Articles | Volume 18, issue 5
https://doi.org/10.5194/bg-18-1749-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-1749-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deep maxima of phytoplankton biomass, primary production and bacterial production in the Mediterranean Sea
Department of Ecology and Animal Biology, Universidade de Vigo, 36310 Vigo, Spain
France Van Wambeke
Mediterranean Institute of Oceanography, Aix-Marseille Université, CNRS, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
Julia Uitz
Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
Emmanuel S. Boss
School of Marine Sciences, University of Maine, Orono, Maine, USA
Céline Dimier
Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
Julie Dinasquet
Scripps Institution of Oceanography, University of California, San Diego, San Diego, California, USA
Anja Engel
GEOMAR, Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany
Nils Haëntjens
School of Marine Sciences, University of Maine, Orono, Maine, USA
María Pérez-Lorenzo
Department of Ecology and Animal Biology, Universidade de Vigo, 36310 Vigo, Spain
Vincent Taillandier
Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
Birthe Zäncker
GEOMAR, Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany
The Marine Biological Association of the United Kingdom, Plymouth, PL1 2PB, United Kingdom
Related authors
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Julie Dinasquet, Estelle Bigeard, Frédéric Gazeau, Farooq Azam, Cécile Guieu, Emilio Marañón, Céline Ridame, France Van Wambeke, Ingrid Obernosterer, and Anne-Claire Baudoux
Biogeosciences, 19, 1303–1319, https://doi.org/10.5194/bg-19-1303-2022, https://doi.org/10.5194/bg-19-1303-2022, 2022
Short summary
Short summary
Saharan dust deposition of nutrients and trace metals is crucial to microbes in the Mediterranean Sea. Here, we tested the response of microbial and viral communities to simulated dust deposition under present and future conditions of temperature and pH. Overall, the effect of the deposition was dependent on the initial microbial assemblage, and future conditions will intensify microbial responses. We observed effects on trophic interactions, cascading all the way down to viral processes.
France Van Wambeke, Vincent Taillandier, Karine Desboeufs, Elvira Pulido-Villena, Julie Dinasquet, Anja Engel, Emilio Marañón, Céline Ridame, and Cécile Guieu
Biogeosciences, 18, 5699–5717, https://doi.org/10.5194/bg-18-5699-2021, https://doi.org/10.5194/bg-18-5699-2021, 2021
Short summary
Short summary
Simultaneous in situ measurements of (dry and wet) atmospheric deposition and biogeochemical stocks and fluxes in the sunlit waters of the open Mediterranean Sea revealed complex physical and biological processes occurring within the mixed layer. Nitrogen (N) budgets were computed to compare the sources and sinks of N in the mixed layer. The transitory effect observed after a wet dust deposition impacted the microbial food web down to the deep chlorophyll maximum.
Frédéric Gazeau, France Van Wambeke, Emilio Marañón, Maria Pérez-Lorenzo, Samir Alliouane, Christian Stolpe, Thierry Blasco, Nathalie Leblond, Birthe Zäncker, Anja Engel, Barbara Marie, Julie Dinasquet, and Cécile Guieu
Biogeosciences, 18, 5423–5446, https://doi.org/10.5194/bg-18-5423-2021, https://doi.org/10.5194/bg-18-5423-2021, 2021
Short summary
Short summary
Our study shows that the impact of dust deposition on primary production depends on the initial composition and metabolic state of the tested community and is constrained by the amount of nutrients added, to sustain both the fast response of heterotrophic prokaryotes and the delayed one of phytoplankton. Under future environmental conditions, heterotrophic metabolism will be more impacted than primary production, therefore reducing the capacity of surface waters to sequester anthropogenic CO2.
Antonio Tovar-Sánchez, Araceli Rodríguez-Romero, Anja Engel, Birthe Zäncker, Franck Fu, Emilio Marañón, María Pérez-Lorenzo, Matthieu Bressac, Thibaut Wagener, Sylvain Triquet, Guillaume Siour, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 17, 2349–2364, https://doi.org/10.5194/bg-17-2349-2020, https://doi.org/10.5194/bg-17-2349-2020, 2020
Short summary
Short summary
Residence times of particulate metals derived from aerosol deposition in the Sea Surface Microlayer of the Mediterranean Sea ranged from a couple of minutes (e.g., for Fe) to a few hours (e.g., for Cu). Microbial activity seems to play an important role in in this process and in the concentration and distribution of metals between diferent water layers.
Jose Luis Otero-Ferrer, Pedro Cermeño, Antonio Bode, Bieito Fernández-Castro, Josep M. Gasol, Xosé Anxelu G. Morán, Emilio Marañon, Victor Moreira-Coello, Marta M. Varela, Marina Villamaña, and Beatriz Mouriño-Carballido
Biogeosciences, 15, 6199–6220, https://doi.org/10.5194/bg-15-6199-2018, https://doi.org/10.5194/bg-15-6199-2018, 2018
Short summary
Short summary
The effect of inorganic nutrients on planktonic assemblages has been traditionally assessed by looking at concentrations rather than fluxes of nutrient supply. However, in near-steady-state systems such as subtropical gyres, nitrate concentrations are kept close to the detection limit due to phytoplankton uptake. Our results, based on direct measurements of nitrate diffusive fluxes, support the key role of nitrate supply in controlling the structure of marine picoplankton communities.
Chris J. Daniels, Alex J. Poulton, William M. Balch, Emilio Marañón, Tim Adey, Bruce C. Bowler, Pedro Cermeño, Anastasia Charalampopoulou, David W. Crawford, Dave Drapeau, Yuanyuan Feng, Ana Fernández, Emilio Fernández, Glaucia M. Fragoso, Natalia González, Lisa M. Graziano, Rachel Heslop, Patrick M. Holligan, Jason Hopkins, María Huete-Ortega, David A. Hutchins, Phoebe J. Lam, Michael S. Lipsen, Daffne C. López-Sandoval, Socratis Loucaides, Adrian Marchetti, Kyle M. J. Mayers, Andrew P. Rees, Cristina Sobrino, Eithne Tynan, and Toby Tyrrell
Earth Syst. Sci. Data, 10, 1859–1876, https://doi.org/10.5194/essd-10-1859-2018, https://doi.org/10.5194/essd-10-1859-2018, 2018
Short summary
Short summary
Calcifying marine algae (coccolithophores) are key to oceanic biogeochemical processes, such as calcium carbonate production and export. We compile a global database of calcium carbonate production from field samples (n = 2756), alongside primary production rates and coccolithophore abundance. Basic statistical analysis highlights global distribution, average surface and integrated rates, patterns with depth and the importance of considering cell-normalised rates as a simple physiological index.
Léa Olivier, Jacqueline Boutin, Gilles Reverdin, Christopher Hunt, Thomas Linkowski, Alison Chase, Nils Haentjens, Pedro C. Junger, Stephane Pesant, and Douglas Vandemark
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-452, https://doi.org/10.5194/essd-2024-452, 2024
Preprint under review for ESSD
Short summary
Short summary
The air-sea CO2 flux in coastal waters plays a key role in the global carbon budget, yet remains poorly understood. In 2021, the Tara schooner collected 14,000 km of CO2 fugacity (fCO2) data along the South American coast. This dataset improves our understanding of fCO2 in the under-sampled Brazilian coastal region, and provides a unique insight into the complex biogeochemistry of the Amazon River-Ocean continuum.
Guillaume Bourdin, Lee Karp-Boss, Fabien Lombard, Gabriel Gorsky, and Emmanuel Boss
EGUsphere, https://doi.org/10.5194/egusphere-2024-2670, https://doi.org/10.5194/egusphere-2024-2670, 2024
Short summary
Short summary
Remote islands and atolls create unique oceanic processes that affect the surrounding waters, known as the Island Mass Effect (IME). These processes bring nutrients to the ocean surface, leading to increasing phytoplankton concentration near islands. We combine data from various satellites and modeled currents to better track these changes. This reveals a larger IME impact than previously thought, suggesting that islands play a more significant role in ocean food chains in subtropical regions.
Anisbel Leon-Marcos, Moritz Zeising, Manuela van Pinxteren, Sebastian Zeppenfeld, Astrid Bracher, Elena Barbaro, Anja Engel, Matteo Feltracco, Ina Tegen, and Bernd Heinold
EGUsphere, https://doi.org/10.5194/egusphere-2024-2917, https://doi.org/10.5194/egusphere-2024-2917, 2024
Short summary
Short summary
This study represents the Primary marine organic aerosols (PMOA) emission, focusing on their sea-atmosphere transfer. Using the FESOM2.1-REcoM3 model, concentrations of key organic biomolecules were estimated and integrated into the ECHAM6.3–HAM2.3 aerosol-climate model. Results highlight the influence of marine biological activity and surface winds on PMOA emissions, with reasonably good agreement with observations improving aerosol representation in the Southern Oceans.
France Van Wambeke, Pascal Conan, Mireille Pujo-Pay, Vincent Taillandier, Olivier Crispi, Alexandra Pavlidou, Sandra Nunige, Morgane Didry, Christophe Salmeron, and Elvira Pulido-Villena
Biogeosciences, 21, 2621–2640, https://doi.org/10.5194/bg-21-2621-2024, https://doi.org/10.5194/bg-21-2621-2024, 2024
Short summary
Short summary
Phosphomonoesterase (PME) and phosphodiesterase (PDE) activities over the epipelagic zone are described in the eastern Mediterranean Sea in winter and autumn. The types of concentration kinetics obtained for PDE (saturation at 50 µM, high Km, high turnover times) compared to those of PME (saturation at 1 µM, low Km, low turnover times) are discussed in regard to the possible inequal distribution of PDE and PME in the size continuum of organic material and accessibility to phosphodiesters.
Lucille Barré, Frédéric Diaz, Thibaut Wagener, France Van Wambeke, Camille Mazoyer, Christophe Yohia, and Christel Pinazo
Geosci. Model Dev., 16, 6701–6739, https://doi.org/10.5194/gmd-16-6701-2023, https://doi.org/10.5194/gmd-16-6701-2023, 2023
Short summary
Short summary
While several studies have shown that mixotrophs play a crucial role in the carbon cycle, the impact of environmental forcings on their dynamics remains poorly investigated. Using a biogeochemical model that considers mixotrophs, we study the impact of light and nutrient concentration on the ecosystem composition in a highly dynamic Mediterranean coastal area: the Bay of Marseille. We show that mixotrophs cope better with oligotrophic conditions compared to strict auto- and heterotrophs.
Karine Sellegri, Theresa Barthelmeß, Jonathan Trueblood, Antonia Cristi, Evelyn Freney, Clémence Rose, Neill Barr, Mike Harvey, Karl Safi, Stacy Deppeler, Karen Thompson, Wayne Dillon, Anja Engel, and Cliff Law
Atmos. Chem. Phys., 23, 12949–12964, https://doi.org/10.5194/acp-23-12949-2023, https://doi.org/10.5194/acp-23-12949-2023, 2023
Short summary
Short summary
The amount of sea spray emitted to the atmosphere depends on the ocean temperature, but this dependency is not well understood, especially when ocean biology is involved. In this study, we show that sea spray emissions are increased by up to a factor of 4 at low seawater temperatures compared to moderate temperatures, and we quantify the temperature dependence as a function of the ocean biogeochemistry.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Manon Rocco, Erin Dunne, Alexia Saint-Macary, Maija Peltola, Theresa Barthelmeß, Neill Barr, Karl Safi, Andrew Marriner, Stacy Deppeler, James Harnwell, Anja Engel, Aurélie Colomb, Alfonso Saiz-Lopez, Mike Harvey, Cliff S. Law, and Karine Sellegri
EGUsphere, https://doi.org/10.5194/egusphere-2023-516, https://doi.org/10.5194/egusphere-2023-516, 2023
Preprint archived
Short summary
Short summary
During the Sea2cloud campaign in the Southern Pacific Ocean, we measured air-sea emissions from phytopankton of two key atmospheric compounds: DMS and MeSH. These compounds are well-known to play a great role in atmospheric chemistry and climate. We see in this paper that these compounds are most emited by the nanophytoplankton population. We provide here parameters for climate models to predict future trends of the emissions of these compounds and their roles and impacts on the global warming.
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Darren C. McKee, Scott C. Doney, Alice Della Penna, Emmanuel S. Boss, Peter Gaube, Michael J. Behrenfeld, and David M. Glover
Biogeosciences, 19, 5927–5952, https://doi.org/10.5194/bg-19-5927-2022, https://doi.org/10.5194/bg-19-5927-2022, 2022
Short summary
Short summary
As phytoplankton (small, drifting photosynthetic organisms) drift with ocean currents, biomass accumulation rates should be evaluated in a Lagrangian (observer moves with a fluid parcel) as opposed to an Eulerian (observer is stationary) framework. Here, we use profiling floats and surface drifters combined with satellite data to analyse time and length scales of chlorophyll concentrations (a proxy for biomass) and of velocity to quantify how phytoplankton variability is related to water motion.
Lin Yang, Jing Zhang, Anja Engel, and Gui-Peng Yang
Biogeosciences, 19, 5251–5268, https://doi.org/10.5194/bg-19-5251-2022, https://doi.org/10.5194/bg-19-5251-2022, 2022
Short summary
Short summary
Enrichment factors of dissolved organic matter (DOM) in the eastern marginal seas of China exhibited a significant spatio-temporal variation. Photochemical and enrichment processes co-regulated DOM enrichment in the sea-surface microlayer (SML). Autochthonous DOM was more frequently enriched in the SML than terrestrial DOM. DOM in the sub-surface water exhibited higher aromaticity than that in the SML.
Quentin Devresse, Kevin W. Becker, Arne Bendinger, Johannes Hahn, and Anja Engel
Biogeosciences, 19, 5199–5219, https://doi.org/10.5194/bg-19-5199-2022, https://doi.org/10.5194/bg-19-5199-2022, 2022
Short summary
Short summary
Eddies are ubiquitous in the ocean and alter physical, chemical, and biological processes. However, how they affect organic carbon production and consumption is largely unknown. Here we show how an eddy triggers a cascade effect on biomass production and metabolic activities of phyto- and bacterioplankton. Our results may contribute to the improvement of biogeochemical models used to estimate carbon fluxes in the ocean.
Theresa Barthelmeß and Anja Engel
Biogeosciences, 19, 4965–4992, https://doi.org/10.5194/bg-19-4965-2022, https://doi.org/10.5194/bg-19-4965-2022, 2022
Short summary
Short summary
Greenhouse gases released by human activity cause a global rise in mean temperatures. While scientists can predict how much of these gases accumulate in the atmosphere based on not only human-derived sources but also oceanic sinks, it is rather difficult to predict the major influence of coastal ecosystems. We provide a detailed study on the occurrence, composition, and controls of substances that suppress gas exchange. We thus help to determine what controls coastal greenhouse gas fluxes.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Rainer Kiko, Marc Picheral, David Antoine, Marcel Babin, Léo Berline, Tristan Biard, Emmanuel Boss, Peter Brandt, Francois Carlotti, Svenja Christiansen, Laurent Coppola, Leandro de la Cruz, Emilie Diamond-Riquier, Xavier Durrieu de Madron, Amanda Elineau, Gabriel Gorsky, Lionel Guidi, Helena Hauss, Jean-Olivier Irisson, Lee Karp-Boss, Johannes Karstensen, Dong-gyun Kim, Rachel M. Lekanoff, Fabien Lombard, Rubens M. Lopes, Claudie Marec, Andrew M. P. McDonnell, Daniela Niemeyer, Margaux Noyon, Stephanie H. O'Daly, Mark D. Ohman, Jessica L. Pretty, Andreas Rogge, Sarah Searson, Masashi Shibata, Yuji Tanaka, Toste Tanhua, Jan Taucher, Emilia Trudnowska, Jessica S. Turner, Anya Waite, and Lars Stemmann
Earth Syst. Sci. Data, 14, 4315–4337, https://doi.org/10.5194/essd-14-4315-2022, https://doi.org/10.5194/essd-14-4315-2022, 2022
Short summary
Short summary
The term
marine particlescomprises detrital aggregates; fecal pellets; bacterioplankton, phytoplankton and zooplankton; and even fish. Here, we present a global dataset that contains 8805 vertical particle size distribution profiles obtained with Underwater Vision Profiler 5 (UVP5) camera systems. These data are valuable to the scientific community, as they can be used to constrain important biogeochemical processes in the ocean, such as the flux of carbon to the deep sea.
Manuela van Pinxteren, Tiera-Brandy Robinson, Sebastian Zeppenfeld, Xianda Gong, Enno Bahlmann, Khanneh Wadinga Fomba, Nadja Triesch, Frank Stratmann, Oliver Wurl, Anja Engel, Heike Wex, and Hartmut Herrmann
Atmos. Chem. Phys., 22, 5725–5742, https://doi.org/10.5194/acp-22-5725-2022, https://doi.org/10.5194/acp-22-5725-2022, 2022
Short summary
Short summary
A class of marine particles (transparent exopolymer particles, TEPs) that is ubiquitously found in the world oceans was measured for the first time in ambient marine aerosol particles and marine cloud waters in the tropical Atlantic Ocean. TEPs are likely to have good properties for influencing clouds. We show that TEPs are transferred from the ocean to the marine atmosphere via sea-spray formation and our results suggest that they can also form directly in aerosol particles and in cloud water.
