, 80 pp., 1994.
Short summary
Iron biogeochemical budgets during the natural ocean fertilisation experiment KEOPS-2 showed that complex circulation and transport pathways were responsible for differences in the mode and strength of iron supply, with vertical supply dominant on the plateau and lateral supply dominant in the plume. The exchange of iron between dissolved, biogenic and lithogenic pools was highly dynamic, resulting in a decoupling of iron supply and carbon export and controlling the efficiency of fertilisation.
Iron biogeochemical budgets during the natural ocean fertilisation experiment KEOPS-2 showed...
Altmetrics
Final-revised paper
Preprint