Research article 21 Mar 2017
Research article | 21 Mar 2017
Observing and modelling phytoplankton community structure in the North Sea
David A. Ford et al.
Related authors
Marion Mittermaier, Rachel North, Jan Maksymczuk, Christine Pequignet, and David Ford
Ocean Sci., 17, 1527–1543, https://doi.org/10.5194/os-17-1527-2021, https://doi.org/10.5194/os-17-1527-2021, 2021
Short summary
Short summary
Regions of enhanced chlorophyll-a concentrations can be identified by applying a threshold to the concentration value to a forecast and observed field (or analysis). These regions can then be treated and analysed as features using diagnostic techniques to consider of the evolution of the chlorophyll-a blooms in space and time. This allows us to understand whether the biogeochemistry in the model has any skill in predicting these blooms, their location, intensity, onset, duration and demise.
David Ford
Biogeosciences, 18, 509–534, https://doi.org/10.5194/bg-18-509-2021, https://doi.org/10.5194/bg-18-509-2021, 2021
Short summary
Short summary
Biogeochemical-Argo floats are starting to routinely measure ocean chlorophyll, nutrients, oxygen, and pH. This study generated synthetic observations representing two potential Biogeochemical-Argo observing system designs and created a data assimilation scheme to combine them with an ocean model. The proposed system of 1000 floats brought clear benefits to model results, with additional floats giving further benefit. Existing satellite ocean colour observations gave complementary information.
David Andrew Ford
Ocean Sci., 16, 875–893, https://doi.org/10.5194/os-16-875-2020, https://doi.org/10.5194/os-16-875-2020, 2020
Short summary
Short summary
Satellite observations of the ocean were combined with a numerical model to create simulations of the ocean state between 1998 and 2010. Relationships between physical and biogeochemical quantities were assessed to investigate whether observations of different variables are consistent in their representation of the Earth system. Good consistency was found. The results also highlighted ways in which the model could be improved and the respective impacts of using different observations.
Marion Mittermaier, Rachel North, Jan Maksymczuk, Christine Pequignet, and David Ford
Ocean Sci., 17, 1527–1543, https://doi.org/10.5194/os-17-1527-2021, https://doi.org/10.5194/os-17-1527-2021, 2021
Short summary
Short summary
Regions of enhanced chlorophyll-a concentrations can be identified by applying a threshold to the concentration value to a forecast and observed field (or analysis). These regions can then be treated and analysed as features using diagnostic techniques to consider of the evolution of the chlorophyll-a blooms in space and time. This allows us to understand whether the biogeochemistry in the model has any skill in predicting these blooms, their location, intensity, onset, duration and demise.
David Ford
Biogeosciences, 18, 509–534, https://doi.org/10.5194/bg-18-509-2021, https://doi.org/10.5194/bg-18-509-2021, 2021
Short summary
Short summary
Biogeochemical-Argo floats are starting to routinely measure ocean chlorophyll, nutrients, oxygen, and pH. This study generated synthetic observations representing two potential Biogeochemical-Argo observing system designs and created a data assimilation scheme to combine them with an ocean model. The proposed system of 1000 floats brought clear benefits to model results, with additional floats giving further benefit. Existing satellite ocean colour observations gave complementary information.
David Andrew Ford
Ocean Sci., 16, 875–893, https://doi.org/10.5194/os-16-875-2020, https://doi.org/10.5194/os-16-875-2020, 2020
Short summary
Short summary
Satellite observations of the ocean were combined with a numerical model to create simulations of the ocean state between 1998 and 2010. Relationships between physical and biogeochemical quantities were assessed to investigate whether observations of different variables are consistent in their representation of the Earth system. Good consistency was found. The results also highlighted ways in which the model could be improved and the respective impacts of using different observations.
Suzanne J. Painting, Kate A. Collingridge, Dominique Durand, Antoine Grémare, Veronique Créach, Christos Arvanitidis, and Guillaume Bernard
Ocean Sci., 16, 235–252, https://doi.org/10.5194/os-16-235-2020, https://doi.org/10.5194/os-16-235-2020, 2020
Short summary
Short summary
We carried out a literature review and an opinion poll of the JERICO-NEXT community to identify the main environmental threats in European coastal areas and gaps in monitoring. The need for improved monitoring was highlighted, e.g. through improved design and monitoring effort and better links with new technologies. The findings underpin the JERICO-NEXT science strategy to integrate linkages between physical, chemical, and biological parameters to address scientific and policy needs.
Thodoris Karpouzoglou, Brigitte Vlaswinkel, and Johan van der Molen
Ocean Sci., 16, 195–208, https://doi.org/10.5194/os-16-195-2020, https://doi.org/10.5194/os-16-195-2020, 2020
Short summary
Short summary
Sustainable operation of floating solar platforms requires knowledge of effects on the marine ecosystem. We modelled effects on water flow and algae growth in a coastal sea. Algae growth was reduced depending on the local currents and on the density of coverage with platforms. The model represented platforms distributed evenly over areas of hundreds of square kilometres. For smaller-scale cases, effects may be smaller, and for more detailed understanding, three-dimensional models are needed.
Jonathan Tinker, Justin Krijnen, Richard Wood, Rosa Barciela, and Stephen R. Dye
Ocean Sci., 14, 887–909, https://doi.org/10.5194/os-14-887-2018, https://doi.org/10.5194/os-14-887-2018, 2018
Short summary
Short summary
We consider the prospects for seasonal forecasts for the North-west European Shelf (NWS) seas. The recent maturation of global seasonal forecast systems and NWS marine reanalyses provide a basis for such forecasts. We assess the potential of three possible approaches: direct use of global forecast fields and empirical and dynamical downscaling. We conclude that there is potential for NWS seasonal forecasts and as an example show a skillful prototype SST forecast for the English Channel.
Johan van der Molen, Piet Ruardij, Karen Mooney, Philip Kerrison, Nessa E. O'Connor, Emma Gorman, Klaas Timmermans, Serena Wright, Maeve Kelly, Adam D. Hughes, and Elisa Capuzzo
Biogeosciences, 15, 1123–1147, https://doi.org/10.5194/bg-15-1123-2018, https://doi.org/10.5194/bg-15-1123-2018, 2018
Short summary
Short summary
Macroalgae farming may provide biofuel. Modelled macroalgae production is given for four sites in UK and Dutch waters. Macroalgae growth depended on nutrient concentrations and light levels. Macroalgae carbohydrate content, important for biofuel use, was lower for high nutrient concentrations. The hypothetical large-scale farm off the UK north Norfolk coast gave high, stable yields of macroalgae from year to year with substantial carbohydrate content.
Johan van der Molen, Piet Ruardij, and Naomi Greenwood
Biogeosciences, 13, 2593–2609, https://doi.org/10.5194/bg-13-2593-2016, https://doi.org/10.5194/bg-13-2593-2016, 2016
Short summary
Short summary
The potential large-scale (> 100 km) effects of marine renewable tidal energy generation in the Pentland Firth were studied using a 3-D hydrodynamics–biogeochemistry model. A realistic 800 MW scenario suggested minor effects on tides and biogeochemistry. A massive-expansion 8 GW scenario suggested effects over hundreds of kilometres away with changes of up to 10 % in tidal and ecosystem variables, the latter through clearer waters and increased primary production with associated increases in fauna.
Momme Butenschön, James Clark, John N. Aldridge, Julian Icarus Allen, Yuri Artioli, Jeremy Blackford, Jorn Bruggeman, Pierre Cazenave, Stefano Ciavatta, Susan Kay, Gennadi Lessin, Sonja van Leeuwen, Johan van der Molen, Lee de Mora, Luca Polimene, Sevrine Sailley, Nicholas Stephens, and Ricardo Torres
Geosci. Model Dev., 9, 1293–1339, https://doi.org/10.5194/gmd-9-1293-2016, https://doi.org/10.5194/gmd-9-1293-2016, 2016
Short summary
Short summary
ERSEM 15.06 is a model for marine biogeochemistry and the lower trophic levels of the marine food web. It comprises a pelagic and benthic sub-model including the microbial food web and the major biogeochemical cycles of carbon, nitrogen, phosphorus, silicate, and iron using dynamic stochiometry. Further features include modules for the carbonate system and calcification. We present full mathematical descriptions of all elements along with examples at various scales up to 3-D applications.
M. Thyssen, S. Alvain, A. Lefèbvre, D. Dessailly, M. Rijkeboer, N. Guiselin, V. Creach, and L.-F. Artigas
Biogeosciences, 12, 4051–4066, https://doi.org/10.5194/bg-12-4051-2015, https://doi.org/10.5194/bg-12-4051-2015, 2015
Short summary
Short summary
Phytoplankton community structure at a high spatial resolution (<3km) was studied in the North Sea during a cruise in May 2011. A first comparison with PHYSAT reflectance anomalies enables the extrapolation of the community structure rather than a dominant type at the North Sea scale and was interpreted with its hydrological characteristics. This will seriously improve our understanding of the influence of community structure on biogeochemical processes at the daily and basin scales.
J. van der Molen, J. van Beek, S. Augustine, L. Vansteenbrugge, L. van Walraven, V. Langenberg, H. W. van der Veer, K. Hostens, S. Pitois, and J. Robbens
Ocean Sci., 11, 405–424, https://doi.org/10.5194/os-11-405-2015, https://doi.org/10.5194/os-11-405-2015, 2015
Short summary
Short summary
The reproduction, survival, and transport of the comb jelly Mnemiopsis leidyi was studied with three models in the Scheldt estuaries and the southern North Sea. The results suggest that (a) the estuaries can retain an overwintering population and seed offshore populations; (b) M. leidyi can survive in the North Sea, and be transported between coastal inlets; and (c) M. leidyi cannot reproduce well in the North Sea, but this might change with global warming. The models need further improvement.