Julie Dinasquet, Estelle Bigeard, Frédéric Gazeau, Farooq Azam, Cécile Guieu, Emilio Marañón, Céline Ridame, France Van Wambeke, Ingrid Obernosterer, and Anne-Claire Baudoux
Biogeosciences, 19, 1303–1319, https://doi.org/10.5194/bg-19-1303-2022, https://doi.org/10.5194/bg-19-1303-2022, 2022
Short summary
Short summary
Saharan dust deposition of nutrients and trace metals is crucial to microbes in the Mediterranean Sea. Here, we tested the response of microbial and viral communities to simulated dust deposition under present and future conditions of temperature and pH. Overall, the effect of the deposition was dependent on the initial microbial assemblage, and future conditions will intensify microbial responses. We observed effects on trophic interactions, cascading all the way down to viral processes.
Marie Barbieux, Julia Uitz, Alexandre Mignot, Collin Roesler, Hervé Claustre, Bernard Gentili, Vincent Taillandier, Fabrizio D'Ortenzio, Hubert Loisel, Antoine Poteau, Edouard Leymarie, Christophe Penkerc'h, Catherine Schmechtig, and Annick Bricaud
Biogeosciences, 19, 1165–1194, https://doi.org/10.5194/bg-19-1165-2022, https://doi.org/10.5194/bg-19-1165-2022, 2022
Short summary
Short summary
This study assesses marine biological production in two Mediterranean systems representative of vast desert-like (oligotrophic) areas encountered in the global ocean. We use a novel approach based on non-intrusive high-frequency in situ measurements by two profiling robots, the BioGeoChemical-Argo (BGC-Argo) floats. Our results indicate substantial yet variable production rates and contribution to the whole water column of the subsurface layer, typically considered steady and non-productive.
Karine Desboeufs, Franck Fu, Matthieu Bressac, Antonio Tovar-Sánchez, Sylvain Triquet, Jean-François Doussin, Chiara Giorio, Patrick Chazette, Julie Disnaquet, Anaïs Feron, Paola Formenti, Franck Maisonneuve, Araceli Rodríguez-Romero, Pascal Zapf, François Dulac, and Cécile Guieu
Atmos. Chem. Phys., 22, 2309–2332, https://doi.org/10.5194/acp-22-2309-2022, https://doi.org/10.5194/acp-22-2309-2022, 2022
Short summary
Short summary
This article reports the first concurrent sampling of wet deposition samples and surface seawater and was performed during the PEACETIME cruise in the remote Mediterranean (May–June 2017). Through the chemical composition of trace metals (TMs) in these samples, it emphasizes the decrease of atmospheric metal pollution in this area during the last few decades and the critical role of wet deposition as source of TMs for Mediterranean surface seawater, especially for intense dust deposition events.
Delaney B. Kilgour, Gordon A. Novak, Jon S. Sauer, Alexia N. Moore, Julie Dinasquet, Sarah Amiri, Emily B. Franklin, Kathryn Mayer, Margaux Winter, Clare K. Morris, Tyler Price, Francesca Malfatti, Daniel R. Crocker, Christopher Lee, Christopher D. Cappa, Allen H. Goldstein, Kimberly A. Prather, and Timothy H. Bertram
Atmos. Chem. Phys., 22, 1601–1613, https://doi.org/10.5194/acp-22-1601-2022, https://doi.org/10.5194/acp-22-1601-2022, 2022
Short summary
Short summary
We report measurements of gas-phase volatile organosulfur molecules made during a mesocosm phytoplankton bloom experiment. Dimethyl sulfide (DMS), methanethiol (MeSH), and benzothiazole accounted for on average over 90 % of total gas-phase sulfur emissions. This work focuses on factors controlling the production and emission of DMS and MeSH and the role of non-DMS molecules (such as MeSH and benzothiazole) in secondary sulfate formation in coastal marine environments.
Céline Ridame, Julie Dinasquet, Søren Hallstrøm, Estelle Bigeard, Lasse Riemann, France Van Wambeke, Matthieu Bressac, Elvira Pulido-Villena, Vincent Taillandier, Fréderic Gazeau, Antonio Tovar-Sanchez, Anne-Claire Baudoux, and Cécile Guieu
Biogeosciences, 19, 415–435, https://doi.org/10.5194/bg-19-415-2022, https://doi.org/10.5194/bg-19-415-2022, 2022
Short summary
Short summary
We show that in the Mediterranean Sea spatial variability in N2 fixation is related to the diazotrophic community composition reflecting different nutrient requirements among species. Nutrient supply by Saharan dust is of great importance to diazotrophs, as shown by the strong stimulation of N2 fixation after a simulated dust event under present and future climate conditions; the magnitude of stimulation depends on the degree of limitation related to the diazotrophic community composition.
Stéphanie H. M. Jacquet, Christian Tamburini, Marc Garel, Aurélie Dufour, France Van Vambeke, Frédéric A. C. Le Moigne, Nagib Bhairy, and Sophie Guasco
Biogeosciences, 18, 5891–5902, https://doi.org/10.5194/bg-18-5891-2021, https://doi.org/10.5194/bg-18-5891-2021, 2021
Short summary
Short summary
We compared carbon remineralization rates (MRs) in the western and central Mediterranean Sea in late spring during the PEACETIME cruise, as assessed using the barium tracer. We reported higher and deeper (up to 1000 m depth) MRs in the western basin, potentially sustained by an additional particle export event driven by deep convection. The central basin is the site of a mosaic of blooming and non-blooming water masses and showed lower MRs that were restricted to the upper mesopelagic layer.
Elvira Pulido-Villena, Karine Desboeufs, Kahina Djaoudi, France Van Wambeke, Stéphanie Barrillon, Andrea Doglioli, Anne Petrenko, Vincent Taillandier, Franck Fu, Tiphanie Gaillard, Sophie Guasco, Sandra Nunige, Sylvain Triquet, and Cécile Guieu
Biogeosciences, 18, 5871–5889, https://doi.org/10.5194/bg-18-5871-2021, https://doi.org/10.5194/bg-18-5871-2021, 2021
Short summary
Short summary
We report on phosphorus dynamics in the surface layer of the Mediterranean Sea. Highly sensitive phosphate measurements revealed vertical gradients above the phosphacline. The relative contribution of diapycnal fluxes to total external supply of phosphate to the mixed layer decreased towards the east, where atmospheric deposition dominated. Taken together, external sources of phosphate contributed little to total supply, which was mainly sustained by enzymatic hydrolysis of organic phosphorus.
France Van Wambeke, Vincent Taillandier, Karine Desboeufs, Elvira Pulido-Villena, Julie Dinasquet, Anja Engel, Emilio Marañón, Céline Ridame, and Cécile Guieu
Biogeosciences, 18, 5699–5717, https://doi.org/10.5194/bg-18-5699-2021, https://doi.org/10.5194/bg-18-5699-2021, 2021
Short summary
Short summary
Simultaneous in situ measurements of (dry and wet) atmospheric deposition and biogeochemical stocks and fluxes in the sunlit waters of the open Mediterranean Sea revealed complex physical and biological processes occurring within the mixed layer. Nitrogen (N) budgets were computed to compare the sources and sinks of N in the mixed layer. The transitory effect observed after a wet dust deposition impacted the microbial food web down to the deep chlorophyll maximum.
Frédéric Gazeau, France Van Wambeke, Emilio Marañón, Maria Pérez-Lorenzo, Samir Alliouane, Christian Stolpe, Thierry Blasco, Nathalie Leblond, Birthe Zäncker, Anja Engel, Barbara Marie, Julie Dinasquet, and Cécile Guieu
Biogeosciences, 18, 5423–5446, https://doi.org/10.5194/bg-18-5423-2021, https://doi.org/10.5194/bg-18-5423-2021, 2021
Short summary
Short summary
Our study shows that the impact of dust deposition on primary production depends on the initial composition and metabolic state of the tested community and is constrained by the amount of nutrients added, to sustain both the fast response of heterotrophic prokaryotes and the delayed one of phytoplankton. Under future environmental conditions, heterotrophic metabolism will be more impacted than primary production, therefore reducing the capacity of surface waters to sequester anthropogenic CO2.
Frédéric Gazeau, Céline Ridame, France Van Wambeke, Samir Alliouane, Christian Stolpe, Jean-Olivier Irisson, Sophie Marro, Jean-Michel Grisoni, Guillaume De Liège, Sandra Nunige, Kahina Djaoudi, Elvira Pulido-Villena, Julie Dinasquet, Ingrid Obernosterer, Philippe Catala, and Cécile Guieu
Biogeosciences, 18, 5011–5034, https://doi.org/10.5194/bg-18-5011-2021, https://doi.org/10.5194/bg-18-5011-2021, 2021
Short summary
Short summary
This paper shows that the impacts of Saharan dust deposition in different Mediterranean basins are as strong as those observed in coastal waters but differed substantially between the three tested stations, differences attributed to variable initial metabolic states. A stronger impact of warming and acidification on mineralization suggests a decreased capacity of Mediterranean surface communities to sequester CO2 following the deposition of atmospheric particles in the coming decades.
Evelyn Freney, Karine Sellegri, Alessia Nicosia, Leah R. Williams, Matteo Rinaldi, Jonathan T. Trueblood, André S. H. Prévôt, Melilotus Thyssen, Gérald Grégori, Nils Haëntjens, Julie Dinasquet, Ingrid Obernosterer, France Van Wambeke, Anja Engel, Birthe Zäncker, Karine Desboeufs, Eija Asmi, Hilkka Timonen, and Cécile Guieu
Atmos. Chem. Phys., 21, 10625–10641, https://doi.org/10.5194/acp-21-10625-2021, https://doi.org/10.5194/acp-21-10625-2021, 2021
Short summary
Short summary
In this work, we present observations of the organic aerosol content in primary sea spray aerosols (SSAs) continuously generated along a 5-week cruise in the Mediterranean. This information is combined with seawater biogeochemical properties also measured continuously along the ship track to develop a number of parametrizations that can be used in models to determine SSA organic content in oligotrophic waters that represent 60 % of the oceans from commonly measured seawater variables.
Charlotte M. Beall, Jennifer M. Michaud, Meredith A. Fish, Julie Dinasquet, Gavin C. Cornwell, M. Dale Stokes, Michael D. Burkart, Thomas C. Hill, Paul J. DeMott, and Kimberly A. Prather
Atmos. Chem. Phys., 21, 9031–9045, https://doi.org/10.5194/acp-21-9031-2021, https://doi.org/10.5194/acp-21-9031-2021, 2021
Short summary
Short summary
Ice-nucleating particles (INPs) can influence multiple climate-relevant cloud properties by triggering droplet freezing at relative humidities below or temperatures above the freezing point of water. The ocean is a significant INP source; however, the specific identities of marine INPs remain largely unknown. Here, we identify 14 ice-nucleating microbes from aerosol and precipitation samples collected at a coastal site in southern California, two or more of which are likely marine.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
France Van Wambeke, Elvira Pulido, Philippe Catala, Julie Dinasquet, Kahina Djaoudi, Anja Engel, Marc Garel, Sophie Guasco, Barbara Marie, Sandra Nunige, Vincent Taillandier, Birthe Zäncker, and Christian Tamburini
Biogeosciences, 18, 2301–2323, https://doi.org/10.5194/bg-18-2301-2021, https://doi.org/10.5194/bg-18-2301-2021, 2021
Short summary
Short summary
Michaelis–Menten kinetics were determined for alkaline phosphatase, aminopeptidase and β-glucosidase in the Mediterranean Sea. Although the ectoenzymatic-hydrolysis contribution to heterotrophic prokaryotic needs was high in terms of N, it was low in terms of C. This study points out the biases in interpretation of the relative differences in activities among the three tested enzymes in regard to the choice of added concentrations of fluorogenic substrates.
Jonathan V. Trueblood, Alessia Nicosia, Anja Engel, Birthe Zäncker, Matteo Rinaldi, Evelyn Freney, Melilotus Thyssen, Ingrid Obernosterer, Julie Dinasquet, Franco Belosi, Antonio Tovar-Sánchez, Araceli Rodriguez-Romero, Gianni Santachiara, Cécile Guieu, and Karine Sellegri
Atmos. Chem. Phys., 21, 4659–4676, https://doi.org/10.5194/acp-21-4659-2021, https://doi.org/10.5194/acp-21-4659-2021, 2021
Short summary
Short summary
Sea spray aerosols (SSAs) can be an important source of ice-nucleating particles (INPs) that impact cloud properties over the oceans. In the Mediterranean Sea, we found that the INPs in the seawater surface microlayer increased by an order of magnitude after a rain dust event that impacted iron and bacterial abundances. The INP properties of SSA (INPSSA) increased after a 3 d delay. Outside this event, INPSSA could be parameterized as a function of the seawater biogeochemistry.
Birthe Zäncker, Michael Cunliffe, and Anja Engel
Biogeosciences, 18, 2107–2118, https://doi.org/10.5194/bg-18-2107-2021, https://doi.org/10.5194/bg-18-2107-2021, 2021
Short summary
Short summary
Fungi are found in numerous marine environments. Our study found an increased importance of fungi in the Ionian Sea, where bacterial and phytoplankton counts were reduced, but organic matter was still available, suggesting fungi might benefit from the reduced competition from bacteria in low-nutrient, low-chlorophyll (LNLC) regions.
Fei Chai, Yuntao Wang, Xiaogang Xing, Yunwei Yan, Huijie Xue, Mark Wells, and Emmanuel Boss
Biogeosciences, 18, 849–859, https://doi.org/10.5194/bg-18-849-2021, https://doi.org/10.5194/bg-18-849-2021, 2021
Short summary
Short summary
The unique observations by a Biogeochemical Argo float in the NW Pacific Ocean captured the impact of a super typhoon on upper-ocean physical and biological processes. Our result reveals typhoons can increase the surface chlorophyll through strong vertical mixing without bringing nutrients upward from the depth. The vertical redistribution of chlorophyll contributes little to enhance the primary production, which is contradictory to many former satellite-based studies related to this topic.
Nadja Triesch, Manuela van Pinxteren, Anja Engel, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 163–181, https://doi.org/10.5194/acp-21-163-2021, https://doi.org/10.5194/acp-21-163-2021, 2021
Short summary
Short summary
To investigate the sources of free amino acids (FAAs) in the marine atmosphere, concerted measurements (the simultaneous investigation of seawater, size-segregated aerosol particles and cloud water) were performed at the Cabo Verde islands. This study describes the transfer of FAAs as part of organic matter from the ocean into the atmosphere on a molecular level. In the investigated marine environment, a high enrichment of FAAs in submicron aerosol particles and in cloud droplets was observed.
Kahina Djaoudi, France Van Wambeke, Aude Barani, Nagib Bhairy, Servanne Chevaillier, Karine Desboeufs, Sandra Nunige, Mohamed Labiadh, Thierry Henry des Tureaux, Dominique Lefèvre, Amel Nouara, Christos Panagiotopoulos, Marc Tedetti, and Elvira Pulido-Villena
Biogeosciences, 17, 6271–6285, https://doi.org/10.5194/bg-17-6271-2020, https://doi.org/10.5194/bg-17-6271-2020, 2020
Cécile Guieu, Fabrizio D'Ortenzio, François Dulac, Vincent Taillandier, Andrea Doglioli, Anne Petrenko, Stéphanie Barrillon, Marc Mallet, Pierre Nabat, and Karine Desboeufs
Biogeosciences, 17, 5563–5585, https://doi.org/10.5194/bg-17-5563-2020, https://doi.org/10.5194/bg-17-5563-2020, 2020
Short summary
Short summary
We describe here the objectives and strategy of the PEACETIME project and cruise, dedicated to dust deposition and its impacts in the Mediterranean Sea. Our strategy to go a step further forward than in previous approaches in understanding these impacts by catching a real deposition event at sea is detailed. We summarize the work performed at sea, the type of data acquired and their valorization in the papers published in the special issue.
Alexandra N. Loginova, Andrew W. Dale, Frédéric A. C. Le Moigne, Sören Thomsen, Stefan Sommer, David Clemens, Klaus Wallmann, and Anja Engel
Biogeosciences, 17, 4663–4679, https://doi.org/10.5194/bg-17-4663-2020, https://doi.org/10.5194/bg-17-4663-2020, 2020
Short summary
Short summary
We measured dissolved organic carbon (DOC), nitrogen (DON) and matter (DOM) optical properties in pore waters and near-bottom waters of the eastern tropical South Pacific off Peru. The difference between diffusion-driven and net fluxes of DOC and DON and qualitative changes in DOM optical properties suggested active microbial utilisation of the released DOM at the sediment–water interface. Our results suggest that the sediment release of DOM contributes to microbial processes in the area.
