Articles | Volume 17, issue 21
https://doi.org/10.5194/bg-17-5377-2020
https://doi.org/10.5194/bg-17-5377-2020
Research article
 | 
10 Nov 2020
Research article |  | 10 Nov 2020

Stem and soil nitrous oxide fluxes from rainforest and cacao agroforest on highly weathered soils in the Congo Basin

Najeeb Al-Amin Iddris, Marife D. Corre, Martin Yemefack, Oliver van Straaten, and Edzo Veldkamp

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (04 Sep 2020) by Lutz Merbold
AR by Najeeb Al-Amin Iddris on behalf of the Authors (11 Sep 2020)  Author's response   Manuscript 
ED: Publish as is (25 Sep 2020) by Lutz Merbold
AR by Najeeb Al-Amin Iddris on behalf of the Authors (28 Sep 2020)  Author's response   Manuscript 
Download
Short summary
We quantified the changes in stem and soil nitrous oxide (N2O) fluxes with forest conversion to cacao agroforestry in the Congo Basin, Cameroon. All forest and cacao trees consistently emitted N2O, contributing 8–38 % of the total (soil and stem) emissions. Forest conversion to extensively managed (>–20 years old) cacao agroforestry had no effect on stem and soil N2O fluxes. Our results highlight the importance of including tree-mediated fluxes in the ecosystem-level N2O budget.
Altmetrics
Final-revised paper
Preprint