L. Kwiatkowski, A. Yool, J. I. Allen, T. R. Anderson, R. Barciela, E. T. Buitenhuis, M. Butenschön, C. Enright, P. R. Halloran, C. Le Quéré, L. de Mora, M.-F. Racault, B. Sinha, I. J. Totterdell, and P. M. Cox
Biogeosciences, 11, 7291–7304, https://doi.org/10.5194/bg-11-7291-2014, https://doi.org/10.5194/bg-11-7291-2014, 2014
M. C. H. Tiessen, L. Fernard, T. Gerkema, J. van der Molen, P. Ruardij, and H. W. van der Veer
Ocean Sci., 10, 357–376, https://doi.org/10.5194/os-10-357-2014, https://doi.org/10.5194/os-10-357-2014, 2014
Related subject area
Biogeochemistry: Coastal Ocean
Particulate organic carbon dynamics in the Gulf of Lion shelf (NW Mediterranean) using a coupled hydrodynamic–biogeochemical model
Technical note: Novel triple O2 sensor aquatic eddy covariance instrument with improved time shift correction reveals central role of microphytobenthos for carbon cycling in coral reef sands
Long-term spatiotemporal variations in and expansion of low-oxygen conditions in the Pearl River estuary: a study synthesizing observations during 1976–2017
Contrasting patterns of carbon cycling and DOM processing in two phytoplankton-bacteria communities
Fe-binding organic ligands in coastal and frontal regions of the western Antarctic Peninsula
Temporal variability and driving factors of the carbonate system in the Aransas Ship Channel, TX, USA: a time series study
Simultaneous assessment of oxygen and nitrate-based net community production in a temperate shelf sea from a single ocean glider
Nitrogen loss processes in response to upwelling in a Peruvian coastal setting dominated by denitrification – a mesocosm approach
Retracing hypoxia in Eckernförde Bight (Baltic Sea)
Modeling cyanobacteria life cycle dynamics and historical nitrogen fixation in the Baltic Sea
The impact of the freeze–melt cycle of land-fast ice on the distribution of dissolved organic matter in the Laptev and East Siberian seas (Siberian Arctic)
The fate of upwelled nitrate off Peru shaped by submesoscale filaments and fronts
Coastal processes modify projections of some climate-driven stressors in the California Current System
Upwelling-induced trace gas dynamics in the Baltic Sea inferred from 8 years of autonomous measurements on a ship of opportunity
Destruction and reinstatement of coastal hypoxia in the South China Sea off the Pearl River estuary
Hypersaline tidal flats as important “blue carbon” systems: a case study from three ecosystems
Drivers and impact of the seasonal variability of the organic carbon offshore transport in the Canary upwelling system
Seasonal dispersal of fjord meltwaters as an important source of iron to coastal Antarctic phytoplankton
Organic carbon densities and accumulation rates in surface sediments of the North Sea and Skagerrak
An observation-based evaluation and ranking of historical Earth system model simulations in the northwest North Atlantic Ocean
Characterizing the origins of dissolved organic carbon in coastal seawater using stable carbon isotope and light absorption characteristics
Warming and ocean acidification may decrease estuarine dissolved organic carbon export to the ocean
Chemical characterization of the Punta de Fuencaliente CO2-enriched system (La Palma, NE Atlantic Ocean): a new natural laboratory for ocean acidification studies
The seasonal phases of an Arctic lagoon reveal the discontinuities of pH variability and CO2 flux at the air–sea interface
The northern European shelf as an increasing net sink for CO2
Impacts of biogenic polyunsaturated aldehydes on metabolism and community composition of particle-attached bacteria in coastal hypoxia
Reviews and syntheses: Physical and biogeochemical processes associated with upwelling in the Indian Ocean
A Lagrangian study of the contribution of the Canary coastal upwelling to the nitrogen budget of the open North Atlantic
Denitrification by benthic foraminifera and their contribution to N-loss from a fjord environment
Pelagic primary production in the coastal Mediterranean Sea: variability, trends and contribution to basin scale budgets
A numerical model study of the main factors contributing to hypoxia and its interannual and short-term variability in the East China Sea
The effects of decomposing invasive jellyfish on biogeochemical fluxes and microbial dynamics in an ultra-oligotrophic sea
Using 226Ra and 228Ra isotopes to distinguish water mass distribution in the Canadian Arctic Archipelago
Factors controlling plankton community production, export flux, and particulate matter stoichiometry in the coastal upwelling system off Peru
Reconstructing extreme climatic and geochemical conditions during the largest natural mangrove dieback on record
Technical note: Measurements and data analysis of sediment–water oxygen flux using a new dual-optode eddy covariance instrument
The impact of intertidal areas on the carbonate system of the southern North Sea
The recent state and variability of the carbonate system of the Canadian Arctic Archipelago and adjacent basins in the context of ocean acidification
A regional hindcast model simulating ecosystem dynamics, inorganic carbon chemistry, and ocean acidification in the Gulf of Alaska
Relative impacts of global changes and regional watershed changes on the inorganic carbon balance of the Chesapeake Bay
Decoupling of ΔO2∕Ar and particulate organic carbon dynamics in nearshore surface ocean waters
Wind-driven stratification patterns and dissolved oxygen depletion off the Changjiang (Yangtze) Estuary
Removal of phosphorus and nitrogen in sediments of the eutrophic Stockholm archipelago, Baltic Sea
Quantifying the contributions of riverine vs. oceanic nitrogen to hypoxia in the East China Sea
Macroalgal metabolism and lateral carbon flows can create significant carbon sinks
Regulation of nitrous oxide production in low-oxygen waters off the coast of Peru
Acrylic acid and related dimethylated sulfur compounds in the Bohai and Yellow seas during summer and winter
Fe(II) stability in coastal seawater during experiments in Patagonia, Svalbard, and Gran Canaria
Distribution and behaviour of dissolved selenium in tropical peatland-draining rivers and estuaries of Malaysia
Anomalies in the carbonate system of Red Sea coastal habitats
Gaël Many, Caroline Ulses, Claude Estournel, and Patrick Marsaleix
Biogeosciences, 18, 5513–5538, https://doi.org/10.5194/bg-18-5513-2021, https://doi.org/10.5194/bg-18-5513-2021, 2021
Short summary
Short summary
The Gulf of Lion shelf is one of the most productive areas in the Mediterranean. A model is used to study the mechanisms that drive the particulate organic carbon (POC). The model reproduces the annual cycle of primary production well. The shelf appears as an autotrophic ecosystem with a high production and as a source of POC for the adjacent basin. The increase in temperature induced by climate change could impact the trophic status of the shelf.
Alireza Merikhi, Peter Berg, and Markus Huettel
Biogeosciences, 18, 5381–5395, https://doi.org/10.5194/bg-18-5381-2021, https://doi.org/10.5194/bg-18-5381-2021, 2021
Short summary
Short summary
The aquatic eddy covariance technique is a powerful method for measurements of solute fluxes across the sediment–water interface. Data measured by conventional eddy covariance instruments require a time shift correction that can result in substantial flux errors. We introduce a triple O2 sensor eddy covariance instrument that by design eliminates these errors. Deployments next to a conventional instrument in the Florida Keys demonstrate the improvements achieved through the new design.
Jiatang Hu, Zhongren Zhang, Bin Wang, and Jia Huang
Biogeosciences, 18, 5247–5264, https://doi.org/10.5194/bg-18-5247-2021, https://doi.org/10.5194/bg-18-5247-2021, 2021
Short summary
Short summary
In situ observations over 42 years were used to explore the long-term changes to low-oxygen conditions in the Pearl River estuary. Apparent expansion of the low-oxygen conditions in summer was identified, primarily due to the combined effects of increased anthropogenic inputs and decreased sediment load. Large areas of severe low-oxygen events were also observed in early autumn and were formed by distinct mechanisms. The estuary seems to be growing into a seasonal, estuary-wide hypoxic zone.
Samu Markku Elovaara, Eeva Liisa Eronen-Rasimus, Eero Jooseppi Asmala, Tobias Tamelander, and Hermanni Pekka Kaartokallio
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-220, https://doi.org/10.5194/bg-2021-220, 2021
Preprint under review for BG
Short summary
Short summary
Dissolved organic matter (DOM) is a significant carbon pool in the marine environment. The composition of the DOM pool, as well as its interaction with microbes, is complex, yet understanding them is important for understanding global carbon cycling. This study shows that two phytoplankton species have different effects on the composition of the DOM pool and, through the DOM they produce, on the ensuing microbial community. These communities in turn have different effects on DOM composition.
Indah Ardiningsih, Kyyas Seyitmuhammedov, Sylvia G. Sander, Claudine H. Stirling, Gert-Jan Reichart, Kevin R. Arrigo, Loes J. A. Gerringa, and Rob Middag
Biogeosciences, 18, 4587–4601, https://doi.org/10.5194/bg-18-4587-2021, https://doi.org/10.5194/bg-18-4587-2021, 2021
Short summary
Short summary
Organic Fe speciation is investigated along a natural gradient of the western Antarctic Peninsula from an ice-covered shelf to the open ocean. The two major fronts in the region affect the distribution of ligands. The excess ligands not bound to dissolved Fe (DFe) comprised up to 80 % of the total ligand concentrations, implying the potential to solubilize additional Fe input. The ligands on the shelf can increase the DFe residence time and fuel local primary production upon ice melt.
Melissa R. McCutcheon, Hongming Yao, Cory J. Staryk, and Xinping Hu
Biogeosciences, 18, 4571–4586, https://doi.org/10.5194/bg-18-4571-2021, https://doi.org/10.5194/bg-18-4571-2021, 2021
Short summary
Short summary
We used 5+ years of discrete samples and 10 months of hourly sensor measurements to explore temporal variability and environmental controls on pH and pCO2 at the Aransas Ship Channel. Seasonal and diel variability were both present but small compared to other regions in the literature. Despite the small tidal range, tidal control often surpassed biological control. In comparison with sensor data, discrete samples were generally representative of mean annual and seasonal carbonate chemistry.
Tom Hull, Naomi Greenwood, Antony Birchill, Alexander Beaton, Mathew Palmer, and Jan Kaiser
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-170, https://doi.org/10.5194/bg-2021-170, 2021
Revised manuscript accepted for BG
Short summary
Short summary
The shallow shelf seas play a large role in the global cycling of CO2, they also support large fisheries. We use an low-cost autonomous underwater vehicle in the Central North Sea to measuring the rates of change of oxygen and nutrients. Using these data we determine the amount of CO2 taken out of the atmosphere by the sea and measure how productive the region is. These observations will be useful for improving our predictive models and help us predict and adapt to a changing ocean.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Heiner Dietze and Ulrike Löptien
Biogeosciences, 18, 4243–4264, https://doi.org/10.5194/bg-18-4243-2021, https://doi.org/10.5194/bg-18-4243-2021, 2021
Short summary
Short summary
In recent years fish-kill events caused by oxygen deficit have been reported in Eckernförde Bight (Baltic Sea). This study sets out to understand the processes causing respective oxygen deficits by combining high-resolution coupled ocean circulation biogeochemical modeling, monitoring data, and artificial intelligence.
Jenny Hieronymus, Kari Eilola, Malin Olofsson, Inga Hense, H. E. Markus Meier, and Elin Almroth-Rosell
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-156, https://doi.org/10.5194/bg-2021-156, 2021
Revised manuscript accepted for BG
Short summary
Short summary
Dense blooms of cyanobacteria occurs every summer in the Baltic Sea and can add to eutrophication by their ability to turn nitrogen gas into dissolved inorganic nitrogen. Being able to correctly estimate the size of this nitrogen fixation is important for management purposes. In this work, we find that the life cycle of cyanobacteria plays an important roll in capturing the seasonality of the blooms as well as the size of nitrogen fixation in our ocean model.