Sebastian Zeppenfeld, Manuela van Pinxteren, Anja Engel, and Hartmut Herrmann
Ocean Sci., 16, 817–830, https://doi.org/10.5194/os-16-817-2020, https://doi.org/10.5194/os-16-817-2020, 2020
Short summary
Short summary
An analytical method combining electro-dialysis with high-performance anionic exchange chromatography coupled to pulsed amperometric detection was developed and optimized for analyzing free and combined carbohydrates in seawater and other saline environmental samples.
Vincent Taillandier, Louis Prieur, Fabrizio D'Ortenzio, Maurizio Ribera d'Alcalà, and Elvira Pulido-Villena
Biogeosciences, 17, 3343–3366, https://doi.org/10.5194/bg-17-3343-2020, https://doi.org/10.5194/bg-17-3343-2020, 2020
Short summary
Short summary
This study addresses the role played by vertical diffusion in the nutrient enrichment of the Levantine intermediate waters, a process particularly relevant inside thermohaline staircases. Thanks to a high profiling frequency over a 4-year period, BGC-Argo float observations reveal the temporal continuity of the layering patterns encountered during the cruise PEACETIME and their impact on vertical and lateral transfers of nitrate between the deep reservoir and the surface productive zone.
Kimberly A. Casey, Cecile S. Rousseaux, Watson W. Gregg, Emmanuel Boss, Alison P. Chase, Susanne E. Craig, Colleen B. Mouw, Rick A. Reynolds, Dariusz Stramski, Steven G. Ackleson, Annick Bricaud, Blake Schaeffer, Marlon R. Lewis, and Stéphane Maritorena
Earth Syst. Sci. Data, 12, 1123–1139, https://doi.org/10.5194/essd-12-1123-2020, https://doi.org/10.5194/essd-12-1123-2020, 2020
Short summary
Short summary
An increase in spectral resolution in forthcoming remote-sensing missions will improve our ability to understand and characterize aquatic ecosystems. We organize and provide a global compilation of high spectral resolution inherent and apparent optical property data from polar, midlatitude, and equatorial open-ocean, estuary, coastal, and inland waters. The data are intended to aid in development of remote-sensing data product algorithms and to perform calibration and validation activities.
Antonio Tovar-Sánchez, Araceli Rodríguez-Romero, Anja Engel, Birthe Zäncker, Franck Fu, Emilio Marañón, María Pérez-Lorenzo, Matthieu Bressac, Thibaut Wagener, Sylvain Triquet, Guillaume Siour, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 17, 2349–2364, https://doi.org/10.5194/bg-17-2349-2020, https://doi.org/10.5194/bg-17-2349-2020, 2020
Short summary
Short summary
Residence times of particulate metals derived from aerosol deposition in the Sea Surface Microlayer of the Mediterranean Sea ranged from a couple of minutes (e.g., for Fe) to a few hours (e.g., for Cu). Microbial activity seems to play an important role in in this process and in the concentration and distribution of metals between diferent water layers.
Philippe Massicotte, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Mathieu Ardyna, Laurent Arnaud, Lise Artigue, Cyril Aubry, Pierre Ayotte, Guislain Bécu, Simon Bélanger, Ronald Benner, Henry C. Bittig, Annick Bricaud, Éric Brossier, Flavienne Bruyant, Laurent Chauvaud, Debra Christiansen-Stowe, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Christine Cox, Aurelie Delaforge, Thibaud Dezutter, Céline Dimier, Florent Domine, Francis Dufour, Christiane Dufresne, Dany Dumont, Jens Ehn, Brent Else, Joannie Ferland, Marie-Hélène Forget, Louis Fortier, Martí Galí, Virginie Galindo, Morgane Gallinari, Nicole Garcia, Catherine Gérikas Ribeiro, Margaux Gourdal, Priscilla Gourvil, Clemence Goyens, Pierre-Luc Grondin, Pascal Guillot, Caroline Guilmette, Marie-Noëlle Houssais, Fabien Joux, Léo Lacour, Thomas Lacour, Augustin Lafond, José Lagunas, Catherine Lalande, Julien Laliberté, Simon Lambert-Girard, Jade Larivière, Johann Lavaud, Anita LeBaron, Karine Leblanc, Florence Le Gall, Justine Legras, Mélanie Lemire, Maurice Levasseur, Edouard Leymarie, Aude Leynaert, Adriana Lopes dos Santos, Antonio Lourenço, David Mah, Claudie Marec, Dominique Marie, Nicolas Martin, Constance Marty, Sabine Marty, Guillaume Massé, Atsushi Matsuoka, Lisa Matthes, Brivaela Moriceau, Pierre-Emmanuel Muller, Christopher-John Mundy, Griet Neukermans, Laurent Oziel, Christos Panagiotopoulos, Jean-Jacques Pangrazi, Ghislain Picard, Marc Picheral, France Pinczon du Sel, Nicole Pogorzelec, Ian Probert, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Erin Reimer, Jean-François Rontani, Søren Rysgaard, Blanche Saint-Béat, Makoto Sampei, Julie Sansoulet, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Caroline Sévigny, Yuan Shen, Margot Tragin, Jean-Éric Tremblay, Daniel Vaulot, Gauthier Verin, Frédéric Vivier, Anda Vladoiu, Jeremy Whitehead, and Marcel Babin
Earth Syst. Sci. Data, 12, 151–176, https://doi.org/10.5194/essd-12-151-2020, https://doi.org/10.5194/essd-12-151-2020, 2020
Short summary
Short summary
The Green Edge initiative was developed to understand the processes controlling the primary productivity and the fate of organic matter produced during the Arctic spring bloom (PSB). In this article, we present an overview of an extensive and comprehensive dataset acquired during two expeditions conducted in 2015 and 2016 on landfast ice southeast of Qikiqtarjuaq Island in Baffin Bay.
Marie Maßmig, Jan Lüdke, Gerd Krahmann, and Anja Engel
Biogeosciences, 17, 215–230, https://doi.org/10.5194/bg-17-215-2020, https://doi.org/10.5194/bg-17-215-2020, 2020
Short summary
Short summary
Little is known about the rates of bacterial element cycling in oxygen minimum zones (OMZs). We measured bacterial production and rates of extracellular hydrolytic enzymes at various in situ oxygen concentrations in the OMZ off Peru. Our field data show unhampered bacterial activity at low oxygen concentrations. Meanwhile bacterial degradation of organic matter substantially contributed to the formation of the OMZ.
Alexandra N. Loginova, Sören Thomsen, Marcus Dengler, Jan Lüdke, and Anja Engel
Biogeosciences, 16, 2033–2047, https://doi.org/10.5194/bg-16-2033-2019, https://doi.org/10.5194/bg-16-2033-2019, 2019
Short summary
Short summary
High primary production in the Peruvian upwelling system is followed by rapid heterotrophic utilization of organic matter and supports the formation of one of the most intense oxygen minimum zones (OMZs) in the world. Here, we estimated vertical fluxes of oxygen and dissolved organic matter (DOM) from the surface to the OMZ. Our results suggest that DOM remineralization substantially reduces oxygen concentration in the upper water column and controls the shape of the upper oxycline.
Marie Barbieux, Julia Uitz, Bernard Gentili, Orens Pasqueron de Fommervault, Alexandre Mignot, Antoine Poteau, Catherine Schmechtig, Vincent Taillandier, Edouard Leymarie, Christophe Penkerc'h, Fabrizio D'Ortenzio, Hervé Claustre, and Annick Bricaud
Biogeosciences, 16, 1321–1342, https://doi.org/10.5194/bg-16-1321-2019, https://doi.org/10.5194/bg-16-1321-2019, 2019
Short summary
Short summary
As commonly observed in oligotrophic stratified waters, a subsurface (or deep) chlorophyll maximum (SCM) frequently characterizes the vertical distribution of phytoplankton chlorophyll in the Mediterranean Sea. SCMs often result from photoacclimation of the phytoplankton organisms. However they can also result from an actual increase in phytoplankton carbon biomass. Our results also suggest that a variety of intermediate types of SCMs are encountered between these two endmember situations.
Soeren Thomsen, Johannes Karstensen, Rainer Kiko, Gerd Krahmann, Marcus Dengler, and Anja Engel
Biogeosciences, 16, 979–998, https://doi.org/10.5194/bg-16-979-2019, https://doi.org/10.5194/bg-16-979-2019, 2019
Short summary
Short summary
Physical and biogeochemical observations from an autonomous underwater vehicle in combination with ship-based measurements are used to investigate remote and local drivers of the oxygen and nutrient variability off Mauritania. Beside the transport of oxygen and nutrients characteristics from remote areas towards Mauritania also local remineralization of organic material close to the seabed seems to be important for the distribution of oxygen and nutrients.
Carolina Cisternas-Novoa, Frédéric A. C. Le Moigne, and Anja Engel
Biogeosciences, 16, 927–947, https://doi.org/10.5194/bg-16-927-2019, https://doi.org/10.5194/bg-16-927-2019, 2019
Short summary
Short summary
We investigate the composition and vertical fluxes of POM in two deep basins of the Baltic Sea (GB: Gotland Basin and LD: Landsort Deep). The two basins showed different O2 regimes resulting from the intrusion of oxygen-rich water from the North Sea that ventilated the deep waters in GB, but not in LD.
In GB, O2 intrusions lead to a high abundance of manganese oxides that aggregate with POM, altering its composition and vertical flux and contributing to a higher POC transfer efficiency in GB.
Christos Panagiotopoulos, Mireille Pujo-Pay, Mar Benavides, France Van Wambeke, and Richard Sempéré
Biogeosciences, 16, 105–116, https://doi.org/10.5194/bg-16-105-2019, https://doi.org/10.5194/bg-16-105-2019, 2019
Jose Luis Otero-Ferrer, Pedro Cermeño, Antonio Bode, Bieito Fernández-Castro, Josep M. Gasol, Xosé Anxelu G. Morán, Emilio Marañon, Victor Moreira-Coello, Marta M. Varela, Marina Villamaña, and Beatriz Mouriño-Carballido
Biogeosciences, 15, 6199–6220, https://doi.org/10.5194/bg-15-6199-2018, https://doi.org/10.5194/bg-15-6199-2018, 2018
Short summary
Short summary
The effect of inorganic nutrients on planktonic assemblages has been traditionally assessed by looking at concentrations rather than fluxes of nutrient supply. However, in near-steady-state systems such as subtropical gyres, nitrate concentrations are kept close to the detection limit due to phytoplankton uptake. Our results, based on direct measurements of nitrate diffusive fluxes, support the key role of nitrate supply in controlling the structure of marine picoplankton communities.
Chris J. Daniels, Alex J. Poulton, William M. Balch, Emilio Marañón, Tim Adey, Bruce C. Bowler, Pedro Cermeño, Anastasia Charalampopoulou, David W. Crawford, Dave Drapeau, Yuanyuan Feng, Ana Fernández, Emilio Fernández, Glaucia M. Fragoso, Natalia González, Lisa M. Graziano, Rachel Heslop, Patrick M. Holligan, Jason Hopkins, María Huete-Ortega, David A. Hutchins, Phoebe J. Lam, Michael S. Lipsen, Daffne C. López-Sandoval, Socratis Loucaides, Adrian Marchetti, Kyle M. J. Mayers, Andrew P. Rees, Cristina Sobrino, Eithne Tynan, and Toby Tyrrell
Earth Syst. Sci. Data, 10, 1859–1876, https://doi.org/10.5194/essd-10-1859-2018, https://doi.org/10.5194/essd-10-1859-2018, 2018
Short summary
Short summary
Calcifying marine algae (coccolithophores) are key to oceanic biogeochemical processes, such as calcium carbonate production and export. We compile a global database of calcium carbonate production from field samples (n = 2756), alongside primary production rates and coccolithophore abundance. Basic statistical analysis highlights global distribution, average surface and integrated rates, patterns with depth and the importance of considering cell-normalised rates as a simple physiological index.
Nicholas Bock, France Van Wambeke, Moïra Dion, and Solange Duhamel
Biogeosciences, 15, 3909–3925, https://doi.org/10.5194/bg-15-3909-2018, https://doi.org/10.5194/bg-15-3909-2018, 2018
Short summary
Short summary
We report the distribution of major nano- and pico-plankton groups in the western tropical South Pacific. We found microbial community structure to be typical of highly stratified regions of the open ocean, with significant contributions to total biomass by picophytoeukaryotes, and N2 fixation playing a central role in regulating ecosystem processes. Our results also suggest a reduction in the importance of predation in regulating bacteria populations under nutrient-limited conditions.
Cui-Ci Sun, Martin Sperling, and Anja Engel
Biogeosciences, 15, 3577–3589, https://doi.org/10.5194/bg-15-3577-2018, https://doi.org/10.5194/bg-15-3577-2018, 2018
Short summary
Short summary
Biogenic gel particles such as transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP) are important components in the sea-surface microlayer (SML). Their potential role in air–sea gas exchange and in primary organic aerosol emission has generated considerable research interest. Our wind wave channel experiment revealed how wind speed controls the accumulation and size distribution of biogenic gel particles in the SML.
France Van Wambeke, Audrey Gimenez, Solange Duhamel, Cécile Dupouy, Dominique Lefevre, Mireille Pujo-Pay, and Thierry Moutin
Biogeosciences, 15, 2669–2689, https://doi.org/10.5194/bg-15-2669-2018, https://doi.org/10.5194/bg-15-2669-2018, 2018
Short summary
Short summary
The western tropical South Pacific Ocean has recently been shown to be a hotspot for biological nitrogen fixation. In this study, we examined the horizontal and vertical distribution of heterotrophic prokaryotic production alongside photosynthetic rates, nitrogen fixation rates and phosphate turnover times across the western tropical South Pacific Ocean, in order to relate these fluxes to bottom–up controls (related to nitrogen, phosphate and labile C availability).
Vincent Taillandier, Thibaut Wagener, Fabrizio D'Ortenzio, Nicolas Mayot, Hervé Legoff, Joséphine Ras, Laurent Coppola, Orens Pasqueron de Fommervault, Catherine Schmechtig, Emilie Diamond, Henry Bittig, Dominique Lefevre, Edouard Leymarie, Antoine Poteau, and Louis Prieur
Earth Syst. Sci. Data, 10, 627–641, https://doi.org/10.5194/essd-10-627-2018, https://doi.org/10.5194/essd-10-627-2018, 2018
Short summary
Short summary
We report on data from an oceanographic cruise, covering western, central and eastern parts of the Mediterranean Sea. This cruise was fully dedicated to the maintenance and the metrological verification of a biogeochemical observing system based on a fleet of BGC-Argo floats.
Emanuele Organelli, Marie Barbieux, Hervé Claustre, Catherine Schmechtig, Antoine Poteau, Annick Bricaud, Emmanuel Boss, Nathan Briggs, Giorgio Dall'Olmo, Fabrizio D'Ortenzio, Edouard Leymarie, Antoine Mangin, Grigor Obolensky, Christophe Penkerc'h, Louis Prieur, Collin Roesler, Romain Serra, Julia Uitz, and Xiaogang Xing
Earth Syst. Sci. Data, 9, 861–880, https://doi.org/10.5194/essd-9-861-2017, https://doi.org/10.5194/essd-9-861-2017, 2017
Short summary
Short summary
Autonomous robotic platforms such as Biogeochemical-Argo floats allow observation of the ocean, from the surface to the interior, in a new and systematic way. A fleet of 105 of these platforms have collected several biological, biogeochemical, and optical variables in still unexplored regions. The quality-controlled databases presented here will enable scientists to improve knowledge on the functioning of marine ecosystems and investigate the climatic implications.
Xiang Gong, Wensheng Jiang, Linhui Wang, Huiwang Gao, Emmanuel Boss, Xiaohong Yao, Shuh-Ji Kao, and Jie Shi
Biogeosciences, 14, 2371–2386, https://doi.org/10.5194/bg-14-2371-2017, https://doi.org/10.5194/bg-14-2371-2017, 2017
Short summary
Short summary
The subsurface chlorophyll maximum layer (SCML) forms near the nitracline. By incorporating a piecewise function for the approximate Gaussian vertical profile of chlorophyll, we derive analytical solutions of a specified nutrient–phytoplankton model. Nitracline depth is deeper than SCML depth, and a thinner SCML corresponds to a steeper nitracline. A higher light attenuation coefficient leads to a shallower but steeper nitracline. Nitracline steepness is independent of surface light intensity.
Anja Engel, Hannes Wagner, Frédéric A. C. Le Moigne, and Samuel T. Wilson
Biogeosciences, 14, 1825–1838, https://doi.org/10.5194/bg-14-1825-2017, https://doi.org/10.5194/bg-14-1825-2017, 2017
Short summary
Short summary
To better understand the role of oxygen for the biological carbon pump, we studied particle fluxes through hypoxic waters in the eastern tropical North Atlantic. Attenuation of organic carbon fluxes over depth was lower than expected from seawater temperatures, indicating co-effects of oxygen concentration. Differences were observed for individual organic components, suggesting that future carbon export fluxes may depend on changes in surface ocean organic matter quality under global change.
