Articles | Volume 13, issue 9
Biogeosciences, 13, 2859–2872, 2016
https://doi.org/10.5194/bg-13-2859-2016
Biogeosciences, 13, 2859–2872, 2016
https://doi.org/10.5194/bg-13-2859-2016

Research article 13 May 2016

Research article | 13 May 2016

Equatorward phytoplankton migration during a cold spell within the Late Cretaceous super-greenhouse

Niels A. G. M. van Helmond et al.

Related authors

Removal of phosphorus and nitrogen in sediments of the eutrophic Stockholm archipelago, Baltic Sea
Niels A. G. M. van Helmond, Elizabeth K. Robertson, Daniel J. Conley, Martijn Hermans, Christoph Humborg, L. Joëlle Kubeneck, Wytze K. Lenstra, and Caroline P. Slomp
Biogeosciences, 17, 2745–2766, https://doi.org/10.5194/bg-17-2745-2020,https://doi.org/10.5194/bg-17-2745-2020, 2020
Short summary
Large variations in iron input to an oligotrophic Baltic Sea estuary: impact on sedimentary phosphorus burial
Wytze K. Lenstra, Matthias Egger, Niels A. G. M. van Helmond, Emma Kritzberg, Daniel J. Conley, and Caroline P. Slomp
Biogeosciences, 15, 6979–6996, https://doi.org/10.5194/bg-15-6979-2018,https://doi.org/10.5194/bg-15-6979-2018, 2018
Short summary
Freshwater discharge controlled deposition of Cenomanian–Turonian black shales on the NW European epicontinental shelf (Wunstorf, northern Germany)
N. A. G. M. van Helmond, A. Sluijs, J. S. Sinninghe Damsté, G.-J. Reichart, S. Voigt, J. Erbacher, J. Pross, and H. Brinkhuis
Clim. Past, 11, 495–508, https://doi.org/10.5194/cp-11-495-2015,https://doi.org/10.5194/cp-11-495-2015, 2015
Short summary
Biogeochemistry of the North Atlantic during oceanic anoxic event 2: role of changes in ocean circulation and phosphorus input
I. Ruvalcaba Baroni, R. P. M. Topper, N. A. G. M. van Helmond, H. Brinkhuis, and C. P. Slomp
Biogeosciences, 11, 977–993, https://doi.org/10.5194/bg-11-977-2014,https://doi.org/10.5194/bg-11-977-2014, 2014

Related subject area

Paleobiogeoscience: Marine Record
Vertical distribution of planktic foraminifera through an oxygen minimum zone: how assemblages and test morphology reflect oxygen concentrations
Catherine V. Davis, Karen Wishner, Willem Renema, and Pincelli M. Hull
Biogeosciences, 18, 977–992, https://doi.org/10.5194/bg-18-977-2021,https://doi.org/10.5194/bg-18-977-2021, 2021
Reconstructing past variations in environmental conditions and paleoproductivity over the last  ∼ 8000 years off north-central Chile (30° S)
Práxedes Muñoz, Lorena Rebolledo, Laurent Dezileau, Antonio Maldonado, Christoph Mayr, Paola Cárdenas, Carina B. Lange, Katherine Lalangui, Gloria Sanchez, Marco Salamanca, Karen Araya, Ignacio Jara, Gabriel Easton, and Marcel Ramos
Biogeosciences, 17, 5763–5785, https://doi.org/10.5194/bg-17-5763-2020,https://doi.org/10.5194/bg-17-5763-2020, 2020
Short summary
A 15-million-year-long record of phenotypic evolution in the heavily calcified coccolithophore Helicosphaera and its biogeochemical implications
Luka Šupraha and Jorijntje Henderiks
Biogeosciences, 17, 2955–2969, https://doi.org/10.5194/bg-17-2955-2020,https://doi.org/10.5194/bg-17-2955-2020, 2020
Short summary
Shell chemistry of the boreal Campanian bivalve Rastellum diluvianum (Linnaeus, 1767) reveals temperature seasonality, growth rates and life cycle of an extinct Cretaceous oyster
Niels J. de Winter, Clemens V. Ullmann, Anne M. Sørensen, Nicolas Thibault, Steven Goderis, Stijn J. M. Van Malderen, Christophe Snoeck, Stijn Goolaerts, Frank Vanhaecke, and Philippe Claeys
Biogeosciences, 17, 2897–2922, https://doi.org/10.5194/bg-17-2897-2020,https://doi.org/10.5194/bg-17-2897-2020, 2020
Short summary
Southern California margin benthic foraminiferal assemblages record recent centennial-scale changes in oxygen minimum zone
Hannah M. Palmer, Tessa M. Hill, Peter D. Roopnarine, Sarah E. Myhre, Katherine R. Reyes, and Jonas T. Donnenfield
Biogeosciences, 17, 2923–2937, https://doi.org/10.5194/bg-17-2923-2020,https://doi.org/10.5194/bg-17-2923-2020, 2020
Short summary

Cited articles

Barclay, R. S., McElwain, J. C., and Sageman, B. B.: Carbon sequestration activated by a volcanic CO2 pulse during Oceanic Anoxic Event 2, Nat. Geosci., 3, 205–208, 2010.
Bowman, A. R., and Bralower, T. J.: Paleoceanographic significance of high-resolution carbon isotope records across the Cenomanian–Turonian boundary in the Western Interior and New Jersey coastal plain, USA, Mar. Geol., 217, 305–321, 2005.
Brinkhuis, H., Bujak, J. P., Smit, J., Versteegh, G. J. M., and Visscher, H.: Dinoflagellate-based sea surface temperature reconstructions across the Cretaceous–Tertiary boundary, Palaeogeogr. Palaeocl., 141, 67–83, 1998.
Čech, S., Hradecká, L., Svobodová, M., and Švábenická, L.: Cenomanian and Cenomanian-Turonian boundary in the southern part of the Bohemian Cretaceous Basin, Czech Republic, Bull. Geosci., 80, 321–354, 2005.
Cookson, I. C. and Eisenack, A.: Additional microplankton from Australian Cretaceous sediments, Micropaleontology, 8, 485–507, 1962.
Download
Short summary
Over the past decades large changes have been observed in the biogeographical dispersion of marine life resulting from climate change. To better understand present and future trends it is important to document and fully understand the biogeographical response of marine life during episodes of environmental change in the geological past. Here we investigate the response of phytoplankton, the base of the marine food web, to a rapid cold spell, interrupting greenhouse conditions during the Cretaceous.
Altmetrics
Final-revised paper
Preprint