Jens A. Hölemann, Bennet Juhls, Dorothea Bauch, Markus Janout, Boris P. Koch, and Birgit Heim
Biogeosciences, 18, 3637–3655, https://doi.org/10.5194/bg-18-3637-2021, https://doi.org/10.5194/bg-18-3637-2021, 2021
Short summary
Short summary
The Arctic Ocean receives large amounts of river water rich in terrestrial dissolved organic matter (tDOM), which is an important component of the Arctic carbon cycle. Our analysis shows that mixing of three major freshwater sources is the main factor that regulates the distribution of tDOM concentrations in the Siberian shelf seas. In this context, the formation and melting of the land-fast ice in the Laptev Sea and the peak spring discharge of the Lena River are of particular importance.
Jaard Hauschildt, Soeren Thomsen, Vincent Echevin, Andreas Oschlies, Yonss Saranga José, Gerd Krahmann, Laura A. Bristow, and Gaute Lavik
Biogeosciences, 18, 3605–3629, https://doi.org/10.5194/bg-18-3605-2021, https://doi.org/10.5194/bg-18-3605-2021, 2021
Short summary
Short summary
In this paper we quantify the subduction of upwelled nitrate due to physical processes on the order of several kilometers in the coastal upwelling off Peru and its effect on primary production. We also compare the prepresentation of these processes in a high-resolution simulation (~2.5 km) with a more coarsely resolved simulation (~12 km). To do this, we combine high-resolution shipboard observations of physical and biogeochemical parameters with a complex biogeochemical model configuration.
Samantha A. Siedlecki, Darren Pilcher, Evan M. Howard, Curtis Deutsch, Parker MacCready, Emily L. Norton, Hartmut Frenzel, Jan Newton, Richard A. Feely, Simone R. Alin, and Terrie Klinger
Biogeosciences, 18, 2871–2890, https://doi.org/10.5194/bg-18-2871-2021, https://doi.org/10.5194/bg-18-2871-2021, 2021
Short summary
Short summary
Future ocean conditions can be simulated using projected trends in fossil fuel use paired with Earth system models. Global models generally do not include local processes important to coastal ecosystems. These coastal processes can alter the degree of change projected. Higher-resolution models that include local processes predict modified changes in carbon stressors when compared to changes projected by global models in the California Current System.
Erik Jacobs, Henry C. Bittig, Ulf Gräwe, Carolyn A. Graves, Michael Glockzin, Jens D. Müller, Bernd Schneider, and Gregor Rehder
Biogeosciences, 18, 2679–2709, https://doi.org/10.5194/bg-18-2679-2021, https://doi.org/10.5194/bg-18-2679-2021, 2021
Short summary
Short summary
We use a unique data set of 8 years of continuous carbon dioxide (CO2) and methane (CH4) surface water measurements from a commercial ferry to study upwelling in the Baltic Sea. Its seasonality and regional and interannual variability are examined. Strong upwelling events drastically increase local surface CO2 and CH4 levels and are mostly detected in late summer after long periods of impaired mixing. We introduce an extrapolation method to estimate regional upwelling-induced trace gas fluxes.
Yangyang Zhao, Khanittha Uthaipan, Zhongming Lu, Yan Li, Jing Liu, Hongbin Liu, Jianping Gan, Feifei Meng, and Minhan Dai
Biogeosciences, 18, 2755–2775, https://doi.org/10.5194/bg-18-2755-2021, https://doi.org/10.5194/bg-18-2755-2021, 2021
Short summary
Short summary
In situ oxygen consumption rates were estimated for the first time during destruction of coastal hypoxia as disturbed by a typhoon and its reinstatement in the South China Sea off the Pearl River estuary. The reinstatement of summer hypoxia was rapid with a comparable timescale with that of its initial disturbance from frequent tropical cyclones, which has important implications for better understanding the intermittent nature of coastal hypoxia and its prediction in a changing climate.
Dylan R. Brown, Humberto Marotta, Roberta B. Peixoto, Alex Enrich-Prast, Glenda C. Barroso, Mario L. G. Soares, Wilson Machado, Alexander Pérez, Joseph M. Smoak, Luciana M. Sanders, Stephen Conrad, James Z. Sippo, Isaac R. Santos, Damien T. Maher, and Christian J. Sanders
Biogeosciences, 18, 2527–2538, https://doi.org/10.5194/bg-18-2527-2021, https://doi.org/10.5194/bg-18-2527-2021, 2021
Short summary
Short summary
Hypersaline tidal flats (HTFs) are coastal ecosystems with freshwater deficits often occurring in arid or semi-arid regions near mangrove supratidal zones with no major fluvial contributions. This study shows that HTFs are important carbon and nutrient sinks which may be significant given their extensive coverage. Our findings highlight a previously unquantified carbon as well as a nutrient sink and suggest that coastal HTF ecosystems could be included in the emerging blue carbon framework.
Giulia Bonino, Elisa Lovecchio, Nicolas Gruber, Matthias Münnich, Simona Masina, and Doroteaciro Iovino
Biogeosciences, 18, 2429–2448, https://doi.org/10.5194/bg-18-2429-2021, https://doi.org/10.5194/bg-18-2429-2021, 2021
Short summary
Short summary
Seasonal variations of processes such as upwelling and biological production that happen along the northwestern African coast can modulate the temporal variability of the biological activity of the adjacent open North Atlantic hundreds of kilometers away from the coast thanks to the lateral transport of coastal organic carbon. This happens with a temporal delay, which is smaller than a season up to roughly 500 km from the coast due to the intense transport by small-scale filaments.
Kiefer Forsch, Lisa Hahn-Woernle, Robert Sherrell, Joe Roccanova, Kaixan Bu, David Burdige, Maria Vernet, and Katherine A. Barbeau
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-79, https://doi.org/10.5194/bg-2021-79, 2021
Revised manuscript accepted for BG
Short summary
Short summary
In this study, we found that the seasonality of iron in a western Antarctic Peninsula (WAP) fjord is linked to the dispersal of iron-rich meltwater sources. Using geochemical measurements of trace metals in meltwaters, porewaters, and seawater, collected during two expeditions, contributions to the seasonal cycle were constrained. Model results revealed that the dispersal of surface meltwater and iron-rich meltwater plumes originating from under the glacier is sensitive to katabatic wind events.
Markus Diesing, Terje Thorsnes, and Lilja Rún Bjarnadóttir
Biogeosciences, 18, 2139–2160, https://doi.org/10.5194/bg-18-2139-2021, https://doi.org/10.5194/bg-18-2139-2021, 2021
Short summary
Short summary
The upper 10 cm of the seafloor of the North Sea and Skagerrak contain 231×106 t of carbon in organic form. The Norwegian Trough, the deepest sedimentary basin in the studied area, stands out as a zone of strong organic carbon accumulation with rates on par with neighbouring fjords. Conversely, large parts of the North Sea are characterised by rapid organic carbon degradation and negligible accumulation. This dual character is likely typical for continental shelf sediments worldwide.
Arnaud Laurent, Katja Fennel, and Angela Kuhn
Biogeosciences, 18, 1803–1822, https://doi.org/10.5194/bg-18-1803-2021, https://doi.org/10.5194/bg-18-1803-2021, 2021
Short summary
Short summary
CMIP5 and CMIP6 models, and a high-resolution regional model, were evaluated by comparing historical simulations with observations in the northwest North Atlantic, a climate-sensitive and biologically productive ocean margin region. Many of the CMIP models performed poorly for biological properties. There is no clear link between model resolution and skill in the global models, but there is an overall improvement in performance in CMIP6 from CMIP5. The regional model performed best.
Heejun Han, Jeomshik Hwang, and Guebuem Kim
Biogeosciences, 18, 1793–1801, https://doi.org/10.5194/bg-18-1793-2021, https://doi.org/10.5194/bg-18-1793-2021, 2021
Short summary
Short summary
The main source of excess DOC occurring in coastal seawater off an artificial lake, which is enclosed by a dike along the western coast of South Korea, was determined using a combination of various biogeochemical tools including DOC and nutrient concentrations, stable carbon isotope, and optical properties (absorbance and fluorescence) of dissolved organic matter in two different seasons (March 2017 and September 2018).
Michelle N. Simone, Kai G. Schulz, Joanne M. Oakes, and Bradley D. Eyre
Biogeosciences, 18, 1823–1838, https://doi.org/10.5194/bg-18-1823-2021, https://doi.org/10.5194/bg-18-1823-2021, 2021
Short summary
Short summary
Estuaries are responsible for a large contribution of dissolved organic carbon (DOC) to the global C cycle, but it is unknown how this will change in the future. DOC fluxes from unvegetated sediments were investigated ex situ subject to conditions of warming and ocean acidification. The future climate shifted sediment fluxes from a slight DOC source to a significant sink, with global coastal DOC export decreasing by 80 %. This has global implications for C cycling and long-term C storage.
Sara González-Delgado, David González-Santana, Magdalena Santana-Casiano, Melchor González-Dávila, Celso A. Hernández, Carlos Sangil, and José Carlos Hernández
Biogeosciences, 18, 1673–1687, https://doi.org/10.5194/bg-18-1673-2021, https://doi.org/10.5194/bg-18-1673-2021, 2021
Short summary
Short summary
We describe the carbon system dynamics of a new CO2 seep system located off the coast of La Palma. We explored for over a year, finding points with lower levels of pH and alkalinity; high levels of carbon; and poorer levels of aragonite and calcite, both essential for calcifying species. The seeps are a key feature for robust experimental designs, aimed at comprehending how life has persisted through past eras or at predicting the consequences of ocean acidification in the marine realm.
Cale A. Miller, Christina Bonsell, Nathan D. McTigue, and Amanda L. Kelley
Biogeosciences, 18, 1203–1221, https://doi.org/10.5194/bg-18-1203-2021, https://doi.org/10.5194/bg-18-1203-2021, 2021
Short summary
Short summary
We report here the first year-long high-frequency pH data set for an Arctic lagoon that captures ice-free and ice-covered seasons. pH and salinity correlation varies by year as we observed positive correlation and independence. Photosynthesis is found to drive high pH values, and small changes in underwater solar radiation can result in rapid decreases in pH. We estimate that arctic lagoons may act as sources of CO2 to the atmosphere, potentially offsetting the Arctic Ocean's CO2 sink capacity.
Meike Becker, Are Olsen, Peter Landschützer, Abdirhaman Omar, Gregor Rehder, Christian Rödenbeck, and Ingunn Skjelvan
Biogeosciences, 18, 1127–1147, https://doi.org/10.5194/bg-18-1127-2021, https://doi.org/10.5194/bg-18-1127-2021, 2021
Short summary
Short summary
We developed a simple method to refine existing open-ocean maps towards different coastal seas. Using a multi-linear regression, we produced monthly maps of surface ocean fCO2 in the northern European coastal seas (the North Sea, the Baltic Sea, the Norwegian Coast and the Barents Sea) covering a time period from 1998 to 2016. Based on this fCO2 map, we calculate trends in surface ocean fCO2, pH and the air–sea gas exchange.