Helmke Hepach, Birgit Quack, Susann Tegtmeier, Anja Engel, Astrid Bracher, Steffen Fuhlbrügge, Luisa Galgani, Elliot L. Atlas, Johannes Lampel, Udo Frieß, and Kirstin Krüger
Atmos. Chem. Phys., 16, 12219–12237, https://doi.org/10.5194/acp-16-12219-2016, https://doi.org/10.5194/acp-16-12219-2016, 2016
Short summary
Short summary
We present surface seawater measurements of bromo- and iodocarbons, which are involved in numerous atmospheric processes such as tropospheric and stratospheric ozone chemistry, from the highly productive Peruvian upwelling. By combining trace gas measurements, characterization of organic matter and phytoplankton species, and tropospheric modelling, we show that large amounts of iodocarbons produced from the pool of organic matter may contribute strongly to local tropospheric iodine loading.
Ilana Berman-Frank, Dina Spungin, Eyal Rahav, France Van Wambeke, Kendra Turk-Kubo, and Thierry Moutin
Biogeosciences, 13, 3793–3805, https://doi.org/10.5194/bg-13-3793-2016, https://doi.org/10.5194/bg-13-3793-2016, 2016
Short summary
Short summary
In the marine environment, sticky sugar-containing gels, termed transparent exopolymeric particles (TEP), are produced from biological sources and physical and chemical processes. These compounds are essential vectors enhancing downward flow of organic matter and its storage at depth. Spatial and temporal dynamics of TEPs were followed for 23 days during the VAHINE mesocosm experiment that investigated the fate of nitrogen and carbon derived from organisms fixing atmospheric N2 (diazotrophs).
Carolin R. Löscher, Hermann W. Bange, Ruth A. Schmitz, Cameron M. Callbeck, Anja Engel, Helena Hauss, Torsten Kanzow, Rainer Kiko, Gaute Lavik, Alexandra Loginova, Frank Melzner, Judith Meyer, Sven C. Neulinger, Markus Pahlow, Ulf Riebesell, Harald Schunck, Sören Thomsen, and Hannes Wagner
Biogeosciences, 13, 3585–3606, https://doi.org/10.5194/bg-13-3585-2016, https://doi.org/10.5194/bg-13-3585-2016, 2016
Short summary
Short summary
The ocean loses oxygen due to climate change. Addressing this issue in tropical ocean regions (off Peru and Mauritania), we aimed to understand the effects of oxygen depletion on various aspects of marine biogeochemistry, including primary production and export production, the nitrogen cycle, greenhouse gas production, organic matter fluxes and remineralization, and the role of zooplankton and viruses.
Marc Tedetti, Lauriane Marie, Rüdiger Röttgers, Martine Rodier, France Van Wambeke, Sandra Helias, Mathieu Caffin, Véronique Cornet-Barthaux, and Cécile Dupouy
Biogeosciences, 13, 3283–3303, https://doi.org/10.5194/bg-13-3283-2016, https://doi.org/10.5194/bg-13-3283-2016, 2016
Short summary
Short summary
In the framework of the VAHINE project, we investigated the spectral characteristics and the variability of dissolved and particulate chromophoric materials throughout a 23-day mesocosm experiment conducted in the south-west Pacific at the mouth of the New Caledonian coral lagoon. We found that the dynamics of CDOM and particulate matter absorption were strongly coupled with those of cyanobacteria Synechococcus spp. and bacterial production.
France Van Wambeke, Ulrike Pfreundt, Aude Barani, Hugo Berthelot, Thierry Moutin, Martine Rodier, Wolfgang R. Hess, and Sophie Bonnet
Biogeosciences, 13, 3187–3202, https://doi.org/10.5194/bg-13-3187-2016, https://doi.org/10.5194/bg-13-3187-2016, 2016
Short summary
Short summary
The phytoplankton is at the base of the plankton food web in large parts of oceanic "deserts" such as the South Pacific Ocean, where nitrogen sources limit activity. Mesocosms were fertilized with phosphorus to stimulate diazotrophy (atmospheric N2 fixation). Mostly diazotroph-derived nitrogen fuelled the heterotrophic bacterial community through indirect processes generating dissolved organic matter and detritus, such as mortality, lysis and grazing of both diazotrophs and non-diazotrophs.
Luisa Galgani and Anja Engel
Biogeosciences, 13, 2453–2473, https://doi.org/10.5194/bg-13-2453-2016, https://doi.org/10.5194/bg-13-2453-2016, 2016
Ulrike Pfreundt, France Van Wambeke, Mathieu Caffin, Sophie Bonnet, and Wolfgang R. Hess
Biogeosciences, 13, 2319–2337, https://doi.org/10.5194/bg-13-2319-2016, https://doi.org/10.5194/bg-13-2319-2016, 2016
Short summary
Short summary
The Southwest Pacific has one of the highest N2 fixation rates in the global ocean, yet information is scarce on the bacterioplankton interrelationships. We detected high microbial diversity in the New Caledonia lagoon and inside a 50 000 L experimental enclosure of the same water mass over 3 weeks and give evidence for previously unknown niche partitioning. Phosphate fertilization promoted the growth of efficient N2 fixing cyanobacteria triggering the growth of most heterotrophic bacteria.
Anja Engel and Luisa Galgani
Biogeosciences, 13, 989–1007, https://doi.org/10.5194/bg-13-989-2016, https://doi.org/10.5194/bg-13-989-2016, 2016
Short summary
Short summary
The sea-surface microlayer (SML) is a very thin layer at the interface between the ocean and the atmosphere. Organic compounds in the SML may influence the exchange of gases between seawater and air, as well as primary aerosol emission. Here, we report results from the SOPRAN M91 cruise, a field study to the coastal upwelling regime off Peru's coast in 2012. Our study provides novel insight to the relationship between plankton productivity, wind speed and organic matter accumulation in the SML.
A. N. Loginova, C. Borchard, J. Meyer, H. Hauss, R. Kiko, and A. Engel
Biogeosciences, 12, 6897–6914, https://doi.org/10.5194/bg-12-6897-2015, https://doi.org/10.5194/bg-12-6897-2015, 2015
A. Engel, C. Borchard, A. Loginova, J. Meyer, H. Hauss, and R. Kiko
Biogeosciences, 12, 5647–5665, https://doi.org/10.5194/bg-12-5647-2015, https://doi.org/10.5194/bg-12-5647-2015, 2015
C. Borchard and A. Engel
Biogeosciences, 12, 1271–1284, https://doi.org/10.5194/bg-12-1271-2015, https://doi.org/10.5194/bg-12-1271-2015, 2015
M. L. Estapa, K. Buesseler, E. Boss, and G. Gerbi
Biogeosciences, 10, 5517–5531, https://doi.org/10.5194/bg-10-5517-2013, https://doi.org/10.5194/bg-10-5517-2013, 2013
A. Silyakova, R. G. J. Bellerby, K. G. Schulz, J. Czerny, T. Tanaka, G. Nondal, U. Riebesell, A. Engel, T. De Lange, and A. Ludvig
Biogeosciences, 10, 4847–4859, https://doi.org/10.5194/bg-10-4847-2013, https://doi.org/10.5194/bg-10-4847-2013, 2013
J. Czerny, K. G. Schulz, T. Boxhammer, R. G. J. Bellerby, J. Büdenbender, A. Engel, S. A. Krug, A. Ludwig, K. Nachtigall, G. Nondal, B. Niehoff, A. Silyakova, and U. Riebesell
Biogeosciences, 10, 3109–3125, https://doi.org/10.5194/bg-10-3109-2013, https://doi.org/10.5194/bg-10-3109-2013, 2013
J. Peloquin, C. Swan, N. Gruber, M. Vogt, H. Claustre, J. Ras, J. Uitz, R. Barlow, M. Behrenfeld, R. Bidigare, H. Dierssen, G. Ditullio, E. Fernandez, C. Gallienne, S. Gibb, R. Goericke, L. Harding, E. Head, P. Holligan, S. Hooker, D. Karl, M. Landry, R. Letelier, C. A. Llewellyn, M. Lomas, M. Lucas, A. Mannino, J.-C. Marty, B. G. Mitchell, F. Muller-Karger, N. Nelson, C. O'Brien, B. Prezelin, D. Repeta, W. O. Jr. Smith, D. Smythe-Wright, R. Stumpf, A. Subramaniam, K. Suzuki, C. Trees, M. Vernet, N. Wasmund, and S. Wright
Earth Syst. Sci. Data, 5, 109–123, https://doi.org/10.5194/essd-5-109-2013, https://doi.org/10.5194/essd-5-109-2013, 2013
S. D. Archer, S. A. Kimmance, J. A. Stephens, F. E. Hopkins, R. G. J. Bellerby, K. G. Schulz, J. Piontek, and A. Engel
Biogeosciences, 10, 1893–1908, https://doi.org/10.5194/bg-10-1893-2013, https://doi.org/10.5194/bg-10-1893-2013, 2013
J. Unger, S. Endres, N. Wannicke, A. Engel, M. Voss, G. Nausch, and M. Nausch
Biogeosciences, 10, 1483–1499, https://doi.org/10.5194/bg-10-1483-2013, https://doi.org/10.5194/bg-10-1483-2013, 2013
A. Engel, C. Borchard, J. Piontek, K. G. Schulz, U. Riebesell, and R. Bellerby
Biogeosciences, 10, 1291–1308, https://doi.org/10.5194/bg-10-1291-2013, https://doi.org/10.5194/bg-10-1291-2013, 2013
J. Piontek, C. Borchard, M. Sperling, K. G. Schulz, U. Riebesell, and A. Engel
Biogeosciences, 10, 297–314, https://doi.org/10.5194/bg-10-297-2013, https://doi.org/10.5194/bg-10-297-2013, 2013
M. Sperling, J. Piontek, G. Gerdts, A. Wichels, H. Schunck, A.-S. Roy, J. La Roche, J. Gilbert, J. I. Nissimov, L. Bittner, S. Romac, U. Riebesell, and A. Engel
Biogeosciences, 10, 181–191, https://doi.org/10.5194/bg-10-181-2013, https://doi.org/10.5194/bg-10-181-2013, 2013
K. G. Schulz, R. G. J. Bellerby, C. P. D. Brussaard, J. Büdenbender, J. Czerny, A. Engel, M. Fischer, S. Koch-Klavsen, S. A. Krug, S. Lischka, A. Ludwig, M. Meyerhöfer, G. Nondal, A. Silyakova, A. Stuhr, and U. Riebesell
Biogeosciences, 10, 161–180, https://doi.org/10.5194/bg-10-161-2013, https://doi.org/10.5194/bg-10-161-2013, 2013
Related subject area
Biodiversity and Ecosystem Function: Microbial Ecology & Geomicrobiology
The geothermal gradient shapes microbial diversity and processes in natural-gas-bearing sedimentary aquifers
Microbial methane formation in deep aquifers associated with the sediment burial history at a coastal site
Impact of metabolism and temperature on 2H ∕ 1H fractionation in lipids of the marine bacterium Shewanella piezotolerans WP3
Maximum summer temperatures predict the temperature adaptation of Arctic soil bacterial communities
Potential contributions of nitrifiers and denitrifiers to nitrous oxide sources and sinks in China's estuarine and coastal areas
Aqueous system-level processes and prokaryote assemblages in the ferruginous and sulfate-rich bottom waters of a post-mining lake
Abundances and morphotypes of the coccolithophore Emiliania huxleyi in southern Patagonia compared to neighbouring oceans and Northern Hemisphere fjords
Determining the hierarchical order by which the variables of sampling period, dust outbreak occurrence, and sampling location can shape the airborne bacterial communities in the Mediterranean basin
The water column of the Yamal tundra lakes as a microbial filter preventing methane emission
Bioerosion and fungal colonization of the invasive foraminiferan Amphistegina lobifera in a Mediterranean seagrass meadow
Effects of tidal influence on the structure and function of prokaryotic communities in the sediments of a pristine Brazilian mangrove
Haplo-diplontic life cycle expands coccolithophore niche
The composition of endolithic communities in gypcrete is determined by the specific microhabitat architecture
Uncovering chemical signatures of salinity gradients through compositional analysis of protein sequences
Cryptic roles of tetrathionate in the sulfur cycle of marine sediments: microbial drivers and indicators
Lake mixing regime selects apparent methane oxidation kinetics of the methanotroph assemblage
The contribution of microbial communities in polymetallic nodules to the diversity of the deep-sea microbiome of the Peru Basin (4130–4198 m depth)
The pH-based ecological coherence of active canonical methanotrophs in paddy soils
Biogeographical distribution of microbial communities along the Rajang River–South China Sea continuum
Microbial community composition and abundance after millennia of submarine permafrost warming
Cold-water corals and hydrocarbon-rich seepage in Pompeia Province (Gulf of Cádiz) – living on the edge
Ecophysiological characteristics of red, green, and brown strains of the Baltic picocyanobacterium Synechococcus sp. – a laboratory study
Factors controlling the community structure of picoplankton in contrasting marine environments
Community composition and seasonal changes of archaea in coarse and fine air particulate matter
Microbial community structure in the western tropical South Pacific
Ecophysiological characterization of early successional biological soil crusts in heavily human-impacted areas
Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard)
Plant n-alkane production from litterfall altered the diversity and community structure of alkane degrading bacteria in litter layer in lowland subtropical rainforest in Taiwan
Revisiting chlorophyll extraction methods in biological soil crusts – methodology for determination of chlorophyll a and chlorophyll a + b as compared to previous methods
Divergence of dominant factors in soil microbial communities and functions in forest ecosystems along a climatic gradient
Uncovering biological soil crusts: carbon content and structure of intact Arctic, Antarctic and alpine biological soil crusts
Antagonistic effects of drought and sand burial enable the survival of the biocrust moss Bryum argenteum in an arid sandy desert
Microbial methanogenesis in the sulfate-reducing zone of sediments in the Eckernförde Bay, SW Baltic Sea
Ferrihydrite-associated organic matter (OM) stimulates reduction by Shewanella oneidensis MR-1 and a complex microbial consortia
Effects of temperature on the composition and diversity of bacterial communities in bamboo soils at different elevations
Development of bacterial communities in biological soil crusts along a revegetation chronosequence in the Tengger Desert, northwest China
Viable cold-tolerant iron-reducing microorganisms in geographically diverse subglacial environments
Diversity and mineral substrate preference in endolithic microbial communities from marine intertidal outcrops (Isla de Mona, Puerto Rico)
Archive of bacterial community in anhydrite crystals from a deep-sea basin provides evidence of past oil-spilling in a benthic environment in the Red Sea
Mechanisms of Trichodesmium demise within the New Caledonian lagoon during the VAHINE mesocosm experiment
Microbial co-occurrence patterns in deep Precambrian bedrock fracture fluids
Effect of light on photosynthetic efficiency of sequestered chloroplasts in intertidal benthic foraminifera (Haynesina germanica and Ammonia tepida)
Seasonal and size-dependent variations in the phytoplankton growth and microzooplankton grazing in the southern South China Sea under the influence of the East Asian monsoon
Characterization of active and total fungal communities in the atmosphere over the Amazon rainforest
Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China
Redox regime shifts in microbially mediated biogeochemical cycles
Differences in microbial community composition between injection and production water samples of water flooding petroleum reservoirs
Microbial colonization in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota
Diversity and seasonal dynamics of airborne archaea
Methanotrophic activity and diversity of methanotrophs in volcanic geothermal soils at Pantelleria (Italy)
Taiki Katayama, Hideyoshi Yoshioka, Toshiro Yamanaka, Susumu Sakata, and Yasuaki Hanamura
Biogeosciences, 21, 4273–4283, https://doi.org/10.5194/bg-21-4273-2024, https://doi.org/10.5194/bg-21-4273-2024, 2024
Short summary
Short summary
To understand microbial processes in deep sedimentary environments where the majority of Earth’s prokaryotes are found, we investigated the microbial communities in microbial natural-gas-bearing aquifers at temperatures of 38–81°C, situated above nonmicrobial oil-bearing sediments. Our results indicate that microbial carbon and sulfur cycling is driven by geothermal heating, showing previously overlooked geothermal-heat-driven geochemical and microbiological processes in the deep biosphere.
Taiki Katayama, Reo Ikawa, Masaru Koshigai, and Susumu Sakata
Biogeosciences, 20, 5199–5210, https://doi.org/10.5194/bg-20-5199-2023, https://doi.org/10.5194/bg-20-5199-2023, 2023
Short summary
Short summary
Methane produced by microorganisms in subsurface environments may account for a large fraction of global natural gas reserves. To understand how microbial methane is produced during sediment burial history, we examined methane-bearing aquifers in which temperature and salinity increase with depth. Geochemical and microbiological analyses showed that microbial methane is produced at depth, where microbial activity is stimulated by the increased temperature, and subsequently migrates upwards.