Zhengchao Wu, Qian P. Li, Zaiming Ge, Bangqin Huang, and Chunming Dong
Biogeosciences, 18, 1049–1065, https://doi.org/10.5194/bg-18-1049-2021, https://doi.org/10.5194/bg-18-1049-2021, 2021
Short summary
Short summary
Seasonal hypoxia in the nearshore bottom waters frequently occurs in the Pearl River estuary. Aerobic respiration is the ultimate cause of local hypoxia. We found an elevated level of polyunsaturated aldehydes in the bottom water outside the estuary, which promoted the growth and metabolism of special groups of particle-attached bacteria and thus contributed to oxygen depletion in hypoxic waters. Our results may be important for understanding coastal hypoxia and its linkages to eutrophication.
Puthenveettil Narayana Menon Vinayachandran, Yukio Masumoto, Mike Roberts, Jenny Hugget, Issufo Halo, Abhisek Chatterjee, Prakash Amol, Garuda V. M. Gupta, Arvind Singh, Arnab Mukherjee, Satya Prakash, Lynnath E. Beckley, Eric Jorden Raes, and Raleigh Hood
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-486, https://doi.org/10.5194/bg-2020-486, 2021
Revised manuscript accepted for BG
Short summary
Short summary
Upwelling in the coastal ocean triggers biological productivity and thus enhances fisheries. Therefore, understanding the phenomenon of upwelling and the underlying mechanisms is important. In this paper, the present understanding of the upwelling along the coastline of the Indian Ocean from the coast of Africa all the way upto the coast of Australia is reviewed. The review provides a synthesis of the physical processes associated with upwelling and its impact on the marine ecosystem.
Derara Hailegeorgis, Zouhair Lachkar, Christoph Rieper, and Nicolas Gruber
Biogeosciences, 18, 303–325, https://doi.org/10.5194/bg-18-303-2021, https://doi.org/10.5194/bg-18-303-2021, 2021
Short summary
Short summary
Using a Lagrangian modeling approach, this study provides a quantitative analysis of water and nitrogen offshore transport in the Canary Current System. We investigate the timescales, reach and structure of offshore transport and demonstrate that the Canary upwelling is a key source of nutrients to the open North Atlantic Ocean. Our findings stress the need for improving the representation of the Canary system and other eastern boundary upwelling systems in global coarse-resolution models.
Constance Choquel, Emmanuelle Geslin, Edouard Metzger, Helena L. Filipsson, Nils Risgaard-Petersen, Patrick Launeau, Manuel Giraud, Thierry Jauffrais, Bruno Jesus, and Aurélia Mouret
Biogeosciences, 18, 327–341, https://doi.org/10.5194/bg-18-327-2021, https://doi.org/10.5194/bg-18-327-2021, 2021
Short summary
Short summary
Marine microorganisms such as foraminifera are able to live temporarily without oxygen in sediments. In a Swedish fjord subjected to seasonal oxygen scarcity, a change in fauna linked to the decrease in oxygen and the increase in an invasive species was shown. The invasive species respire nitrate until 100 % of the nitrate porewater in the sediment and could be a major contributor to nitrogen balance in oxic coastal ecosystems. But prolonged hypoxia creates unfavorable conditions to survive.
Paula Maria Salgado-Hernanz, Aurore Regaudie de Gioux, David Antoine, and Gotzon Basterretxea
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-457, https://doi.org/10.5194/bg-2020-457, 2021
Revised manuscript accepted for BG
Haiyan Zhang, Katja Fennel, Arnaud Laurent, and Changwei Bian
Biogeosciences, 17, 5745–5761, https://doi.org/10.5194/bg-17-5745-2020, https://doi.org/10.5194/bg-17-5745-2020, 2020
Short summary
Short summary
In coastal seas, low oxygen, which is detrimental to coastal ecosystems, is increasingly caused by man-made nutrients from land. This is especially so near mouths of major rivers, including the Changjiang in the East China Sea. Here a simulation model is used to identify the main factors determining low-oxygen conditions in the region. High river discharge is identified as the prime cause, while wind and intrusions of open-ocean water modulate the severity and extent of low-oxygen conditions.
Tamar Guy-Haim, Maxim Rubin-Blum, Eyal Rahav, Natalia Belkin, Jacob Silverman, and Guy Sisma-Ventura
Biogeosciences, 17, 5489–5511, https://doi.org/10.5194/bg-17-5489-2020, https://doi.org/10.5194/bg-17-5489-2020, 2020
Short summary
Short summary
The availability of nutrients in oligotrophic marine ecosystems is limited. Following jellyfish blooms, large die-off events result in the release of high amounts of nutrients to the water column and sediment. Our study assessed the decomposition effects of an infamous invasive jellyfish in the ultra-oligotrophic Eastern Mediterranean Sea. We found that jellyfish decomposition favored heterotrophic bacteria and altered biogeochemical fluxes, further impoverishing this nutrient-poor ecosystem.
Chantal Mears, Helmuth Thomas, Paul B. Henderson, Matthew A. Charette, Hugh MacIntyre, Frank Dehairs, Christophe Monnin, and Alfonso Mucci
Biogeosciences, 17, 4937–4959, https://doi.org/10.5194/bg-17-4937-2020, https://doi.org/10.5194/bg-17-4937-2020, 2020
Short summary
Short summary
Major research initiatives have been undertaken within the Arctic Ocean, highlighting this area's global importance and vulnerability to climate change. In 2015, the international GEOTRACES program addressed this importance by devoting intense research activities to the Arctic Ocean. Among various tracers, we used radium and carbonate system data to elucidate the functioning and vulnerability of the hydrographic regime of the Canadian Arctic Archipelago, bridging the Pacific and Atlantic oceans.
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
James Z. Sippo, Isaac R. Santos, Christian J. Sanders, Patricia Gadd, Quan Hua, Catherine E. Lovelock, Nadia S. Santini, Scott G. Johnston, Yota Harada, Gloria Reithmeir, and Damien T. Maher
Biogeosciences, 17, 4707–4726, https://doi.org/10.5194/bg-17-4707-2020, https://doi.org/10.5194/bg-17-4707-2020, 2020
Short summary
Short summary
In 2015–2016, a massive mangrove dieback event occurred along ~1000 km of coastline in Australia. Multiple lines of evidence from climate data, wood and sediment samples suggest low water availability within the dead mangrove forest. Wood and sediments also reveal a large increase in iron concentrations in mangrove sediments during the dieback. This study supports the hypothesis that the forest dieback was associated with low water availability driven by a climate-change-related ENSO event.
Markus Huettel, Peter Berg, and Alireza Merikhi
Biogeosciences, 17, 4459–4476, https://doi.org/10.5194/bg-17-4459-2020, https://doi.org/10.5194/bg-17-4459-2020, 2020
Short summary
Short summary
Oxygen fluxes are a valued proxy for organic carbon production and mineralization at the seafloor. These fluxes can be measured non-invasively with the aquatic eddy covariance instrument, but the fast, fragile oxygen sensor it uses often causes questionable flux data. We developed a dual-O2-optode instrument and data evaluation method that allow improved flux measurements. Deployments over carbonate sands in the shallow shelf demonstrate that the instrument can produce reliable oxygen flux data.
Fabian Schwichtenberg, Johannes Pätsch, Michael Ernst Böttcher, Helmuth Thomas, Vera Winde, and Kay-Christian Emeis
Biogeosciences, 17, 4223–4245, https://doi.org/10.5194/bg-17-4223-2020, https://doi.org/10.5194/bg-17-4223-2020, 2020
Short summary
Short summary
Ocean acidification has a range of potentially harmful consequences for marine organisms. It is related to total alkalinity (TA) mainly produced in oxygen-poor situations like sediments in tidal flats. TA reduces the sensitivity of a water body to acidification. The decomposition of organic material and subsequent TA release in the tidal areas of the North Sea (Wadden Sea) is responsible for reduced acidification in the southern North Sea. This is shown with the results of an ecosystem model.
Alexis Beaupré-Laperrière, Alfonso Mucci, and Helmuth Thomas
Biogeosciences, 17, 3923–3942, https://doi.org/10.5194/bg-17-3923-2020, https://doi.org/10.5194/bg-17-3923-2020, 2020
Short summary
Short summary
Ocean acidification is the process by which the oceans are changing due to carbon dioxide emissions from human activities. Studying this process in the Arctic Ocean is essential as this ocean and its ecosystems are more vulnerable to the effects of acidification. Water chemistry measurements made in recent years show that waters in and around the Canadian Arctic Archipelago are considerably affected by this process and show dynamic conditions that might have an impact on local marine organisms.
Claudine Hauri, Cristina Schultz, Katherine Hedstrom, Seth Danielson, Brita Irving, Scott C. Doney, Raphael Dussin, Enrique N. Curchitser, David F. Hill, and Charles A. Stock
Biogeosciences, 17, 3837–3857, https://doi.org/10.5194/bg-17-3837-2020, https://doi.org/10.5194/bg-17-3837-2020, 2020
Short summary
Short summary
The coastal ecosystem of the Gulf of Alaska (GOA) is especially vulnerable to the effects of ocean acidification and climate change. To improve our conceptual understanding of the system, we developed a new regional biogeochemical model setup for the GOA. Model output suggests that bottom water is seasonally high in CO2 between June and January. Such extensive periods of reoccurring high CO2 may be harmful to ocean acidification-sensitive organisms.
Pierre St-Laurent, Marjorie A. M. Friedrichs, Raymond G. Najjar, Elizabeth H. Shadwick, Hanqin Tian, and Yuanzhi Yao
Biogeosciences, 17, 3779–3796, https://doi.org/10.5194/bg-17-3779-2020, https://doi.org/10.5194/bg-17-3779-2020, 2020
Short summary
Short summary
Over the past century, estuaries have experienced global (atmospheric CO2 concentrations and temperature) and regional changes (river inputs, land use), but their relative impact remains poorly known. In the Chesapeake Bay, we find that global and regional changes have worked together to enhance how much atmospheric CO2 is taken up by the estuary. The increased uptake is roughly equally due to the global and regional changes, providing crucial perspective for managers of the bay's watershed.
Sarah Z. Rosengard, Robert W. Izett, William J. Burt, Nina Schuback, and Philippe D. Tortell
Biogeosciences, 17, 3277–3298, https://doi.org/10.5194/bg-17-3277-2020, https://doi.org/10.5194/bg-17-3277-2020, 2020
Short summary
Short summary
Net community production sets the maximum quantity of phytoplankton carbon available for the marine food web and longer-term storage in the deep ocean. We compared two approaches to estimate this critical variable from autonomous measurements of mixed-layer dissolved oxygen and particulate organic carbon, observing a significant discrepancy between estimates in an upwelling zone near the Oregon coast. We use this discrepancy to assess the fate of organic carbon produced in the mixed layer.
Taavi Liblik, Yijing Wu, Daidu Fan, and Dinghui Shang
Biogeosciences, 17, 2875–2895, https://doi.org/10.5194/bg-17-2875-2020, https://doi.org/10.5194/bg-17-2875-2020, 2020
Short summary
Short summary
Multiple factors have been accused of triggering coastal hypoxia off the Changjiang Estuary. In situ observations, remote sensing and numerical simulation data were used to study dissolved oxygen depletion in the area. Oxygen distributions can be explained by wind forcing and river discharge, as well as concurrent features in surface and deep layer circulation. If summer monsoon prevails, hypoxia more likely occurs in the north while hypoxia in the south appears if the summer monsoon is weaker.
Niels A. G. M. van Helmond, Elizabeth K. Robertson, Daniel J. Conley, Martijn Hermans, Christoph Humborg, L. Joëlle Kubeneck, Wytze K. Lenstra, and Caroline P. Slomp
Biogeosciences, 17, 2745–2766, https://doi.org/10.5194/bg-17-2745-2020, https://doi.org/10.5194/bg-17-2745-2020, 2020
Short summary
Short summary
We studied the removal of phosphorus (P) and nitrogen (N) in the eutrophic Stockholm archipelago (SA). High sedimentation rates and sediment P contents lead to high P burial. Benthic denitrification is the primary nitrate-reducing pathway. Together, these mechanisms limit P and N transport to the open Baltic Sea. We expect that further nutrient load reduction will contribute to recovery of the SA from low-oxygen conditions and that the sediments will continue to remove part of the P and N loads.
Fabian Große, Katja Fennel, Haiyan Zhang, and Arnaud Laurent
Biogeosciences, 17, 2701–2714, https://doi.org/10.5194/bg-17-2701-2020, https://doi.org/10.5194/bg-17-2701-2020, 2020
Short summary
Short summary
In the East China Sea, hypoxia occurs frequently from spring to fall due to high primary production and subsequent decomposition of organic matter. Nitrogen inputs from the Changjiang and the open ocean have been suggested to contribute to hypoxia formation. We used a numerical modelling approach to quantify the relative contributions of these nitrogen sources. We found that the Changjiang dominates, which suggests that nitrogen management in the watershed would improve oxygen conditions.
Kenta Watanabe, Goro Yoshida, Masakazu Hori, Yu Umezawa, Hirotada Moki, and Tomohiro Kuwae
Biogeosciences, 17, 2425–2440, https://doi.org/10.5194/bg-17-2425-2020, https://doi.org/10.5194/bg-17-2425-2020, 2020
Short summary
Short summary
Macroalgal beds are among the vegetated coastal ecosystems that take up atmospheric CO2. We investigated the relationships between macroalgal metabolism and inorganic and organic carbon fluxes in a temperate macroalgal bed during the productive time of year. The macroalgal metabolism formed water with low CO2 and high dissolved organic carbon concentrations that was then exported offshore. This export process potentially enhances CO2 uptake in and around macroalgal beds.
Claudia Frey, Hermann W. Bange, Eric P. Achterberg, Amal Jayakumar, Carolin R. Löscher, Damian L. Arévalo-Martínez, Elizabeth León-Palmero, Mingshuang Sun, Xin Sun, Ruifang C. Xie, Sergey Oleynik, and Bess B. Ward
Biogeosciences, 17, 2263–2287, https://doi.org/10.5194/bg-17-2263-2020, https://doi.org/10.5194/bg-17-2263-2020, 2020
Short summary
Short summary
The production of N2O via nitrification and denitrification associated with low-O2 waters is a major source of oceanic N2O. We investigated the regulation and dynamics of these processes with respect to O2 and organic matter inputs. The transcription of the key nitrification gene amoA rapidly responded to changes in O2 and strongly correlated with N2O production rates. N2O production by denitrification was clearly stimulated by organic carbon, implying that its supply controls N2O production.
Xi Wu, Pei-Feng Li, Hong-Hai Zhang, Mao-Xu Zhu, Chun-Ying Liu, and Gui-Peng Yang
Biogeosciences, 17, 1991–2008, https://doi.org/10.5194/bg-17-1991-2020, https://doi.org/10.5194/bg-17-1991-2020, 2020
Short summary
Short summary
Acrylic acid (AA) exhibited obvious spatial and temporal variations in the Bohai and Yellow seas. Strong biological production and abundant terrestrial inputs led to high AA in summer. Extremely high AA in sediments might result from the cleavage of intracellular DMSP and reduce bacterial metabolism. Degradation experiments of AA and DMSP proved other sources of AA and microbial consumption to be the key removal source. This study provided insightful information on the sulfur cycle these seas.
Mark J. Hopwood, Carolina Santana-González, Julian Gallego-Urrea, Nicolas Sanchez, Eric P. Achterberg, Murat V. Ardelan, Martha Gledhill, Melchor González-Dávila, Linn Hoffmann, Øystein Leiknes, Juana Magdalena Santana-Casiano, Tatiana M. Tsagaraki, and David Turner
Biogeosciences, 17, 1327–1342, https://doi.org/10.5194/bg-17-1327-2020, https://doi.org/10.5194/bg-17-1327-2020, 2020
Short summary
Short summary
Fe is an essential micronutrient. Fe(III)-organic species are thought to account for > 99 % of dissolved Fe in seawater. Here we quantified Fe(II) during experiments in Svalbard, Gran Canaria, and Patagonia. Fe(II) was always a measurable fraction of dissolved Fe up to 65 %. Furthermore, when Fe(II) was allowed to decay in the dark, it remained present longer than predicted by kinetic equations, suggesting that Fe(II) is a more important fraction of dissolved Fe in seawater than widely recognized.
Yan Chang, Moritz Müller, Ying Wu, Shan Jiang, Wan Wan Cao, Jian Guo Qu, Jing Ling Ren, Xiao Na Wang, En Ming Rao, Xiao Lu Wang, Aazani Mujahid, Mohd Fakharuddin Muhamad, Edwin Sien Aun Sia, Faddrine Holt Ajon Jang, and Jing Zhang
Biogeosciences, 17, 1133–1145, https://doi.org/10.5194/bg-17-1133-2020, https://doi.org/10.5194/bg-17-1133-2020, 2020
Short summary
Short summary
Selenium (Se) is an essential micronutrient for many organisms. Our knowledge of dissolved Se biogeochemical cycling in tropical estuaries is limited. We have found that dissolved organic Se (DOSe) was the major speciation in the peat-draining rivers and estuaries. The DOSe fractions may be associated with high molecular weight peatland-derived carbon compounds and may photodegrade to more bioavailable forms once transported to oligotrophic coastal water, where they may promote productivity.
Kimberlee Baldry, Vincent Saderne, Daniel C. McCorkle, James H. Churchill, Susana Agusti, and Carlos M. Duarte
Biogeosciences, 17, 423–439, https://doi.org/10.5194/bg-17-423-2020, https://doi.org/10.5194/bg-17-423-2020, 2020
Short summary
Short summary
The carbon cycling of coastal ecosystems over large spatial scales is not well measured relative to the open ocean. In this study we measure the carbonate system in the three habitats, to measure ecosystem-driven changes compared to offshore waters. We find (1) 70 % of seagrass meadows and mangrove forests show large ecosystem-driven changes, and (2) mangrove forests show strong and consistent trends over large scales, while seagrass meadows display more variability.
Cited articles
Aiken, J., Pradhan, Y., Barlow, R., Lavender, S., Poulton, A., Holligan, P., and Hardman-Mountford, N.: Phytoplankton pigments and functional types in the Atlantic Ocean: a decadal assessment, Deep-Sea Res. Pt II, 56, 899–917, 2009.
Aldridge, J., van der Molen, J., and Forster, R.: Wider ecological implications of Macroalgae cultivation, The Crown Estate, London, ISBN: 978-1-906410-38-4, 95 pp., 2012.
Allen, J. I. and Clarke, K. R.: Effects of demersal trawling on ecosystem functioning in the North Sea: a modelling study, Mar. Ecol.-Prog. Ser., 336, 63–75, 2007.
Anderson, T. R.: Plankton functional type modelling: running before we can walk?, J. Plankton Res., 27, 1073–1081, 2005.
Balmaseda M. A., Mogensen, K., and Weaver, A.: Evaluation of the ECMWF Ocean Reanalysis ORAS4, Q. J. Roy. Meteor. Soc., 139, 1132–1161, 2013.
Baretta, J. W., Ebenhöh, W., and Ruardij, P.: The European Regional Seas Ecosystem Model, a complex marine ecosystem model, Neth. J. Sea Res., 33, 233–246, 1995.
Barton, A. D., Dutkiewicz, S., Flierl, G., Bragg, J., and Follows, M. J.: Patterns of diversity in marine phytoplankton, Science, 327, 1509–1511, 2010.
Blackford, J. C., Allen, J. I., and Gilbert, F. J.: Ecosystem dynamics at six contrasting sites: a generic modelling study, J. Marine Syst., 52, 191–215, 2004.
Blauw, A. N., Los, F. J., Huisman, J,, and Peperzak, L.: Nuisance foam events and Phaeocystis globosa blooms in Dutch coastal waters analyzed with fuzzy logic, J. Marine Syst., 83, 115–126, 2010.
Blockley, E. W., Martin, M. J., McLaren, A. J., Ryan, A. G., Waters, J., Lea, D. J., Mirouze, I., Peterson, K. A., Sellar, A., and Storkey, D.: Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new Global FOAM forecasts, Geosci. Model Dev., 7, 2613–2638, https://doi.org/10.5194/gmd-7-2613-2014, 2014.
Borja, A., Elliott, M., Andersen, J. H., Cardoso, A. C., Carstensen, J., Ferreira, J. G., Heiskanen, A. S., Marques, J. C., Neto, J. M., Teixeira, H., and Uusitalo, L.: Good Environmental Status of marine ecosystems: What is it and how do we know when we have attained it?, Mar. Pollut. Bull., 76, 16–27, 2013.
Boyes, S. J. and Elliott, M.: Marine legislation – The ultimate “horrendogram”: International law, European directives and national implementation, Mar. Pollut. Bull., 86, 39–47, 2014.
Brandsma, J., Martínez, J. M., Slagter, H. A., Evans, C., and Brussaard, C. P.: Microbial biogeography of the North Sea during summer, Biogeochemistry, 113, 119–136, 2013.