Xin Chen, Weishu Zhao, Liang Dong, Huahua Jian, Lewen Liang, Jing Wang, and Fengping Wang
Biogeosciences, 20, 1491–1504, https://doi.org/10.5194/bg-20-1491-2023, https://doi.org/10.5194/bg-20-1491-2023, 2023
Short summary
Short summary
Here, we studied the effects of metabolism and growth temperature on 2H/1H fractionation between fatty acids and growth water (εFA/water) by Shewanella piezotolerans WP3. Our results show that the εFA/water values display considerable variations for cultures grown on different substrates. Combined with metabolic model analysis, our results indicate that the central metabolic pathways exert a fundamental effect on the hydrogen isotope composition of lipids in heterotrophs.
Ruud Rijkers, Mark Dekker, Rien Aerts, and James T. Weedon
Biogeosciences, 20, 767–780, https://doi.org/10.5194/bg-20-767-2023, https://doi.org/10.5194/bg-20-767-2023, 2023
Short summary
Short summary
Bacterial communities in the soils of the Arctic region decompose soil organic matter to CO2 from a large carbon pool. The amount of CO2 released is likely to increase under future climate conditions. Here, we study how temperature sensitive the growth of soil bacterial communties is for 12 sampling sites in the sub to high Arctic. We show that the optimal growth temperature varies between 23 and 34 °C and is influenced by the summer temperature.
Xiaofeng Dai, Mingming Chen, Xianhui Wan, Ehui Tan, Jialing Zeng, Nengwang Chen, Shuh-Ji Kao, and Yao Zhang
Biogeosciences, 19, 3757–3773, https://doi.org/10.5194/bg-19-3757-2022, https://doi.org/10.5194/bg-19-3757-2022, 2022
Short summary
Short summary
This study revealed the distinct distribution patterns of six key microbial functional genes and transcripts related to N2O sources and sinks in four estuaries spanning the Chinese coastline, which were significantly constrained by nitrogen and oxygen concentrations, salinity, temperature, and pH. The community structure of the nosZ clade II was distinctly different from those in the soil and marine OMZs. Denitrification may principally control the N2O emissions patterns across the estuaries.
Daniel A. Petrash, Ingrid M. Steenbergen, Astolfo Valero, Travis B. Meador, Tomáš Pačes, and Christophe Thomazo
Biogeosciences, 19, 1723–1751, https://doi.org/10.5194/bg-19-1723-2022, https://doi.org/10.5194/bg-19-1723-2022, 2022
Short summary
Short summary
We spectroscopically evaluated the gradients of dissolved C, N, S, Fe and Mn in a newly formed redox-stratified lake. The lake features an intermediate redox state between nitrogenous and euxinic conditions that encompasses vigorous open sulfur cycling fuelled by the reducible Fe and Mn stocks of the anoxic sediments. This results in substantial bottom water loads of dissolved iron and sulfate. Observations made in this ecosystem have relevance for deep-time paleoceanographic reconstructions.
Francisco Díaz-Rosas, Catharina Alves-de-Souza, Emilio Alarcón, Eduardo Menschel, Humberto E. González, Rodrigo Torres, and Peter von Dassow
Biogeosciences, 18, 5465–5489, https://doi.org/10.5194/bg-18-5465-2021, https://doi.org/10.5194/bg-18-5465-2021, 2021
Short summary
Short summary
Coccolithophores are important unicellular algae with a calcium carbonate covering that might be affected by ongoing changes in the ocean due to absorption of CO2, warming, and melting of glaciers. We used the southern Patagonian fjords as a natural laboratory, where chemical conditions are naturally highly variable. One variant of a widespread coccolithophore species can tolerate these conditions, suggesting it is highly adaptable, while others were excluded, suggesting they are less adaptable.
Riccardo Rosselli, Maura Fiamma, Massimo Deligios, Gabriella Pintus, Grazia Pellizzaro, Annalisa Canu, Pierpaolo Duce, Andrea Squartini, Rosella Muresu, and Pietro Cappuccinelli
Biogeosciences, 18, 4351–4367, https://doi.org/10.5194/bg-18-4351-2021, https://doi.org/10.5194/bg-18-4351-2021, 2021
Short summary
Short summary
The bacteria carried by winds over the island of Sardinia in the Mediterranean Sea were collected, and their identities were investigated by reading DNA sequences. The sampling period was the factor that most determined the airborne species composition as its role was stronger than that of dust-carrying storms and of the geographical position of the sampling station. The bacteria found when the sampling was performed in September had more species variety than those collected in May.
Alexander Savvichev, Igor Rusanov, Yury Dvornikov, Vitaly Kadnikov, Anna Kallistova, Elena Veslopolova, Antonina Chetverova, Marina Leibman, Pavel A. Sigalevich, Nikolay Pimenov, Nikolai Ravin, and Artem Khomutov
Biogeosciences, 18, 2791–2807, https://doi.org/10.5194/bg-18-2791-2021, https://doi.org/10.5194/bg-18-2791-2021, 2021
Short summary
Short summary
Microbial processes of the methane cycle were studied in four lakes of the central part of the Yamal Peninsula in an area of continuous permafrost: two large, deep lakes and two small and shallow ones. It was found that only small, shallow lakes contributed significantly to the overall diffusive methane emissions from the water surface during the warm summer season. The water column of large, deep lakes on Yamal acted as a microbial filter preventing methane emissions into the atmosphere.
Martin Vohník
Biogeosciences, 18, 2777–2790, https://doi.org/10.5194/bg-18-2777-2021, https://doi.org/10.5194/bg-18-2777-2021, 2021
Short summary
Short summary
Amphistegina lobifera (Foraminifera) has colonized the Mediterranean through the Suez Canal, often forming thick sediments altering the invaded environments. Little is known about postmortem fate of its shells, so I investigated their turnover in the rhizosphere of the dominant Mediterranean seagrass. Most were bioeroded, likely by cyanobacteria and algae but not fungi occurring in the seagrass roots. Bioerosion may counterbalance accumulation of A. lobifera shells in the seabed substrate.
Carolina Oliveira de Santana, Pieter Spealman, Vânia Maria Maciel Melo, David Gresham, Taíse Bomfim de Jesus, and Fabio Alexandre Chinalia
Biogeosciences, 18, 2259–2273, https://doi.org/10.5194/bg-18-2259-2021, https://doi.org/10.5194/bg-18-2259-2021, 2021
Short summary
Short summary
This study highlights the influence of
tidal zonationon the prokaryotic sediment communities of a pristine mangrove forest. We observed that the variability in environmental factors between tidal zones results in differences in structure, diversity, and the potential function of prokaryotic populations. This suggests that further work is needed in determining the role tidal microhabitat biodiversity has in mangroves.
Joost de Vries, Fanny Monteiro, Glen Wheeler, Alex Poulton, Jelena Godrijan, Federica Cerino, Elisa Malinverno, Gerald Langer, and Colin Brownlee
Biogeosciences, 18, 1161–1184, https://doi.org/10.5194/bg-18-1161-2021, https://doi.org/10.5194/bg-18-1161-2021, 2021
Short summary
Short summary
Coccolithophores are important calcifying phytoplankton with an overlooked life cycle. We compile a global dataset of marine coccolithophore abundance to investigate the environmental characteristics of each life cycle phase. We find that both phases contribute to coccolithophore abundance and that their different environmental preference increases coccolithophore habitat. Accounting for the life cycle of coccolithophores is thus crucial for understanding their ecology and biogeochemical impact.
María Cristina Casero, Victoria Meslier, Jocelyne DiRuggiero, Antonio Quesada, Carmen Ascaso, Octavio Artieda, Tomasz Kowaluk, and Jacek Wierzchos
Biogeosciences, 18, 993–1007, https://doi.org/10.5194/bg-18-993-2021, https://doi.org/10.5194/bg-18-993-2021, 2021
Short summary
Short summary
Endolithic microhabitats have been described as the last refuge for life in arid and hyper-arid deserts where life has to deal with harsh environmental conditions, such as those in the Atacama Desert. In this work, three different endolithic microhabitats occurring in gypcrete rocks of the Atacama Desert are characterized, using both microscopy and molecular techniques, to show if the architecture of each microhabitat has an influence on the microbial communities inhabiting each of them.
Jeffrey M. Dick, Miao Yu, and Jingqiang Tan
Biogeosciences, 17, 6145–6162, https://doi.org/10.5194/bg-17-6145-2020, https://doi.org/10.5194/bg-17-6145-2020, 2020
Short summary
Short summary
Many natural environments differ in their range of salt concentration (salinity). We developed a metric for the number of water molecules in formation reactions of different proteins and found that it decreases between freshwater and marine systems and also in laboratory experiments with increasing salinity. These results demonstrate a new type of link between geochemical conditions and the chemical composition of microbial communities that can be useful for models of microbial adaptation.
Subhrangshu Mandal, Sabyasachi Bhattacharya, Chayan Roy, Moidu Jameela Rameez, Jagannath Sarkar, Tarunendu Mapder, Svetlana Fernandes, Aditya Peketi, Aninda Mazumdar, and Wriddhiman Ghosh
Biogeosciences, 17, 4611–4631, https://doi.org/10.5194/bg-17-4611-2020, https://doi.org/10.5194/bg-17-4611-2020, 2020
Short summary
Short summary
Potential roles of polythionates as key sulfur cycle intermediates are less appreciated, apparently because, in most of the natural environments, they do not accumulate to easily detectable levels. Our exploration of the eastern Arabian Sea sediment horizons revealed microbe-mediated production and redox transformations of tetrathionate to be important modules of the in situ sulfur cycle, even as high biotic and abiotic reactivity of this polythionate keeps it hidden from geochemical detection.
Magdalena J. Mayr, Matthias Zimmermann, Jason Dey, Bernhard Wehrli, and Helmut Bürgmann
Biogeosciences, 17, 4247–4259, https://doi.org/10.5194/bg-17-4247-2020, https://doi.org/10.5194/bg-17-4247-2020, 2020
Massimiliano Molari, Felix Janssen, Tobias R. Vonnahme, Frank Wenzhöfer, and Antje Boetius
Biogeosciences, 17, 3203–3222, https://doi.org/10.5194/bg-17-3203-2020, https://doi.org/10.5194/bg-17-3203-2020, 2020
Short summary
Short summary
Industrial-scale mining of deep-sea polymetallic nodules will remove nodules in large areas of the sea floor. We describe community composition of microbes associated with nodules of the Peru Basin. Our results show that nodules provide a unique ecological niche, playing an important role in shaping the diversity of the benthic deep-sea microbiome and potentially in element fluxes. We believe that our findings are highly relevant to expanding our knowledge of the impact associated with mining.
Jun Zhao, Yuanfeng Cai, and Zhongjun Jia
Biogeosciences, 17, 1451–1462, https://doi.org/10.5194/bg-17-1451-2020, https://doi.org/10.5194/bg-17-1451-2020, 2020
Short summary
Short summary
We show that soil pH is a key factor in selecting distinct phylotypes of methanotrophs in paddy soils. Type II methanotrophs dominated the methane oxidation in low-pH soils, while type I methanotrophs were more active in high-pH soils. This pH-based niche differentiation of active methanotrophs appeared to be independent of nitrogen fertilization, but the inhibition of type II methanotrophic rate in low-pH soils by the fertilization might aggravate the emission of methane from paddy soils.
Edwin Sien Aun Sia, Zhuoyi Zhu, Jing Zhang, Wee Cheah, Shan Jiang, Faddrine Holt Jang, Aazani Mujahid, Fuh-Kwo Shiah, and Moritz Müller
Biogeosciences, 16, 4243–4260, https://doi.org/10.5194/bg-16-4243-2019, https://doi.org/10.5194/bg-16-4243-2019, 2019
Short summary
Short summary
Microbial community composition and diversity in freshwater habitats are much less studied compared to marine and soil communities. This study presents the first assessment of microbial communities of the Rajang River, the longest river in Malaysia, expanding our knowledge of microbial ecology in tropical regions. Areas surrounded by oil palm plantations showed the lowest diversity and other signs of anthropogenic impacts included the presence of CFB groups as well as probable algal blooms.
Julia Mitzscherling, Fabian Horn, Maria Winterfeld, Linda Mahler, Jens Kallmeyer, Pier P. Overduin, Lutz Schirrmeister, Matthias Winkel, Mikhail N. Grigoriev, Dirk Wagner, and Susanne Liebner
Biogeosciences, 16, 3941–3958, https://doi.org/10.5194/bg-16-3941-2019, https://doi.org/10.5194/bg-16-3941-2019, 2019
Short summary
Short summary
Permafrost temperatures increased substantially at a global scale, potentially altering microbial assemblages involved in carbon mobilization before permafrost thaws. We used Arctic Shelf submarine permafrost as a natural laboratory to investigate the microbial response to long-term permafrost warming. Our work shows that millennia after permafrost warming by > 10 °C, microbial community composition and population size reflect the paleoenvironment rather than a direct effect through warming.
Blanca Rincón-Tomás, Jan-Peter Duda, Luis Somoza, Francisco Javier González, Dominik Schneider, Teresa Medialdea, Esther Santofimia, Enrique López-Pamo, Pedro Madureira, Michael Hoppert, and Joachim Reitner
Biogeosciences, 16, 1607–1627, https://doi.org/10.5194/bg-16-1607-2019, https://doi.org/10.5194/bg-16-1607-2019, 2019
Short summary
Short summary
Cold-water corals were found at active sites in Pompeia Province (Gulf of Cádiz). Since seeped fluids are harmful for the corals, we approached the environmental conditions that allow corals to colonize carbonates while seepage occurs. As a result, we propose that chemosynthetic microorganisms (i.e. sulfide-oxidizing bacteria and AOM-related microorganisms) play an important role in the colonization of the corals at these sites by feeding on the seeped fluids and avoiding coral damage.
Sylwia Śliwińska-Wilczewska, Agata Cieszyńska, Jakub Maculewicz, and Adam Latała
Biogeosciences, 15, 6257–6276, https://doi.org/10.5194/bg-15-6257-2018, https://doi.org/10.5194/bg-15-6257-2018, 2018
Short summary
Short summary
The present study describes responses of picocyanobacteria (PCY) physiology to different environmental conditions. The cultures were grown under 64 combinations of temperature, irradiance in a photosynthetically active spectrum (PAR), and salinity. The results show that each strain of Baltic Synechococcus sp. behaves differently in respective environmental scenarios. The study develops the knowledge on bloom-forming PCY and reasons further research on the smallest size fraction of phytoplankton.
Jose Luis Otero-Ferrer, Pedro Cermeño, Antonio Bode, Bieito Fernández-Castro, Josep M. Gasol, Xosé Anxelu G. Morán, Emilio Marañon, Victor Moreira-Coello, Marta M. Varela, Marina Villamaña, and Beatriz Mouriño-Carballido
Biogeosciences, 15, 6199–6220, https://doi.org/10.5194/bg-15-6199-2018, https://doi.org/10.5194/bg-15-6199-2018, 2018
Short summary
Short summary
The effect of inorganic nutrients on planktonic assemblages has been traditionally assessed by looking at concentrations rather than fluxes of nutrient supply. However, in near-steady-state systems such as subtropical gyres, nitrate concentrations are kept close to the detection limit due to phytoplankton uptake. Our results, based on direct measurements of nitrate diffusive fluxes, support the key role of nitrate supply in controlling the structure of marine picoplankton communities.
Jörn Wehking, Daniel A. Pickersgill, Robert M. Bowers, David Teschner, Ulrich Pöschl, Janine Fröhlich-Nowoisky, and Viviane R. Després
Biogeosciences, 15, 4205–4214, https://doi.org/10.5194/bg-15-4205-2018, https://doi.org/10.5194/bg-15-4205-2018, 2018
Short summary
Short summary
Archaea as a third domain of life play an important role in soils and marine environments. Although archaea have been found in air as a part of the atmospheric bioaerosol, little is known about their atmospheric dynamics due to their low number and challenging analysis.
Here we present a DNA-based study of airborne archaea, show seasonal dynamics, and discuss anthropogenic influences on the diversity, composition, and abundances of airborne archaea.
Nicholas Bock, France Van Wambeke, Moïra Dion, and Solange Duhamel
Biogeosciences, 15, 3909–3925, https://doi.org/10.5194/bg-15-3909-2018, https://doi.org/10.5194/bg-15-3909-2018, 2018
Short summary
Short summary
We report the distribution of major nano- and pico-plankton groups in the western tropical South Pacific. We found microbial community structure to be typical of highly stratified regions of the open ocean, with significant contributions to total biomass by picophytoeukaryotes, and N2 fixation playing a central role in regulating ecosystem processes. Our results also suggest a reduction in the importance of predation in regulating bacteria populations under nutrient-limited conditions.