Brewin, R. J., Sathyendranath, S., Hirata, T., Lavender, S. J., Barciela, R. M., and Hardman-Mountford, N. J.: A three-component model of phytoplankton size class for the Atlantic Ocean, Ecol. Model., 221, 1472–1483, 2010.
Brewin, R. J., Hardman-Mountford, N. J., Lavender, S. J., Raitsos, D. E., Hirata, T., Uitz, J., Devred, E., Bricaud, A., Ciotti, A., and Gentili, B.: An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing, Remote Sens. Environ., 115, 325–339, 2011.
Brito, A. C., Sá, C., Brotas, V., Brewin, R. J., Silva, T., Vitorino, J., Platt, T., and Sathyendranath, S.: Effect of phytoplankton size classes on bio-optical properties of phytoplankton in the Western Iberian coast: Application of models, Remote Sens. Environ., 156, 537–550, 2014.
Brotas, V., Brewin, R. J., Sá, C., Brito, A. C., Silva, A., Mendes, C. R., Diniz, T., Kaufmann, M., Tarran, G., Groom, S. B., and Platt, T.: Deriving phytoplankton size classes from satellite data: Validation along a trophic gradient in the eastern Atlantic Ocean, Remote Sens. Environ., 134, 66–77, 2013.
Bruggeman, J.: Succession in plankton communities: A trait-based perspective, PhD thesis, Vrije Universiteit Amsterdam, 2009.
Bruggeman, J. and Bolding, K.: A general framework for aquatic biogeochemical models, Environ. Modell. Softw., 61, 249–265, 2014.
Burchard, H. and Bolding, K.: GETM: A General Estuarine Transport Model; Scientific Documentation, Tech. Rep. EUR 20253 EN, European Commission, 2002.
Butenschön, M., Clark, J., Aldridge, J. N., Allen, J. I., Artioli, Y., Blackford, J., Bruggeman, J., Cazenave, P., Ciavatta, S., Kay, S., Lessin, G., van Leeuwen, S., van der Molen, J., de Mora, L., Polimene, L., Sailley, S., Stephens, N., and Torres, R.: ERSEM 15.06: a generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels, Geosci. Model Dev., 9, 1293–1339, https://doi.org/10.5194/gmd-9-1293-2016, 2016.
Campbell, J. W.: The lognormal distribution as a model for bio-optical variability in the sea, J. Geophys. Res.-Oceans, 100, 13237–13254, 1995.
Capuzzo, E., Stephens, D., Silva, T., Barry, J., and Forster, R. M.: Decrease in water clarity of the southern and central North Sea during the 20th century, Glob. Change Biol., 21, 2206–2214, 2015.
Chassot, E., Mélin, F., Le Pape, O., and Gascuel, D.: Bottom-up control regulates fisheries production at the scale of eco-regions in European seas, Mar. Ecol.-Prog. Ser., 343, 45–55, 2007.
Chavez, F. P., Messié, M., and Pennington, J. T.: Marine Primary Production in Relation to Climate Variability and Change, Annu. Rev. Mar. Sci., 3, 227–260, 2011.
Ciavatta, S., Torres, R., Saux-Picart, S., and Allen, J. I.: Can ocean color assimilation improve biogeochemical hindcasts in shelf seas?, J. Geophys. Res.-Oceans, 116, C12043, https://doi.org/10.1029/2011JC007219, 2011.
Ciavatta, S., Torres, R., Martinez-Vicente, V., Smyth, T., Dall'Olmo, G., Polimene, L., and Allen, J. I.: Assimilation of remotely-sensed optical properties to improve marine biogeochemistry modelling, Prog. Oceanogr., 127, 74–95, 2014.
Ciavatta, S., Kay, S., Saux-Picart, S., Butenschön, M., and Allen, J. I.: Decadal reanalysis of biogeochemical indicators and fluxes in the North West European shelf-sea ecosystem, J. Geophys. Res.-Oceans, 121, 1824–1845, 2016.
Courant, R., Friedrichs, K., and Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann., 100, 32–74, 1928.
Daan, N., Gislason, H., Pope, J. G., and Rice, J. C.: Changes in the North Sea fish community: evidence of indirect effects of fishing?, ICES J. Mar. Sci., 62, 177–188, 2005.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, 2011.
Defra: Making the most of our evidence?: a strategy for Defra and its network, Department for Environment, Food and Rural Affairs, London, UK, 2014.
de Mora, L., Butenschön, M., and Allen, J. I.: How should sparse marine in situ measurements be compared to a continuous model: an example, Geosci. Model Dev., 6, 533–548, https://doi.org/10.5194/gmd-6-533-2013, 2013.
de Mora, L., Butenschön, M., and Allen, J. I.: The assessment of a global marine ecosystem model on the basis of emergent properties and ecosystem function: a case study with ERSEM, Geosci. Model Dev., 9, 59–76, https://doi.org/10.5194/gmd-9-59-2016, 2016.
Devred, E., Sathyendranath, S., Stuart, V., and Platt, T.: A three component classification of phytoplankton absorption spectra: Application to ocean-color data, Remote Sens. Environ., 115, 2255–2266, 2011.
Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., and Wimmer, W.: The operational sea surface temperature and sea ice analysis (OSTIA) system, Remote Sens. Environ., 116, 140–158, 2012.
Donnelly, C., Andersson, J. C., and Arheimer, B.: Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe, Hydrolog. Sci. J., 61, 255–273, 2015.
Dupont, N. and Aksnes, D. L.: Centennial changes in water clarity of the Baltic Sea and the North Sea, Estuar. Coast. Shelf S., 131, 282–289, 2013.
ECMWF: European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year Re-Analysis (ERA-40) model data, NCAS British Atmospheric Data Centre, available at: http://catalogue.ceda.ac.uk/uuid/775634f7e339b5262067e28a5d7b679d (last access: July 2007), 2006a.
ECMWF: Assimilated Data from the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis program, NCAS British Atmospheric Data Centre, available at: http://catalogue.ceda.ac.uk/uuidf6ce34fc/c462480467660a36d9b10a71 (last access: January 2012), 2006b.
Edwards, K. P., Barciela, R., and Butenschön, M.: Validation of the NEMO-ERSEM operational ecosystem model for the North West European Continental Shelf, Ocean Sci., 8, 983–1000, https://doi.org/10.5194/os-8-983-2012, 2012.
Engel, A.: The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness (α) during the decline of a diatom bloom, J. Plankton Res., 22, 485–497, 2000.
EU: Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, European Parliament and Council of the European Union, Off. J. Eur. Communities, 327, 1–72, 2000.
EU: Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive), European Parliament and Council of the European Union, Off. J. Eur. Union, 164, 19–40, 2008.
EU: Regulation (EU) No 1380/2013 of the European Parliament and of the Council of 11 December 2013 on the Common Fisheries Policy, amending council Regulations (EC) No 1954/2003 and (EC) No 1224/2009 and repealing Council regulations (EC) No 2371/2002 and (EC) No 639/2004 and Council Decision 2004/585/EC, Off. J. Eur. Union, 354, 22–61, 2013.
Finkel, Z. V., Beardall, J., Flynn, K. J., Quigg, A., Rees, T. A. V., and Raven, J. A.: Phytoplankton in a changing world: cell size and elemental stoichiometry, J. Plankton Res., 32, 119–137, 2010.
Follows, M. J., Dutkiewicz, S., Grant, S., and Chisholm, S. W.: Emergent biogeography of microbial communities in a model ocean, Science, 315, 1843–1846, 2007.
Friedrichs, M. A., Dusenberry, J. A., Anderson, L. A., Armstrong, R. A., Chai, F., Christian, J. R., Doney, S. C., Dunne, J., Fujii, M., Hood, R., and McGillicuddy, D. J.: Assessment of skill and portability in regional marine biogeochemical models: Role of multiple planktonic groups, J. Geophys. Res.-Oceans, 112, C08001, https://doi.org/10.1029/2006JC003852, 2007.
Fulton, E. A. and Link, J. S.: Modeling Approaches for Marine Ecosystem-based Management, in: The Sea, Vol. 16: Marine Ecosystem-Based Management, edited by: Fogarty, M. J. and McCarthy, J. J., Harvard University Press, 2014.
Fulton, E. A., Link, J. S., Kaplan, I. C., Savina-Rolland, M., Johnson, P., Ainsworth, C., Horne, P., Gorton, R., Gamble, R. J., Smith, A. D., and Smith, D. C.: Lessons in modelling and management of marine ecosystems: the Atlantis experience, Fish Fish., 12, 171–188, 2007.
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Zweng, M. M., Baranova, O. K., and Johnson, D. R.: World Ocean Atlas 2009, Vol. 4: Nutrients (phosphate, nitrate, silicate), edited by: Levitus, S., NOAA Atlas NESDIS 71, US Government Printing Office, Washington, D.C., 398 pp., 2010.
Gårdmark, A., Lindegren, M., Neuenfeldt, S., Blenckner, T., Heikinheimo, O., Müller-Karulis, B., Niiranen, S., Tomczak, M. T., Aro, E., Wikström, A., and Möllmann, C.: Biological ensemble modeling to evaluate potential futures of living marine resources, Ecol. Appl., 23, 742–754, 2013.
Garmendia, M., Borja, A., Franco, J., and Revilla, M.: Phytoplankton composition indicators for the assessment of eutrophication in marine waters: Present state and challenges within the European directives, Mar. Pollut. Bull., 66, 7–16, 2013.
Gehlen, M., Barciela, R., Bertino, L., Brasseur, P., Butenschön, M., Chai, F., Crise, A., Drillet, Y., Ford, D., Lavoie, D., and Lehodey, P.: Building the capacity for forecasting marine biogeochemistry and ecosystems: recent advances and future developments, Journal of Operational Oceanography, 8, s168–s187, 2015.
Geider, R. J., MacIntyre, H. L., and Kana, T. M.: Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a: carbon ratio to light, nutrient-limitation and temperature, Mar. Ecol.-Prog. Ser., 148, 187–200, 1997.
Gohin, F., Druon, J. N., and Lampert, L.: A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters, Int. J. Remote S., 23, 1639–1661, 2002.
Gohin, F., Loyer, S., Lunven, M., Labry, C., Froidefond, J. M., Delmas, D., Huret, M., and Herbland, A.: Satellite-derived parameters for biological modelling in coastal waters: Illustration over the eastern continental shelf of the Bay of Biscay, Remote Sens. Environ., 95, 29–46, 2005.
Gohin, F., Saulquin, B., Oger-Jeanneret, H., Lozac'h, L., Lampert, L., Lefebvre, A., Riou, P., and Bruchon, F.: Towards a better assessment of the ecological status of coastal waters using satellite-derived chlorophyll-a concentrations, Remote Sens. Environ., 112, 3329–3340, 2008.
Greenwood, N., Parker, E. R., Fernand, L., Sivyer, D. B., Weston, K., Painting, S. J., Kröger, S., Forster, R. M., Lees, H. E., Mills, D. K., and Laane, R. W. P. M.: Detection of low bottom water oxygen concentrations in the North Sea; implications for monitoring and assessment of ecosystem health, Biogeosciences, 7, 1357–1373, https://doi.org/10.5194/bg-7-1357-2010, 2010.
Gregg, W. W. and Casey, N. W.: Modeling coccolithophores in the global oceans, Deep-Sea Res. Pt II, 54, 447–477, 2007.
Hirata, T., Aiken, J., Hardman-Mountford, N., Smyth, T. J., and Barlow, R. G.: An absorption model to determine phytoplankton size classes from satellite ocean colour, Remote Sens. Environ., 112, 3153–3159, 2008.
Hirata, T., Hardman-Mountford, N. J., Brewin, R. J. W., Aiken, J., Barlow, R., Suzuki, K., Isada, T., Howell, E., Hashioka, T., Noguchi-Aita, M., and Yamanaka, Y.: Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types, Biogeosciences, 8, 311–327, https://doi.org/10.5194/bg-8-311-2011, 2011.
Hirata, T., Saux-Picart, S., Hashioka, T., Aita-Noguchi, M., Sumata, H., Shigemitsu, M., Allen, J. I., and Yamanaka, Y.: A comparison between phytoplankton community structures derived from a global 3D ecosystem model and satellite observation, J. Marine Syst., 109, 129–137, 2013.
Holt, J. T. and James, I. D.: An s coordinate density evolving model of the northwest European continental shelf: 1. Model description and density structure, J. Geophys. Res.-Oceans, 106, 14015–14034, 2001.
Holt, J. T., Allen, J. I., Proctor, R., and Gilbert, F.: Error quantification of a high-resolution coupled hydrodynamic-ecosystem coastal-ocean model: Part 1. Model overview and assessment of the hydrodynamics, J. Marine Syst., 57, 167–188, 2005.
Holt, J., Allen, J. I., Anderson, T. R., Brewin, R., Butenschön, M., Harle, J., Huse, G., Lehodey, P., Lindemann, C., Memery, L., and Salihoglu, B.: Challenges in integrative approaches to modelling the marine ecosystems of the North Atlantic: Physics to fish and coasts to ocean, Prog. Oceanogr., 129, 285–313, 2014.
Hyder, K., Rossberg, A. G., Allen, J. I., Austen, M. C., Barciela, R. M., Bannister, H. J., Blackwell, P. G., Blanchard, J. L., Burrows, M. T., Defriez, E., and Dorrington, T.: Making modelling count-increasing the contribution of shelf-seas community and ecosystem models to policy development and management, Mar. Policy, 61, 291–302, 2015.
Jennings, S. and Collingridge, K.: Predicting consumer biomass, size-structure, production, catch potential, responses to fishing and associated uncertainties in the world's marine ecosystems, PloS one, 10, e0133794, https://doi.org/10.1371/journal.pone.0133794, 2015.
Jennings, S., Greenstreet, S., Hill, L., Piet, G., Pinnegar, J., and Warr, K. J.: Long-term trends in the trophic structure of the North Sea fish community: evidence from stable-isotope analysis, size-spectra and community metrics, Mar. Biol., 141, 1085–1097, 2002.
Jupp, T. E., Lowe, R., Coelho, C. A., and Stephenson, D. B.: On the visualization, verification and recalibration of ternary probabilistic forecasts, Philos. T. R. Soc. A, 370, 1100–1120, 2012.
Kurekin, A. A., Miller, P. I., and van der Woerd, H. J.: Satellite discrimination of Karenia mikimotoi and Phaeocystis harmful algal blooms in European coastal waters: Merged classification of ocean colour data, Harmful Algae, 31, 163–176, 2014.
Kwiatkowski, L., Yool, A., Allen, J. I., Anderson, T. R., Barciela, R., Buitenhuis, E. T., Butenschön, M., Enright, C., Halloran, P. R., Le Quéré, C., de Mora, L., Racault, M.-F., Sinha, B., Totterdell, I. J., and Cox, P. M.: iMarNet: an ocean biogeochemistry model intercomparison project within a common physical ocean modelling framework, Biogeosciences, 11, 7291–7304, https://doi.org/10.5194/bg-11-7291-2014, 2014.
Lenhart, H. J., Mills, D. K., Baretta-Bekker, H., van Leeuwen, S. M., van der Molen, J., Baretta, J. W., Blaas, M., Desmit, X., Kühn, W., Lacroix, G., Los, H. J., Ménesguen, A., Neves, R., Proctor, R., Ruardij, P., Skogen, M. D., Vanhoutte-Grunier, A., Villars, M. T., and Wakelin, S. L.: Predicting the consequences of nutrient reduction on the eutrophication status of the North Sea, J. Marine Syst., 81, 148–170, 2010.
Le Quéré, C., Harrison, S. P., Prentice, I. C., Buitenhuis, E. T., Aumont, O., Bopp, L., Claustre, H., Cotrim Da Cunha, L., Geider, R., Giraud, X., and Klaas, C.: Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models, Global Change Biol., 11, 2016–2040, 2005.
Lewis, K. and Allen, J. I.: Validation of a hydrodynamic-ecosystem model simulation with time-series data collected in the western English Channel, J. Marine Syst., 77, 296–311, 2009.
Lewis, K., Allen, J. I., Richardson, A. J., and Holt, J. T.: Error quantification of a high resolution coupled hydrodynamic-ecosystem coastal-ocean model: Part 3, validation with Continuous Plankton Recorder data, J. Marine Syst., 63, 209–224, 2006.
Mackinson, S.: Combined analyses reveal environmentally driven changes in the North Sea ecosystem and raise questions regarding what makes an ecosystem model's performance credible?, Can. J. Fish. Aquat. Sci., 71, 31–46, 2014.
MacLachlan, C., Arribas, A., Peterson, D., Maidens, A., Fereday, D., Scaife, A. A., Gordon, M., Vellinga, M., Williams, A., Comer, R. E., Camp, J., and Xavier, P.: Global Seasonal Forecast System 5 (GloSea5): a high resolution seasonal forecast system, Q. J. Roy. Meteor. Soc., 141, 1072–1084, 2014.
Madec, G.: NEMO ocean engine, Note du Pole de modélisation, Insititut Pierre-Simon Laplace (IPSL), France, No. 27, 2008.
Mogensen, K., Balmaseda, M., and Weaver, A.: The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for System4, ECMWF Technical Memorandum 668, 59 pp., 2012.
Nair, A., Sathyendranath, S., Platt, T., Morales, J., Stuart, V., Forget, M.-H., Devred, E., and Bouman, H.: Remote sensing of phytoplankton functional types, Remote Sens. Environ., 112, 3366–3375, 2008.
Núñez-Riboni, I. and Akimova, A.: Monthly maps of optimally interpolated in situ hydrography in the North Sea from 1948 to 2013, J. Marine Syst., 151, 15–34, 2015.
O'Dea, E., Furner, R., Wakelin, S., Siddorn, J., While, J., Sykes, P., King, R., Holt, J., and Hewitt, H.: The CO5 configuration of the 7 km Atlantic Margin Model: Large scale biases and sensitivity to forcing, physics options and vertical resolution, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-15, in review, 2017.
O'Dea, E. J., Arnold, A. K., Edwards, K. P., Furner, R., Hyder, P., Martin, M. J., Siddorn, J. R., Storkey, D., While, J., Holt, J. T., and Liu, H.: An operational ocean forecast system incorporating NEMO and SST data assimilation for the tidally driven European North-West shelf, Journal of Operational Oceanography, 5, 3–17, 2012.
Peloquin, J., Swan, C., Gruber, N., Vogt, M., Claustre, H., Ras, J., Uitz, J., Barlow, R., Behrenfeld, M., Bidigare, R., Dierssen, H., Ditullio, G., Fernandez, E., Gallienne, C., Gibb, S., Goericke, R., Harding, L., Head, E., Holligan, P., Hooker, S., Karl, D., Landry, M., Letelier, R., Llewellyn, C. A., Lomas, M., Lucas, M., Mannino, A., Marty, J.-C., Mitchell, B. G., Muller-Karger, F., Nelson, N., O'Brien, C., Prezelin, B., Repeta, D., Jr. Smith, W. O., Smythe-Wright, D., Stumpf, R., Subramaniam, A., Suzuki, K., Trees, C., Vernet, M., Wasmund, N., and Wright, S.: The MAREDAT global database of high performance liquid chromatography marine pigment measurements, Earth Syst. Sci. Data, 5, 109–123, https://doi.org/10.5194/essd-5-109-2013, 2013.
Peperzak, L., Colijn, F., Gieskes, W. W. C., and Peeters, J. C. H.: Development of the diatom-Phaeocystis spring bloom in the Dutch coastal zone of the North Sea: the silicon depletion versus the daily irradiance threshold hypothesis, J. Plankton Res., 20, 517–537, 1998.
Petersen, W., Wehde, H., Krasemann, H., Colijn, F., and Schroeder, F.: FerryBox and MERIS – Assessment of coastal and shelf sea ecosystems by combining in situ and remotely sensed data, Estuar. Coast. Shelf. S., 77, 296–307, 2008.
Piroddi, C., Teixeira, H., Lynam, C. P., Smith, C., Alvarez, M. C., Mazik, K., Andonegi, E., Churilova, T., Tedesco, L., Chifflet, M., and Chust, G.: Using ecological models to assess ecosystem status in support of the European Marine Strategy Framework Directive, Ecol. Indic., 58, 175–191, 2015.
Plagányi, É. E., Punt, A. E., Hillary, R., Morello, E. B., Thébaud, O., Hutton, T., Pillans, R. D., Thorson, J. T., Fulton, E. A., Smith, A. D., and Smith, F.: Multispecies fisheries management and conservation: tactical applications using models of intermediate complexity, Fish Fish., 15, 1–22, 2014.
Richardson, A. J., Walne, A. W., John, A. W. G., Jonas, T. D., Lindley, J. A., Sims, D. W., Stevens, D., and Witt, M.: Using continuous plankton recorder data, Prog. Oceanogr., 68, 27–74, 2006.
Rombouts, I., Beaugrand, G., Fizzala, X., Gaill, F., Greenstreet, S. P. R., Lamare, S., Le Loc'h, F., McQuatters-Gollop, A., Mialet, B., Niquil, N., and Percelay, J.: Food web indicators under the Marine Strategy Framework Directive: From complexity to simplicity?, Ecol. Indic., 29, 246–254, 2013.
Roselli, L. and Basset, A.: Decoding size distribution patterns in marine and transitional water phytoplankton: from community to species level, PloS one, 10, e0127193, https://doi.org/10.1371/journal.pone.0127193, 2015.