Michelle Szyja, Burkhard Büdel, and Claudia Colesie
Biogeosciences, 15, 1919–1931, https://doi.org/10.5194/bg-15-1919-2018, https://doi.org/10.5194/bg-15-1919-2018, 2018
Short summary
Short summary
Ongoing human impact transforms habitats into surfaces lacking higher vegetation. Here, biological soil crusts (BSCs) provide ecosystem services like soil creation and carbon uptake. To understand the functioning of these areas, we examined the physiological capability of early successional BSCs. We found features enabling BSCs to cope with varying climatic stresses. BSCs are important carbon fixers independent of the dominating organism. We provide baseline data for modeling carbon fluxes.
Petr Kotas, Hana Šantrůčková, Josef Elster, and Eva Kaštovská
Biogeosciences, 15, 1879–1894, https://doi.org/10.5194/bg-15-1879-2018, https://doi.org/10.5194/bg-15-1879-2018, 2018
Short summary
Short summary
The soil microbial properties were investigated along altitudinal gradients in the Arctic. Systematic altitudinal shift in MCS resulting in high F / B ratios at the most elevated sites was observed. The changes in composition, size and activity of microbial communities were mainly controlled through the effect of vegetation on edaphic properties and by bedrock chemistry. The upward migration of vegetation due to global warming will likely diminish the spatial variability in microbial properties.
Tung-Yi Huang, Bing-Mu Hsu, Wei-Chun Chao, and Cheng-Wei Fan
Biogeosciences, 15, 1815–1826, https://doi.org/10.5194/bg-15-1815-2018, https://doi.org/10.5194/bg-15-1815-2018, 2018
Short summary
Short summary
The n-alkane in litterfall and the microbial community in litter layer in different habitats of lowland subtropical rainforest were studied. We revealed that the plant vegetation of forest not only dominated the n-alkane input of habitats but also governed the diversity of microbial community of litter layer. In this study, we found that the habitat which had high n-alkane input induced a shift of relative abundance toward phylum of Actinobacteria and the growth of alkB gene contained bacteria.
Jennifer Caesar, Alexandra Tamm, Nina Ruckteschler, Anna Lena Leifke, and Bettina Weber
Biogeosciences, 15, 1415–1424, https://doi.org/10.5194/bg-15-1415-2018, https://doi.org/10.5194/bg-15-1415-2018, 2018
Short summary
Short summary
In our study we analyzed the efficiency of different chlorophyll extraction solvents and investigated the effect of different preparatory steps to determine the optimal extraction method for biological soil crusts. Based on our results we confirm a DMSO-based chlorophyll extraction method without grinding pretreatment and suggest to insert an intermediate shaking step for complete chlorophyll extraction.
Zhiwei Xu, Guirui Yu, Xinyu Zhang, Nianpeng He, Qiufeng Wang, Shengzhong Wang, Xiaofeng Xu, Ruili Wang, and Ning Zhao
Biogeosciences, 15, 1217–1228, https://doi.org/10.5194/bg-15-1217-2018, https://doi.org/10.5194/bg-15-1217-2018, 2018
Short summary
Short summary
Forest types with specific soil conditions supported the development of distinct soil microbial communities with variable functions. Our results indicate that the main controls on soil microbes and functions vary across forest ecosystems in different climatic zones. This information will add value to the modeling of microbial processes and will contribute to carbon cycling on a large scale.
Patrick Jung, Laura Briegel-Williams, Anika Simon, Anne Thyssen, and Burkhard Büdel
Biogeosciences, 15, 1149–1160, https://doi.org/10.5194/bg-15-1149-2018, https://doi.org/10.5194/bg-15-1149-2018, 2018
Short summary
Short summary
Arctic, Antarctic and alpine biological soil crusts (BSCs) are formed by adhesion of soil particles to cyanobacteria. BSCs influence ecosystems services like soil erodibility and chemical cycles. In cold environments degradation rates are low and BSCs increase soil organic carbon through photosynthesis, whereby these soils are considered as CO2 sinks. This work provides a novel method to visualize BSCs with a focus on cyanobacteria and their contribution to soil organic carbon.
Rongliang Jia, Yun Zhao, Yanhong Gao, Rong Hui, Haotian Yang, Zenru Wang, and Yixuan Li
Biogeosciences, 15, 1161–1172, https://doi.org/10.5194/bg-15-1161-2018, https://doi.org/10.5194/bg-15-1161-2018, 2018
Short summary
Short summary
Why can biocrust moss survive and flourish in these habitats when stressed simultaneously by drought and sand burial? A field experiment was conducted to assess the combined effects of the two stressors on Bryum argenteum within biocrust. The two stressors did not exacerbate the single negative effects; their mutually antagonistic effect on the physiological vigor of B. argenteum was found, and it provided an opportunity for it to overcome the two co-occurring stressors in arid sandy ecosystems.
Johanna Maltby, Lea Steinle, Carolin R. Löscher, Hermann W. Bange, Martin A. Fischer, Mark Schmidt, and Tina Treude
Biogeosciences, 15, 137–157, https://doi.org/10.5194/bg-15-137-2018, https://doi.org/10.5194/bg-15-137-2018, 2018
Short summary
Short summary
The activity and environmental controls of methanogenesis (MG) within the sulfate-reducing zone (0–30 cm below the seafloor) were investigated in organic-rich sediments of the seasonally hypoxic Eckernförde Bay, SW Baltic Sea. MG activity was mostly linked to non-competitive substrates. The major controls identified were organic matter availability, C / N, temperature, and O2 in the water column, revealing higher rates in warm, stratified, hypoxic seasons compared to colder, oxygenated seasons.
Rebecca Elizabeth Cooper, Karin Eusterhues, Carl-Eric Wegner, Kai Uwe Totsche, and Kirsten Küsel
Biogeosciences, 14, 5171–5188, https://doi.org/10.5194/bg-14-5171-2017, https://doi.org/10.5194/bg-14-5171-2017, 2017
Short summary
Short summary
In this study we show increasing organic matter (OM) content on ferrihydrite surfaces enhances Fe reduction by the model Fe reducer S. oneidensis and a microbial consortia extracted from peat. Similarities in reduction rates between S. oneidensis and the consortia suggest electron shuttling dominates in OM-rich soils. Community profile analyses showed enrichment of fermenters with pure ferrihydrite, whereas OM–mineral complexes favored enrichment of Fe-reducing Desulfobacteria and Pelosinus sp.
Yu-Te Lin, Zhongjun Jia, Dongmei Wang, and Chih-Yu Chiu
Biogeosciences, 14, 4879–4889, https://doi.org/10.5194/bg-14-4879-2017, https://doi.org/10.5194/bg-14-4879-2017, 2017
Short summary
Short summary
We evaluated the bacterial composition and diversity of bamboo soils sampled at different elevations and incubated at different temperatures. Soil respiration was greater at higher elevation and temperature. Soil bacterial structure and diversity showed variable under different incubation times and temperatures. Increases in temperature increased soil respiration and consumption of soil soluble carbon and nitrogen, thus influencing the bacterial diversity and structure at different elevations.
Lichao Liu, Yubing Liu, Peng Zhang, Guang Song, Rong Hui, Zengru Wang, and Jin Wang
Biogeosciences, 14, 3801–3814, https://doi.org/10.5194/bg-14-3801-2017, https://doi.org/10.5194/bg-14-3801-2017, 2017
Short summary
Short summary
We studied the development process of bacterial community structure of biological soil crusts (BSCs) along a revegetation chronosequence by Illumina MiSeq sequencing in the Tengger Desert. Our results indicated (1) a shift of bacterial composition related to their function in the crust development process; (2) bacterial diversity and richness consistent with the recovery phase of soil properties; and (3) bacteria as key contributors to the BSC succession process.
Sophie L. Nixon, Jon P. Telling, Jemma L. Wadham, and Charles S. Cockell
Biogeosciences, 14, 1445–1455, https://doi.org/10.5194/bg-14-1445-2017, https://doi.org/10.5194/bg-14-1445-2017, 2017
Short summary
Short summary
Despite their permanently cold and dark characteristics, subglacial environments (glacier ice–sediment interface) are known to harbour active microbial communities. However, the role of microbial iron cycling in these environments is poorly understood. Here we show that subglacial sediments harbour active iron-reducing microorganisms, and they appear to be cold-adapted. These results may have important implications for global biogeochemical iron cycling and export to marine ecosystems.
Estelle Couradeau, Daniel Roush, Brandon Scott Guida, and Ferran Garcia-Pichel
Biogeosciences, 14, 311–324, https://doi.org/10.5194/bg-14-311-2017, https://doi.org/10.5194/bg-14-311-2017, 2017
Short summary
Short summary
Endoliths are a prominent bioerosive component of intertidal marine habitats, traditionally thought to be formed by a few cyanobacteria, algae and fungi. Using molecular techniques, however, we found that endoliths from Mona Island, Puerto Rico, were of high diversity, well beyond that reported in traditional studies. We also found evidence for substrate specialization, in that closely related cyanobacteria seem to have diversified to specialize recurrently to excavate various mineral substrates
Yong Wang, Tie Gang Li, Meng Ying Wang, Qi Liang Lai, Jiang Tao Li, Zhao Ming Gao, Zong Ze Shao, and Pei-Yuan Qian
Biogeosciences, 13, 6405–6417, https://doi.org/10.5194/bg-13-6405-2016, https://doi.org/10.5194/bg-13-6405-2016, 2016
Short summary
Short summary
Mild eruption of hydrothermal solutions on deep-sea benthic floor can produce anhydrite crystal layers, where microbes are trapped and preserved for a long period of time. These embedded original inhabitants will be biomarkers for the environment when the hydrothermal eruption occurred. This study discovered a thick anhydrite layer in a deep-sea brine pool in the Red Sea. Oil-degrading bacteria were revealed in the crystals with genomic and microscopic evidence.
Dina Spungin, Ulrike Pfreundt, Hugo Berthelot, Sophie Bonnet, Dina AlRoumi, Frank Natale, Wolfgang R. Hess, Kay D. Bidle, and Ilana Berman-Frank
Biogeosciences, 13, 4187–4203, https://doi.org/10.5194/bg-13-4187-2016, https://doi.org/10.5194/bg-13-4187-2016, 2016
Short summary
Short summary
The marine cyanobacterium Trichodesmium spp. forms massive blooms important to carbon and nitrogen cycling in the oceans that often collapse abruptly. We investigated a Trichodesmium bloom in the lagoon waters of New Caledonia to specifically elucidate the cellular processes mediating the bloom decline. We demonstrate physiological, biochemical, and genetic evidence for nutrient and oxidative stress that induced a genetically controlled programmed cell death (PCD) pathway leading to bloom demise.
Lotta Purkamo, Malin Bomberg, Riikka Kietäväinen, Heikki Salavirta, Mari Nyyssönen, Maija Nuppunen-Puputti, Lasse Ahonen, Ilmo Kukkonen, and Merja Itävaara
Biogeosciences, 13, 3091–3108, https://doi.org/10.5194/bg-13-3091-2016, https://doi.org/10.5194/bg-13-3091-2016, 2016
Short summary
Short summary
The microbial communities of up to 2.3 km depth of Precambrian crystalline bedrock fractures share features with serpenization-driven microbial communities in alkaline springs and subsurface aquifers. This study suggests that phylotypes belonging to Burkholderiales and Clostridia are possible "keystone microbial species" in Outokumpu deep biosphere. Many of the keystone species belong to the rare biosphere with low abundance but a wide range of carbon substrates and a capacity for H2 oxidation.
Thierry Jauffrais, Bruno Jesus, Edouard Metzger, Jean-Luc Mouget, Frans Jorissen, and Emmanuelle Geslin
Biogeosciences, 13, 2715–2726, https://doi.org/10.5194/bg-13-2715-2016, https://doi.org/10.5194/bg-13-2715-2016, 2016
Short summary
Short summary
Some benthic foraminifera can incorporate chloroplasts from microalgae. We investigated chloroplast functionality of two benthic foraminifera (Haynesina germanica & Ammonia tepida) exposed to different light levels. Only H. germanica was capable of using the kleptoplasts, showing net oxygen production. Chloroplast functionality time was longer in darkness (2 weeks) than at high light (1 week). Kleptoplasts are unlikely to be completely functional, thus requiring continuous chloroplast resupply.
L. Zhou, Y. Tan, L. Huang, Z. Hu, and Z. Ke
Biogeosciences, 12, 6809–6822, https://doi.org/10.5194/bg-12-6809-2015, https://doi.org/10.5194/bg-12-6809-2015, 2015
Short summary
Short summary
We observed that phytoplankton biomass and growth rate (μ), microzooplankton grazing rate (m), and coupling (correlation) between the μ and m significantly varied between the summer and winter, and microzooplankton selectively grazed more on the larger-sized phytoplankton, and a low grazing impact on phytoplankton (m/μ < 50%) in the SSCS. The salient seasonal variations in μ and m, and their coupling were closely related to environmental variables under the influence of the East Asian monsoon.
A. M. Womack, P. E. Artaxo, F. Y. Ishida, R. C. Mueller, S. R. Saleska, K. T. Wiedemann, B. J. M. Bohannan, and J. L. Green
Biogeosciences, 12, 6337–6349, https://doi.org/10.5194/bg-12-6337-2015, https://doi.org/10.5194/bg-12-6337-2015, 2015
Short summary
Short summary
Fungi in the atmosphere can affect precipitation by nucleating the formation of clouds and ice. This process is important over the Amazon rainforest where precipitation is limited by the types and amount of airborne particles. We found that the total and metabolically active fungi communities were dominated by different taxonomic groups, and the active community unexpectedly contained many lichen fungi, which are effective at nucleating ice.
W. Y. Dong, X. Y. Zhang, X. Y. Liu, X. L. Fu, F. S. Chen, H. M. Wang, X. M. Sun, and X. F. Wen
Biogeosciences, 12, 5537–5546, https://doi.org/10.5194/bg-12-5537-2015, https://doi.org/10.5194/bg-12-5537-2015, 2015
Short summary
Short summary
We examined how N and P addition influenced soil microbial community composition and enzyme activities in subtropical China. The results showed that C and N cycling enzymes were more sensitive to nutrient additions than P cycling enzymes and Gram-positive bacteria were most closely related to soil nutrient cycling enzymes. Combined additions of N and P fertilizer are recommended to promote soil fertility and microbial activity in this kind of plantation.
T. Bush, I. B. Butler, A. Free, and R. J. Allen
Biogeosciences, 12, 3713–3724, https://doi.org/10.5194/bg-12-3713-2015, https://doi.org/10.5194/bg-12-3713-2015, 2015
Short summary
Short summary
Despite their global importance, redox reactions mediated by microorganisms are often crudely represented in biogeochemical models. We show that including the dynamics of microbial growth in such a model can cause sudden shifts between redox states in response to an environmental change. We identify the conditions required for these redox regime shifts, and predict that they are likely in the modern day sulfur and nitrogen cycles, and potentially the iron cycle in the ancient ocean.
P. K. Gao, G. Q. Li, H. M. Tian, Y. S. Wang, H. W. Sun, and T. Ma
Biogeosciences, 12, 3403–3414, https://doi.org/10.5194/bg-12-3403-2015, https://doi.org/10.5194/bg-12-3403-2015, 2015
Short summary
Short summary
Microbial communities in injected water are expected to have a significant influence on those of reservoir strata in long-term water-flooding petroleum reservoirs. We thereby investigated the similarities and differences in microbial communities in water samples collected from the wellhead and downhole of injection wells, and from production wells in a homogeneous reservoir and a heterogeneous reservoir using high-throughput sequencing.
V. Marteinsson, A. Klonowski, E. Reynisson, P. Vannier, B. D. Sigurdsson, and M. Ólafsson
Biogeosciences, 12, 1191–1203, https://doi.org/10.5194/bg-12-1191-2015, https://doi.org/10.5194/bg-12-1191-2015, 2015
Short summary
Short summary
Colonization of life on Surtsey has been observed systematically since the formation of the island. Microbial colonization and the influence of associate vegetation and birds on viable counts of environmental bacteria at the surface of the Surtsey was explored for the first time in diverse surface soils. Also, hot subsurface samples deep in the centre of this volcanic island were collected. Both uncultivated bacteria and archaea were found in the subsurface samples collected below 145 m.
J. Fröhlich-Nowoisky, C. Ruzene Nespoli, D. A. Pickersgill, P. E. Galand, I. Müller-Germann, T. Nunes, J. Gomes Cardoso, S. M. Almeida, C. Pio, M. O. Andreae, R. Conrad, U. Pöschl, and V. R. Després
Biogeosciences, 11, 6067–6079, https://doi.org/10.5194/bg-11-6067-2014, https://doi.org/10.5194/bg-11-6067-2014, 2014
Short summary
Short summary
We have investigated the presence of archaea as well as their amoA gene diversity in aerosol particles collected over 1 year in central Europe and found that, within the 16S and amoA gene, Thaumarchaeota prevail and experience a diversity peak in fall, while only few Euryarchaeota were detected primarily in spring. We also compared the results with airborne archaea from Cape Verde and observe that the proportions of Euryarchaeota seem to be enhanced in coastal air compared to continental air.