Ruardij, P. and van Raaphorst, W.: Benthic nutrient regeneration in the ERSEM-BFM ecosystem model of the North Sea, Neth. J. Sea Res., 33, 453–483, 1995.
Ruardij, P., van Haren, H., and Ridderinkhof, H.: The impact of thermal stratification on phytoplankton and nutrient dynamics in shelf seas, J. Sea Res., 38, 311–331, 1997.
Ruardij, P., Veldhuis, M. J. W., and Brussaard, C. P. D.: Modeling the bloom dynamics of the polymorphic phytoplankter Phaeocystis globosa: impact of grazers and viruses, Harmful Algae, 4, 941–963, 2005.
Ryther, J. H.: Photosynthesis and fish production in the sea. The production of organic matter and its conversion to higher forms of life vary throughout the world ocean, Science, 166, 72–76, 1969.
Schlüter, L., Henriksen, P., Nielsen, T. G., and Jakobsen, H. H.: Phytoplankton composition and biomass across the southern Indian Ocean, Deep-Sea Res. Pt I, 58, 546–556, 2011.
Schlüter, L., Møhlenberg, F., and Kaas, H.: Temporal and spatial variability of phytoplankton monitored by a combination of monitoring buoys, pigment analysis and fast screening microscopy in the Fehmarn Belt Estuary, Environ. Monit. Assess., 186, 5167–5184, 2014.
Shephard, S., Greenstreet, S. P., Piet, G. J., Rindorf, A., and Dickey-Collas, M.: Surveillance indicators and their use in implementation of the Marine Strategy Framework Directive, ICES J. Mar. Sci., 72, 2269–2277, https://doi.org/10.1093/icesjms/fsv131, 2015.
Sherrard, N. J., Nimmo, M., and Llewellyn, C. A.: Combining HPLC pigment markers and ecological similarity indices to assess phytoplankton community structure: an environmental tool for eutrophication?, Sci. Total Environ., 361, 97–110, 2006.
Siddorn, J. R. and Furner, R.: An analytical stretching function that combines the best attributes of geopotential and terrain-following vertical coordinates, Ocean Model., 66, 1–13, 2013.
Sinha, B., Buitenhuis, E. T., Le Quéré, C., and Anderson, T. R.: Comparison of the emergent behavior of a complex ecosystem model in two ocean general circulation models, Prog. Oceanogr., 84, 204–224, 2010.
Skogen, M. D., Eilola, K., Hansen, J. L. S., Meier, H. E. M., Molchanov, M. S., and Ryabchenko, V. A.: Eutrophication status of the North Sea, Skagerrak, Kattegat and the Baltic Sea in present and future climates: A model study, J. Marine Syst., 132, 174–184, 2014.
Smaal, A. C., Schellekens, T., van Stralen, M. R., and Kromkamp, J. C.: Decrease of the carrying capacity of the Oosterschelde estuary (SW Delta, NL) for bivalve filter feeders due to overgrazing?, Aquaculture, 404, 28–34, 2013.
Stewart, I. J. and Martell, S. J.: Reconciling stock assessment paradigms to better inform fisheries management, ICES J. Mar. Sci., 72, 2187–2196, https://doi.org/10.1093/icesjms/fsv061, 2015.
Stips, A., Bolding, K., Pohlmann, T., and Burchard, H.: Simulating the temporal and spatial dynamics of the North Sea using the new model GETM (General Estuarine Transport Model), Ocean Dynam., 54, 266–283, 2004.
Storkey, D., Blockley, E. W., Furner, R., Guiavarc'h, C., Lea, D., Martin, M. J., Barciela, R. M., Hines, A., Hyder, P. and Siddorn, J. R.: Forecasting the ocean state using NEMO: The new FOAM system, Journal of Operational Oceanography, 3, 3–15, 2010.
Sutherland, W. J., Armstrong-Brown, S., Armsworth, P. R., Tom, B., Brickland, J., Campbell, C. D., Chamberlain, D. E., Cooke, A. I., Dulvy, N. K., Dusic, N. R., and Fitton, M.: The identification of 100 ecological questions of high policy relevance in the UK, J. Appl. Ecol., 43, 617–627, 2006.
Sykes, P. A. and Barciela, R. M.: Assessment and development of a sediment model within an operational system, J. Geophys. Res.-Oceans, 117, C04036, doi10.1029/2011JC007420, 2012.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res.-Atmos., 106, 7183–7192, 2001.
Tebaldi, C. and Knutti, R.: The use of the multi-model ensemble in probabilistic climate projections, Philos. T. R. Soc. A, 365, 2053–2075, 2007.
Thorpe, R. B., Le Quesne, W. J., Luxford, F., Collie, J. S., and Jennings, S.: Evaluation and management implications of uncertainty in a multispecies size-structured model of population and community responses to fishing, Methods Ecol. Evol., 6, 49–58, 2015.
Thyssen, M., Alvain, S., Lefèbvre, A., Dessailly, D., Rijkeboer, M., Guiselin, N., Creach, V., and Artigas, L.-F.: High-resolution analysis of a North Sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing, Biogeosciences, 12, 4051–4066, https://doi.org/10.5194/bg-12-4051-2015, 2015.
Uitz, J., Claustre, H., Morel, A., and Hooker, S. B.: Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll, J. Geophys. Res.-Oceans, 111, C08005, https://doi.org/10.1029/2005JC003207, 2006.
Uitz, J., Huot, Y., Bruyant, F., Babin, M., and Claustre, H.: Relating phytoplankton photophysiological properties to community structure on large scales, Limnol. Oceanogr., 53, 614–630, 2008.
Van der Molen, J., Aldridge, J. N., Coughlan, C., Parker, E. R., Stephens, D., and Ruardij, P.: Modelling marine ecosystem response to climate change and trawling in the North Sea, Biogeochemistry, 113, 213–236, 2013.
Van der Molen, J., Smith, H. C. M., Lepper, P., Limpenny, S., and Rees, J.: Predicting the large-scale consequences of offshore wind turbine array development on a North Sea ecosystem, Cont. Shelf Res., 85, 60–72, 2014.
van der Molen, J., van Beek, J., Augustine, S., Vansteenbrugge, L., van Walraven, L., Langenberg, V., van der Veer, H. W., Hostens, K., Pitois, S., and Robbens, J.: Modelling survival and connectivity of Mnemiopsis leidyi in the south-western North Sea and Scheldt estuaries, Ocean Sci., 11, 405–424, https://doi.org/10.5194/os-11-405-2015, 2015.
van der Molen, J., Ruardij, P., and Greenwood, N.: Potential environmental impact of tidal energy extraction in the Pentland Firth at large spatial scales: results of a biogeochemical model, Biogeosciences, 13, 2593–2609, https://doi.org/10.5194/bg-13-2593-2016, 2016.
Van der Molen, J., Ruardij, P., and Greenwood, N.: A 3D SPM model for biogeochemical modelling, with application to the northwest European continental shelf, J. Sea Res., in press, 2017.
Van Leeuwen, S., Tett, P., Mills, D., and van der Molen, J.: Stratified and non-stratified areas in the North Sea: Long-term variability and biological and policy implications, J. Geophys. Res.-Oceans, 120, 4670–4686, 2015.
Van Leeuwen, S. M., van der Molen, J., Ruardij, P., Fernand, L., and Jickells, T.: Modelling the contribution of deep chlorophyll maxima to annual primary production in the North Sea, Biogeochemistry, 113, 137–152, 2013.
Veldhuis, M. J. W. and Admiraal, W.: Influence of phosphate depletion on the growth and colony formation of Phaeocystis pouchetii, Mar. Biol., 95, 47–54, 1987.
Vichi, M., Oddo, P., Zavatarelli, M., Coluccelli, A., Coppini, G., Celio, M., Fonda Umani, S., and Pinardi, N.: Calibration and validation of a one-dimensional complex marine biogeochemical flux model in different areas of the northern Adriatic shelf, Ann. Geophys., 21, 413–436, https://doi.org/10.5194/angeo-21-413-2003, 2003.
Vichi, M., Ruardij, P., and Baretta, J. W.: Link or sink: a modelling interpretation of the open Baltic biogeochemistry, Biogeosciences, 1, 79–100, https://doi.org/10.5194/bg-1-79-2004, 2004.
Vichi, M., Pinardi, N., and Masina, S.: A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: Theory, J. Marine Syst., 64, 89–109, 2007.
Wakelin, S. L., Artioli, Y., Butenschön, M., Allen, J. I., and Holt, J. T.: Modelling the combined impacts of climate change and direct anthropogenic drivers on the ecosystem of the northwest European continental shelf, J. Marine Syst., 152, 51–63, 2015a.
Wakelin, S., While, J., King, R., O'Dea, E., Holt, J., Furner, R., Siddorn, J., Martin, M., McEwan, R., Blockley, E., and Tinker, J.: Quality Information Document: North West European Shelf Reanalysis – NORTHWESTSHELF_REANALYSIS_PHYS_004_009 and NORTHWESTSHELF_REANALYSIS_BIO_004_011, EU Copernicus Marine Environment Monitoring Service, available at: http://marine.copernicus.eu/documents/QUID/CMEMS-NWS-QUID-004-009-011.pdf (last access: 2 March 2017), 2015b.
Ward, B. A., Schartau, M., Oschlies, A., Martin, A. P., Follows, M. J., and Anderson, T. R.: When is a biogeochemical model too complex? Objective model reduction and selection for North Atlantic time-series sites, Prog. Oceanogr., 116, 49–65, 2013.
Waters, J., Lea, D. J., Martin, M. J., Mirouze, I., Weaver, A., and While, J.: Implementing a variational data assimilation system in an operational 1/4 degree global ocean model, Q. J. Roy. Meteor. Soc., 141, 333–349, 2015.
Wollschläger, J., Wiltshire, K. H., Petersen, W., and Metfies, K.: Analysis of phytoplankton distribution and community structure in the German Bight with respect to the different size classes, J. Sea Res., 99, 83–96, 2015.
Xiao, Y. and Friedrichs, M. A. M.: Using biogeochemical data assimilation to assess the relative skill of multiple ecosystem models in the Mid-Atlantic Bight: effects of increasing the complexity of the planktonic food web, Biogeosciences, 11, 3015–3030, https://doi.org/10.5194/bg-11-3015-2014, 2014.
Short summary
This study presents a novel set of in situ observations of phytoplankton community structure for the North Sea. These observations were used to validate two physical–biogeochemical ocean model simulations, each of which used different variants of the widely used European Regional Seas Ecosystem Model (ERSEM). The results suggest the ability of the models to reproduce the observed phytoplankton community structure was dependent on the details of the biogeochemical model parameterizations used.
This study presents a novel set of in situ observations of phytoplankton community structure for...
Altmetrics
Final-revised paper
Preprint