A. L. Gagliano, W. D'Alessandro, M. Tagliavia, F. Parello, and P. Quatrini
Biogeosciences, 11, 5865–5875, https://doi.org/10.5194/bg-11-5865-2014, https://doi.org/10.5194/bg-11-5865-2014, 2014
Cited articles
Alonso-Sáez, L., Vázquez-Domínguez, E., Cardelús, C., Pinhassi, J., Sala, M. M., Lekunberri, I., Balagué, V., Vila-Costa, M., Unrein, F., Massana, R., Simó, R., and Gasol, J. M.: Factors Controlling the Year-Round Variability in Carbon Flux Through Bacteria in a Coastal Marine System, Ecosystems, 11, 397–409, https://doi.org/10.1007/s10021-008-9129-0, 2008.
Antoine, D., Morel, A., and André, J.-M.: Algal pigment distribution and primary production in the eastern Mediterranean as derived from coastal zone color scanner observations, J. Geophys. Res.-Oceans, 100, 16193–16209, https://doi.org/10.1029/95jc00466, 1995.
Armengol, L., Calbet, A., Franchy, G., Rodríguez-Santos, A., and
Hernández-León, S.: Planktonic food web structure and trophic transfer efficiency along a productivity gradient in the tropical and subtropical Atlantic Ocean, Sci. Rep.-UK, 9, 2044,
https://doi.org/10.1038/s41598-019-38507-9, 2019.
Barbieux, M., Uitz, J., Gentili, B., Pasqueron de Fommervault, O., Mignot, A., Poteau, A., Schmechtig, C., Taillandier, V., Leymarie, E., Penkerc'h, C., D'Ortenzio, F., Claustre, H., and Bricaud, A.: Bio-optical characterization of subsurface chlorophyll maxima in the Mediterranean Sea from a Biogeochemical-Argo float database, Biogeosciences, 16, 1321–1342,
https://doi.org/10.5194/bg-16-1321-2019, 2019.
Beckmann, A. and Hense, I.: Beneath the surface: Characteristics of oceanic ecosystems under weak mixing conditions – A theoretical investigation, Prog. Oceanogr., 75, 771–796, https://doi.org/10.1016/j.pocean.2007.09.002, 2007.
Behrenfeld, M. J., O'Malley, R. T., Boss, E. S., Westberry, T. K., Graff, J. R., Halsey, K. H., Milligan, A. J., Siegel, D. A., and Brown, M. B.: Revaluating ocean warming impacts on global phytoplankton, Nat. Clim. Change, 6, 323–330, https://doi.org/10.1038/nclimate2838, 2016.
Berthelot, H., Duhamel, S., L'Helguen, S., Maguer, J. F., Wang, S., Cetinić, I., and Cassar, N.: NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton, ISME J., 13, 651–662, https://doi.org/10.1038/s41396-018-0285-8, 2019.
Bosc, E., Bricaud, A., and Antoine, D.: Seasonal and interannual variability in algal biomass and primary production in the Mediterranean Sea, as derived from 4 years of SeaWiFS observations, Global Biogeochem. Cy., 18, 1–17, https://doi.org/10.1029/2003gb002034, 2004.
Boyd, P. W., Jickells, T., Law, C. S., Blain, S., Boyle, E. A., Buesseler, K. O., Coale, K. H., Cullen, J. J., de Baar, H. J. W., Follows, M., Harvey, M., Lancelot, C., Levasseur, M., Owens, N. P. J., Pollard, R., Rivkin, R. B., Sarmiento, J., Schoemann, V., Smetacek, V., Takeda, S., Tsuda, A., Turner, S., and Watson, A. J.: Mesoscale Iron Enrichment Experiments 1993–2005:
Synthesis and Future Directions, Science, 315, 612–617, https://doi.org/10.1126/science.1131669, 2007.
Buitenhuis, E. T., Li, W. K. W., Vaulot, D., Lomas, M. W., Landry, M. R., Partensky, F., Karl, D. M., Ulloa, O., Campbell, L., Jacquet, S., Lantoine, F., Chavez, F., Macias, D., Gosselin, M., and McManus, G. B.: Picophytoplankton biomass distribution in the global ocean, Earth Syst. Sci. Data, 4, 37–46, https://doi.org/10.5194/essd-4-37-2012, 2012.
Cáceres, C., Taboada, F. G., Höfer, J., and Anadón, R.: Phytoplankton Growth and Microzooplankton Grazing in the Subtropical Northeast Atlantic, PLOS ONE, 8, e69159, https://doi.org/10.1371/journal.pone.0069159, 2013.
Céa, B., Lefèvre, D., Chirurgien, L., Raimbault, P., Garcia, N., Charrière, B., Grégori, G., Ghiglione, J. F., Barani, A., Lafont, M., and Van Wambeke, F.: An annual survey of bacterial production, respiration and ectoenzyme activity in coastal NW Mediterranean waters: temperature and resource controls, Environ. Sci. Pollut. R., 22, 13654–13668,
https://doi.org/10.1007/s11356-014-3500-9, 2015.
Cermeño, P., Lee, J. B., Wyman, K., Schofield, O., and Falkowski, P. G.:
Competitive dynamics in two species of marine phytoplankton under non-equilibrium conditions, Mar. Ecol. Prog. Ser., 429, 19–28, 2011.
Claustre, H.: LEFE CYBER database, available at: http://www.obs-vlfr.fr/proof/php/PEACETIME/peacetime.php, last access: 9 March 2021.
Claustre, H., Morel, A., Babin, M., Cailliau, C., Marie, D., Marty, J.-C., Tailliez, D., and Vaulot, D.: Variability in particle attenuation and chlorophyll fluorescence in the tropical Pacific: Scales, patterns, and biogeochemical implications, J. Geophys. Res.-Oceans, 104, 3401–3422, https://doi.org/10.1029/98jc01334, 1999.
Crombet, Y., Leblanc, K., Quéguiner, B., Moutin, T., Rimmelin, P., Ras, J., Claustre, H., Leblond, N., Oriol, L., and Pujo-Pay, M.: Deep silicon maxima in the stratified oligotrophic Mediterranean Sea, Biogeosciences, 8, 459–475, https://doi.org/10.5194/bg-8-459-2011, 2011.
Cross, W. F., Hood, J. M., Benstead, J. P., Huryn, A. D., and Nelson, D.: Interactions between temperature and nutrients across levels of ecological organization, Global Change Biol., 21, 1025–1040, https://doi.org/10.1111/gcb.12809, 2015.
Cullen, J. J.: Subsurface Chlorophyll Maximum Layers: Enduring Enigma or Mystery Solved?, Annu. Rev. Mar. Sci., 7, 207–239, https://doi.org/10.1146/annurev-marine-010213-135111, 2015.
Cullen, J. J., Yang, X., and MacIntyre, H. L.: Nutrient Limitation of Marine
Photosynthesis, in: Primary Productivity and Biogeochemical Cycles in the Sea, edited by: Falkowski, P. G., Woodhead, A. D., and Vivirito, K., Springer US, Boston, MA, 69–88, 1992.
Decembrini, F., Caroppo, C., and Azzaro, M.: Size structure and production of
phytoplankton community and carbon pathways channelling in the Southern Tyrrhenian Sea (Western Mediterranean), Deep-Sea Res. Pt. II, 56, 687–699,
https://doi.org/10.1016/j.dsr2.2008.07.022, 2009.
Di Cicco, A.: Spatial and Temporal Variability of Dominant Phytoplankton Size Classes in the Mediterranean Sea from Remote Sensing, PhD thesis, Tuscia University, Viterbo, Italy, 2014.
Di Cicco, A., Sammartino, M., Marullo, S., and Santoleri, R.: Regional Empirical Algorithms for an Improved Identification of Phytoplankton Functional Types and Size Classes in the Mediterranean Sea Using Satellite Data, Front. Mar. Sci., 4, 1–18, https://doi.org/10.3389/fmars.2017.00126, 2017.
D'Ortenzio, F. and Ribera d'Alcalà, M.: On the trophic regimes of the Mediterranean Sea: a satellite analysis, Biogeosciences, 6, 139–148, https://doi.org/10.5194/bg-6-139-2009, 2009.
Durham, W. M. and Stocker, R.: Thin Phytoplankton Layers: Characteristics, Mechanisms, and Consequences, Annu. Rev. Mar. Sci., 4, 177–207, https://doi.org/10.1146/annurev-marine-120710-100957, 2012.
Edwards, K. F., Thomas, M. K., Klausmeier, C. A., and Litchman, E.: Phytoplankton growth and the interaction of light and temperature: A synthesis at the species and community level, Limnol. Oceanogr., 61, 1232–1244, https://doi.org/10.1002/lno.10282, 2016.
Estrada, M.: Primary production in the northwestern Mediterranean, Sci. Mar., 60, 55–64, 1996.
Estrada, M., Marrasé, C., Latasa, M., Berdalet, E., Delgado, M., and Riera, T.: Variability of deep chlorophyll maximum characteristics in the Northwestern Mediterranean, Mar. Ecol. Prog. Ser., 92, 289–300, 1993.
Fennel, K. and Boss, E.: Subsurface maxima of phytoplankton and chlorophyll:
Steady-state solutions from a simple model, Limnol. Oceanogr., 48, 1521–1534, https://doi.org/10.4319/lo.2003.48.4.1521, 2003.
Ferron, B., Bouruet Aubertot, P., Cuypers, Y., Schroeder, K., and Borghini, M.: How important are diapycnal mixing and geothermal heating for the deep circulation of the Western Mediterranean?, Geophys. Res. Lett., 44, 7845–7854, https://doi.org/10.1002/2017gl074169, 2017.
Fisher, N. L. and Halsey, K. H.: Mechanisms that increase the growth efficiency of diatoms in low light, Photosynth. Res., 129, 183–197, https://doi.org/10.1007/s11120-016-0282-6, 2016.
Fisher, T., Minnaard, J., and Dubinsky, Z.: Photoacclimation in the marine alga Nannochloropsis sp. (Eustigmatophyte): a kinetic study, J. Plankton Res., 18, 1797–1818, https://doi.org/10.1093/plankt/18.10.1797, 1996.
Frouin, R., Lingner, D. W., Gautier, C., Baker, K. S., and Smith, R. C.: A simple analytical formula to compute clear sky total and photosynthetically available solar irradiance at the ocean surface, J. Geophys. Res.-Oceans, 94, 9731–9742, https://doi.org/10.1029/JC094iC07p09731, 1989.
Geider, R. J.: Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton, New Phytol., 106, 1–34, https://doi.org/10.1111/j.1469-8137.1987.tb04788.x, 1987.
Geider, R. J.: Respiration: Taxation Without Representation?, in: Primary Productivity and Biogeochemical Cycles in the Sea, edited by: Falkowski, P. G., Woodhead, A. D., and Vivirito, K., Springer US, Boston, MA, 333–360, 1992.
Geider, R. J., MacIntyre, H. L., and Kana, T. M.: A dynamic model of photoadaptation in phytoplankton, Limnol. Oceanogr., 41, 1–15, https://doi.org/10.4319/lo.1996.41.1.0001, 1996.
Goldman, J. C., McCarthy, J. J., and Peavey, D. G.: Growth rate influence on the chemical composition of phytoplankton in oceanic waters, Nature, 279, 210–215, https://doi.org/10.1038/279210a0, 1979.
Guieu, C. and Desboeufs, K.: PEACETIME cruise, RV Pourquoi pas?, https://doi.org/10.17600/17000300, 2017.
Guieu, C., Aumont, O., Paytan, A., Bopp, L., Law, C. S., Mahowald, N., Achterberg, E. P., Marañón, E., Salihoglu, B., Crise, A., Wagener, T., Herut, B., Desboeufs, K., Kanakidou, M., Olgun, N., Peters, F., Pulido-Villena, E., Tovar-Sanchez, A., and Völker, C.: The significance of the episodic nature of atmospheric deposition to Low Nutrient Low Chlorophyll regions, Global Biogeochem. Cy., 28, 1179–1198, https://doi.org/10.1002/2014gb004852, 2014.
Guieu, C., D'Ortenzio, F., Dulac, F., Taillandier, V., Doglioli, A., Petrenko, A., Barrillon, S., Mallet, M., Nabat, P., and Desboeufs, K.: Introduction: Process studies at the air–sea interface after atmospheric deposition in the Mediterranean Sea – objectives and strategy of the PEACETIME oceanographic campaign (May–June 2017), Biogeosciences, 17, 5563–5585, https://doi.org/10.5194/bg-17-5563-2020, 2020.
Halsey, K. H. and Jones, B. M.: Phytoplankton Strategies for Photosynthetic Energy Allocation, Annu. Rev. Mar. Sci., 7, 265–297, https://doi.org/10.1146/annurev-marine-010814-015813, 2015.
Herbland, A. and Voituriez, B.: Hydrological structure analysis for estimating the primary production in the tropical Atlantic Ocean, J. Mar. Res., 37, 87–101, 1979.
Huete-Ortega, M., Cermeño, P., Calvo-Díaz, A., and Marañón, E.: Isometric size-scaling of metabolic rate and the size abundance distribution of phytoplankton, P. Roy. Soc. B, 279, 1815–1823, https://doi.org/10.1098/rspb.2011.2257, 2012.
Ignatiades, L., Gotsis-Skretas, O., Pagou, K., and Krasakopoulou, E.: Diversification of phytoplankton community structure and related parameters along a large-scale longitudinal east–west transect of the Mediterranean Sea, J. Plankton Res., 31, 411–428, https://doi.org/10.1093/plankt/fbn124, 2009.
Karl, D. M., Laws, E. A., Morris, P., Williams, P. J. l., and Emerson, S.: Metabolic balance of the open sea, Nature, 426, 32–32, https://doi.org/10.1038/426032a, 2003.
Kemp, A. E. S. and Villareal, T. A.: High diatom production and export in stratified waters – A potential negative feedback to global warming, Prog. Oceanogr., 119, 4–23, https://doi.org/10.1016/j.pocean.2013.06.004, 2013.
Kemp, A. E. S. and Villareal, T. A.: The case of the diatoms and the muddled mandalas: Time to recognize diatom adaptations to stratified waters, Prog. Oceanogr., 167, 138–149, https://doi.org/10.1016/j.pocean.2018.08.002, 2018.
Kirchman, D. L.: Calculating microbial growth rates from data on production and standing stocks, Mar. Ecol. Prog. Ser., 233, 303–306, 2002.
Kremer, C. T., Thomas, M. K., and Litchman, E.: Temperature- and size-scaling of phytoplankton population growth rates: Reconciling the Eppley curve and the metabolic theory of ecology, Limnol. Oceanogr., 62, 1658–1670, https://doi.org/10.1002/lno.10523, 2017.
Lande, R. and Wood, A. M.: Suspension times of particles in the upper ocean, Deep-Sea Res. Pt. I, 34, 61–72, https://doi.org/10.1016/0198-0149(87)90122-1, 1987.
Landry, M. R., Brown, S. L., Rii, Y. M., Selph, K. E., Bidigare, R. R., Yang, E. J., and Simmons, M. P.: Depth-stratified phytoplankton dynamics in Cyclone Opal, a subtropical mesoscale eddy, Deep-Sea Res. Pt. II, 55, 1348–1359,
https://doi.org/10.1016/j.dsr2.2008.02.001, 2008.
Landry, M. R., Ohman, M. D., Goericke, R., Stukel, M. R., and Tsyrklevich, K.: Lagrangian studies of phytoplankton growth and grazing relationships in a coastal upwelling ecosystem off Southern California, Prog. Oceanogr., 83, 208–216, https://doi.org/10.1016/j.pocean.2009.07.026, 2009.
Larsen, A., Castberg, T., Sandaa, R. A., Brussaard, C. P. D., Egge, J., Heldal, M., Paulino, A., Thyrhaug, R., v. Hannen, E. J., and Bratbak, G.: Population dynamics and diversity of phytoplankton, bacteria and viruses in a seawater enclosure, Mar. Ecol. Prog. Ser., 221, 47–57, 2001.
Lavigne, H., D'Ortenzio, F., Ribera D'Alcalà, M., Claustre, H., Sauzède, R., and Gacic, M.: On the vertical distribution of the chlorophyll a concentration in the Mediterranean Sea: a basin-scale and seasonal approach, Biogeosciences, 12, 5021–5039,
https://doi.org/10.5194/bg-12-5021-2015, 2015.
Lemée, R., Rochelle-Newall, E., Wambeke, F. V., Pizay, M. D., Rinaldi, P., and Gattuso, J. P.: Seasonal variation of bacterial production, respiration and growth efficiency in the open NW Mediterranean Sea, Aquat. Microb. Ecol., 29, 227–237, 2002.
Letelier, R. M., Karl, D. M., Abbott, M. R., and Bidigare, R. R.: Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre, Limnol. Oceanogr., 49, 508–519, https://doi.org/10.4319/lo.2004.49.2.0508, 2004.
López-Sandoval, D. C., Fernández, A., and Marañón, E.: Dissolved and particulate primary production along a longitudinal gradient in the Mediterranean Sea, Biogeosciences, 8, 815–825, https://doi.org/10.5194/bg-8-815-2011, 2011.
MacIntyre, H. L., Kana, T. M., Anning, T., and Geider, R. J.: Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria, J. Phycol., 38, 17–38, https://doi.org/10.1046/j.1529-8817.2002.00094.x, 2002.
Magazzù, G. and Decembrini, F.: Primary production, biomass and abundance of phototrophic picoplankton in the Mediterranean Sea: a review, Aquat. Microb. Ecol., 9, 97–104, 1995.
Marañón, E.: Phytoplankton growth rates in the Atlantic subtropical gyres, Limnol. Oceanogr., 50, 299–310, https://doi.org/10.4319/lo.2005.50.1.0299, 2005.
Marañón, E.: Cell Size as a Key Determinant of Phytoplankton Metabolism and Community Structure, Annu. Rev. Mar. Sci., 7, 241–264,
https://doi.org/10.1146/annurev-marine-010814-015955, 2015.
Marañón, E., Holligan, P. M., Varela, M., Mouriño, B., and Bale, A. J.: Basin-scale variability of phytoplankton biomass, production and growth in the Atlantic Ocean, Deep-Sea Res. Pt. I , 47, 825–857, https://doi.org/10.1016/S0967-0637(99)00087-4, 2000.
Marañón, E., Cermeño, P., Fernández, E., Rodríguez, J., and Zabala, L.: Significance and mechanisms of photosynthetic production of dissolved organic carbon in a coastal eutrophic ecosystem, Limnol. Oceanogr., 49, 1652–1666, https://doi.org/10.4319/lo.2004.49.5.1652, 2004.
Marañón, E., Fernández, A., Mouriño-Carballido, B.,
Martínez-GarcÍa, S., Teira, E., Cermeño, P., Chouciño, P., Huete-Ortega, M., Fernández, E., Calvo-Díaz, A., Morán, X. A. G., Bode, A., Moreno-Ostos, E., Varela, M. M., Patey, M. D., and Achterberg, E. P.: Degree of oligotrophy controls the response of microbial plankton to Saharan dust, Limnol. Oceanogr., 55, 2339–2352, https://doi.org/10.4319/lo.2010.55.6.2339, 2010.
Marañón, E., Cermeño, P., López-Sandoval, D. C., Rodríguez-Ramos, T., Sobrino, C., Huete-Ortega, M., Blanco, J. M., and Rodríguez, J.: Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use, Ecol. Lett., 16, 371–379, https://doi.org/10.1111/ele.12052, 2013.
Marañón, E., Cermeño, P., Huete-Ortega, M., López-Sandoval, D. C., Mouriño-Carballido, B., and Rodríguez-Ramos, T.: Resource Supply Overrides Temperature as Controlling Factor of Marine Phytoplankton Growth, PLOS ONE, 9, e99312, https://doi.org/10.1371/journal.pone.0099312, 2014.
Marañón, E., Lorenzo, M. P., Cermeño, P., and Mouriño-Carballido, B.: Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic rates, ISME J., 12, 1836–1845, https://doi.org/10.1038/s41396-018-0105-1, 2018.
Marie, D., Simon, N., Guillou, L., Partensky, F., and Vaulot, D.: Flow Cytometry Analysis of Marine Picoplankton, in: In Living Color: Protocols in Flow Cytometry and Cell Sorting, edited by: Diamond, R. A., and Demaggio, S., Springer, Berlin, Heidelberg, 421–454, 2000.
Martinez-Vicente, V., Dall'Olmo, G., Tarran, G., Boss, E., and Sathyendranath, S.: Optical backscattering is correlated with phytoplankton carbon across the Atlantic Ocean, Geophys. Res. Lett., 40, 1154–1158, https://doi.org/10.1002/grl.50252, 2013.
Marty, J.-C. and Chiavérini, J.: Seasonal and interannual variations in
phytoplankton production at DYFAMED time-series station, northwestern Mediterranean Sea, Deep-Sea Res. Pt. II, 49, 2017–2030, https://doi.org/10.1016/S0967-0645(02)00025-5, 2002.
Marty, J.-C., Chiavérini, J., Pizay, M.-D., and Avril, B.: Seasonal and interannual dynamics of nutrients and phytoplankton pigments in the western Mediterranean Sea at the DYFAMED time-series station (1991–1999), Deep-Sea Res. Pt. II, 49, 1965–1985, https://doi.org/10.1016/S0967-0645(02)00022-X, 2002.
Mena, C., Reglero, P., Hidalgo, M., Sintes, E., Santiago, R., Martín, M., Moyà, G., and Balbín, R.: Phytoplankton Community Structure Is Driven by Stratification in the Oligotrophic Mediterranean Sea, Front. Microbiol., 10, 1–15, https://doi.org/10.3389/fmicb.2019.01698, 2019.
Mignot, A., Claustre, H., Uitz, J., Poteau, A., D'Ortenzio, F., and Xing, X.:
Understanding the seasonal dynamics of phytoplankton biomass and the deep chlorophyll maximum in oligotrophic environments: A Bio-Argo float investigation, Global Biogeochem. Cy., 28, 856–876, https://doi.org/10.1002/2013gb004781, 2014.
Mills, M. M., Ridame, C., Davey, M., La Roche, J., and Geider, R. J.: Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic, Nature, 429, 292–294, https://doi.org/10.1038/nature02550, 2004.
Moberg, E. A. and Sosik, H. M.: Distance maps to estimate cell volume from
two-dimensional plankton images, Limnol. Oceanogr.-Meth., 10, 278–288,
https://doi.org/10.4319/lom.2012.10.278, 2012.
Mobley, C. D. and Boss, E. S.: Improved irradiances for use in ocean heating, primary production, and photo-oxidation calculations, Appl. Optics, 51, 6549–6560, https://doi.org/10.1364/AO.51.006549, 2012.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells, T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Marañón, E., Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A., Thingstad, T. F., Tsuda, A., and Ulloa, O.: Processes and patterns of oceanic
nutrient limitation, Nat. Geosci., 6, 701–710, https://doi.org/10.1038/ngeo1765, 2013.
Morán, X. A. G. and Alonso-Sáez, L.: Independence of bacteria on phytoplankton? Insufficient support for Fouilland & Mostajir's (2010) suggested new concept, FEMS Microbiol. Ecol., 78, 203–205, https://doi.org/10.1111/j.1574-6941.2011.01167.x, 2011.
Morán, X. A. G., Estrada, M., Gasol, J. M., and Pedrós-Alió, C.: Dissolved Primary Production and the Strength of Phytoplankton–Bacterioplankton Coupling in Contrasting Marine Regions, Microbial Ecol., 44, 217–223, https://doi.org/10.1007/s00248-002-1026-z, 2002.
Morel, A. and Berthon, J.-F.: Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationships reinvestigated in view of remote-sensing applications, Limnol. Oceanogr., 34, 1545–1562, https://doi.org/10.4319/lo.1989.34.8.1545, 1989.
Moutin, T. and Raimbault, P.: Primary production, carbon export and nutrients
availability in western and eastern Mediterranean Sea in early summer 1996 (MINOS cruise), J. Mar. Syst., 33–34, 273–288, https://doi.org/10.1016/S0924-7963(02)00062-3, 2002.
O'Connor, M. I., Piehler, M. F., Leech, D. M., Anton, A., and Bruno, J. F.: Warming and Resource Availability Shift Food Web Structure and Metabolism, PLOS Biol., 7, e1000178, https://doi.org/10.1371/journal.pbio.1000178, 2009.
Olofsson, M., Robertson, E. K., Edler, L., Arneborg, L., Whitehouse, M. J., and Ploug, H.: Nitrate and ammonium fluxes to diatoms and dinoflagellates at a single cell level in mixed field communities in the sea, Sci. Rep.-UK, 9, 1424, https://doi.org/10.1038/s41598-018-38059-4, 2019.
Olson, R. J. and Sosik, H. M.: A submersible imaging-in-flow instrument to analyze nano-and microplankton: Imaging FlowCytobot, Limnol. Oceanogr.-Meth., 5, 195–203, https://doi.org/10.4319/lom.2007.5.195, 2007.
Pan, Y., Rao, D. V. S., and Mann, K. H.: Acclimation to low light intensity in photosynthesis and growth of Pseudo-nitzschia multiseris Hasle, a neurotoxigenic diatom, J. Plankton Res., 18, 1427–1438, https://doi.org/10.1093/plankt/18.8.1427, 1996.
Pedrós-Alió, C., Calderón-Paz, J.-I., Guixa-Boixereu, N., Estrada, M., and Gasol, J. M.: Bacterioplankton and phytoplankton biomass and production during summer stratification in the northwestern Mediterranean Sea, Deep-Sea Res. Pt. I, 46, 985–1019, https://doi.org/10.1016/S0967-0637(98)00106-X, 1999.
Pérez, V., Fernández, E., Marañón, E., Morán, X. A. G., and Zubkov, M. V.: Vertical distribution of phytoplankton biomass, production and growth in the Atlantic subtropical gyres, Deep-Sea Res. Pt. I, 53, 1616–1634, https://doi.org/10.1016/j.dsr.2006.07.008, 2006.
Pulido-Villena, E., Ghiglione, J. F., Ortega-Retuerta, E., Van Wambeke, F., and Zohary, T.: Heterotrophic bacteria in the pelagic realm of the Mediterranean Sea, in: Life in the Mediterranean Sea: A Look at Habitat Changes, edited by: Stambler, N., Nova Science Publishers, Inc., Ramat Gan, Israel, 2012.
Ras, J., Claustre, H., and Uitz, J.: Spatial variability of phytoplankton pigment distributions in the Subtropical South Pacific Ocean: comparison between in situ and predicted data, Biogeosciences, 5, 353–369, https://doi.org/10.5194/bg-5-353-2008, 2008.
Robinson, A., Bouman, H. A., Tilstone, G. H., and Sathyendranath, S.: Size Class Dependent Relationships between Temperature and Phytoplankton Photosynthesis-Irradiance Parameters in the Atlantic Ocean, Front. Mar. Sci., 4, 1–19, https://doi.org/10.3389/fmars.2017.00435, 2018.
Siokou-Frangou, I., Christaki, U., Mazzocchi, M. G., Montresor, M., Ribera d'Alcalá, M., Vaqué, D., and Zingone, A.: Plankton in the open Mediterranean Sea: a review, Biogeosciences, 7, 1543–1586, https://doi.org/10.5194/bg-7-1543-2010, 2010.
Smith, D. C. and Azam, F.: A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine, Mar. Microb. Food Webs, 6, 107–114, 1992.
Steele, J.: A study of production in the Gulf of Mexico, J. Mar. Res., 3, 211–222, 1964.
Steinberg, D. K., Carlson, C. A., Bates, N. R., Johnson, R. J., Michaels, A. F., and Knap, A. H.: Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry, Deep-Sea Res. Pt. II, 48, 1405–1447, https://doi.org/10.1016/S0967-0645(00)00148-X, 2001.
Taillandier, V., Prieur, L., D'Ortenzio, F., Ribera d'Alcalà, M., and Pulido-Villena, E.: Profiling float observation of thermohaline staircases in the western Mediterranean Sea and impact on nutrient fluxes, Biogeosciences, 17, 3343–3366, https://doi.org/10.5194/bg-17-3343-2020, 2020.
Tanaka, T., Thingstad, T. F., Christaki, U., Colombet, J., Cornet-Barthaux, V., Courties, C., Grattepanche, J.-D., Lagaria, A., Nedoma, J., Oriol, L., Psarra, S., Pujo-Pay, M., and Van Wambeke, F.: Lack of P-limitation of phytoplankton and heterotrophic prokaryotes in surface waters of three anticyclonic eddies in the stratified Mediterranean Sea, Biogeosciences, 8, 525–538, https://doi.org/10.5194/bg-8-525-2011, 2011.
Tsiola, A., Pitta, P., Fodelianakis, S., Pete, R., Magiopoulos, I., Mara, P., Psarra, S., Tanaka, T., and Mostajir, B.: Nutrient Limitation in Surface Waters of the Oligotrophic Eastern Mediterranean Sea: an Enrichment Microcosm Experiment, Microbial Ecol., 71, 575–588, https://doi.org/10.1007/s00248-015-0713-5, 2016.
Turley, C. M., Bianchi, M., Christaki, U., Conan, P., Harris, J. R. W., Psarra, S., Ruddy, G., Stutt, E. D., Tselepides, A., and Wambeke, F. V.: Relationship between primary producers and bacteria in an oligotrophic sea–the Mediterranean and biogeochemical implications, Mar. Ecol. Prog. Ser., 193, 11–18, 2000.
Uitz, J., Claustre, H., Morel, A., and Hooker, S. B.: Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll, J. Geophys. Res.-Oceans, 111, 1–23, https://doi.org/10.1029/2005jc003207, 2006.
Uitz, J., Huot, Y., Bruyant, F., Babin, M., and Claustre, H.: Relating phytoplankton photophysiological properties to community structure on large scales, Limnol. Oceanogr., 53, 614–630, https://doi.org/10.4319/lo.2008.53.2.0614, 2008.
Uitz, J., Claustre, H., Gentili, B., and Stramski, D.: Phytoplankton class-specific primary production in the world's oceans: Seasonal and interannual variability from satellite observations, Global Biogeochem. Cy., 24, 1–19, https://doi.org/10.1029/2009gb003680, 2010.
Uitz, J., Stramski, D., Gentili, B., D'Ortenzio, F., and Claustre, H.: Estimates of phytoplankton class-specific and total primary production in the Mediterranean Sea from satellite ocean color observations, Global Biogeochem. Cy., 26, 1–10, https://doi.org/10.1029/2011gb004055, 2012.
Van Wambeke, F., Heussner, S., Diaz, F., Raimbault, P., and Conan, P.: Small-scale variability in the coupling/uncoupling of bacteria, phytoplankton and organic carbon fluxes along the continental margin of the Gulf of Lions, Northwestern Mediterranean Sea, J. Mar. Syst., 33–34, 411–429, https://doi.org/10.1016/S0924-7963(02)00069-6, 2002.
Van Wambeke, F., Pulido, E., Dinasquet, J., Djaoudi, K., Engel, A., Garel, M., Guasco, S., Nunige, S., Taillandier, V., Zäncker, B., and Tamburini, C.: Spatial patterns of biphasic ectoenzymatic kinetics related to biogeochemical properties in the Mediterranean Sea, Biogeosciences Discuss., [preprint], https://doi.org/10.5194/bg-2020-253, in review, 2020a.
Van Wambeke, F., Taillandier, V., Deboeufs, K., Pulido-Villena, E., Dinasquet, J., Engel, A., Marañón, E., Ridame, C., and Guieu, C.: Influence of atmospheric deposition on biogeochemical cycles in an oligotrophic ocean system, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2020-411, in review, 2020b.
Veldhuis, M. J. W. and Kraay, G. W.: Phytoplankton in the subtropical Atlantic Ocean: towards a better assessment of biomass and composition, Deep-Sea Res. Pt. I, 51, 507–530, https://doi.org/10.1016/j.dsr.2003.12.002, 2004.
Villareal, T. A., Woods, S., Moore, J. K., and CulverRymsza, K.: Vertical migration of Rhizosolenia mats and their significance to NO3 – fluxes in the central North Pacific gyre, J. Plankton Res., 18, 1103–1121, https://doi.org/10.1093/plankt/18.7.1103, 1996.
Wang, Q., Lyu, Z., Omar, S., Cornell, S., Yang, Z., and Montagnes, D. J. S.:
Predicting temperature impacts on aquatic productivity: Questioning the metabolic theory of ecology's “canonical” activation energies, Limnol. Oceanogr., 64, 1172–1185, https://doi.org/10.1002/lno.11105, 2019.
Yoon, J.-E., Yoo, K.-C., Macdonald, A. M., Yoon, H.-I., Park, K.-T., Yang, E. J., Kim, H.-C., Lee, J. I., Lee, M. K., Jung, J., Park, J., Lee, J., Kim, S., Kim, S.-S., Kim, K., and Kim, I.-N.: Reviews and syntheses: Ocean iron fertilization experiments – past, present, and future looking to a future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) project,
Biogeosciences, 15, 5847–5889, https://doi.org/10.5194/bg-15-5847-2018, 2018.
Zäncker, B., Cunliffe, M., and Engel, A.: Eukaryotic community composition in the sea surface microlayer across an east-west transect in the Mediterranean Sea, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2020-249, in review, 2020.
Short summary
The concentration of chlorophyll is commonly used as an indicator of the abundance of photosynthetic plankton (phytoplankton) in lakes and oceans. Our study investigates why a deep chlorophyll maximum, located near the bottom of the upper, illuminated layer develops in the Mediterranean Sea. We find that the acclimation of cells to low light is the main mechanism involved and that this deep maximum represents also a maximum in the biomass and carbon fixation activity of phytoplankton.
The concentration of chlorophyll is commonly used as an indicator of the abundance of...
Altmetrics
Final-revised paper
Preprint