Articles | Volume 18, issue 6
https://doi.org/10.5194/bg-18-2139-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-2139-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Organic carbon densities and accumulation rates in surface sediments of the North Sea and Skagerrak
Geological Survey of Norway, P.O. Box 6315, Torgarden, 7491
Trondheim, Norway
Terje Thorsnes
Geological Survey of Norway, P.O. Box 6315, Torgarden, 7491
Trondheim, Norway
Lilja Rún Bjarnadóttir
Geological Survey of Norway, P.O. Box 6315, Torgarden, 7491
Trondheim, Norway
Related authors
Markus Diesing, Marija Sciberras, Terje Thorsnes, Lilja Bjarnadottir, and Øyvind Moe
EGUsphere, https://doi.org/10.5194/egusphere-2025-2159, https://doi.org/10.5194/egusphere-2025-2159, 2025
Short summary
Short summary
Dragging fishing nets across the seafloor might lead to the release of carbon dioxide, potentially leading to negative consequences such as the ocean turning sour and the planet heating up even more quickly. Protecting areas of the seabed from such human activities could help reduce negative consequences, but which places should be protected? We present a new method to map areas of the seabed offshore Norway which are most at risk and could be considered for protection.
Mark Chatting, Markus Diesing, William Ross Hunter, Anthony Grey, Brian P. Kelleher, and Mark Coughlan
EGUsphere, https://doi.org/10.5194/egusphere-2025-661, https://doi.org/10.5194/egusphere-2025-661, 2025
Short summary
Short summary
Marine sediments store carbon and are critical in the global carbon cycle, but data gaps reduce the accuracy of carbon stock estimates. This study improves estimates in the Irish Sea by refining key data inputs. Using machine learning and bias adjustments, the new model suggests previous estimates overestimated carbon stocks by 31.4 %. The findings highlight the need for more accurate sediment measurements to guide environmental policies and better protect carbon storage in marine ecosystems.
Markus Diesing
Earth Syst. Sci. Data, 12, 3367–3381, https://doi.org/10.5194/essd-12-3367-2020, https://doi.org/10.5194/essd-12-3367-2020, 2020
Short summary
Short summary
A new digital map of the sediment types covering the bottom of the ocean has been created. Direct observations of the seafloor sediments are few and far apart. Therefore, machine learning was used to fill those gaps between observations. This was possible because known relationships between sediment types and the environment in which they form (e.g. water depth, temperature, and salt content) could be exploited. The results are expected to provide important information for marine research.
Markus Diesing, Marija Sciberras, Terje Thorsnes, Lilja Bjarnadottir, and Øyvind Moe
EGUsphere, https://doi.org/10.5194/egusphere-2025-2159, https://doi.org/10.5194/egusphere-2025-2159, 2025
Short summary
Short summary
Dragging fishing nets across the seafloor might lead to the release of carbon dioxide, potentially leading to negative consequences such as the ocean turning sour and the planet heating up even more quickly. Protecting areas of the seabed from such human activities could help reduce negative consequences, but which places should be protected? We present a new method to map areas of the seabed offshore Norway which are most at risk and could be considered for protection.
Mark Chatting, Markus Diesing, William Ross Hunter, Anthony Grey, Brian P. Kelleher, and Mark Coughlan
EGUsphere, https://doi.org/10.5194/egusphere-2025-661, https://doi.org/10.5194/egusphere-2025-661, 2025
Short summary
Short summary
Marine sediments store carbon and are critical in the global carbon cycle, but data gaps reduce the accuracy of carbon stock estimates. This study improves estimates in the Irish Sea by refining key data inputs. Using machine learning and bias adjustments, the new model suggests previous estimates overestimated carbon stocks by 31.4 %. The findings highlight the need for more accurate sediment measurements to guide environmental policies and better protect carbon storage in marine ecosystems.
Markus Diesing
Earth Syst. Sci. Data, 12, 3367–3381, https://doi.org/10.5194/essd-12-3367-2020, https://doi.org/10.5194/essd-12-3367-2020, 2020
Short summary
Short summary
A new digital map of the sediment types covering the bottom of the ocean has been created. Direct observations of the seafloor sediments are few and far apart. Therefore, machine learning was used to fill those gaps between observations. This was possible because known relationships between sediment types and the environment in which they form (e.g. water depth, temperature, and salt content) could be exploited. The results are expected to provide important information for marine research.
Cited articles
Aldridge, J. N., Parker, E. R., Bricheno, L., Green, S. L., and van der
Molen, J.: Assessment of the physical disturbance of the northern European
Continental shelf seabed by waves and currents, Cont. Shelf Res., 108,
121–140, https://doi.org/10.1016/j.csr.2015.03.004, 2015.
Aller, R. C.: Sedimentary Diagenesis, Depositional Environments, and Benthic
Fluxes, in: Treatise on Geochemistry, Elsevier, 293–334,
https://doi.org/10.1016/B978-0-08-095975-7.00611-2, 2014.
Amoroso, R. O., Pitcher, C. R., Rijnsdorp, A. D., McConnaughey, R. A.,
Parma, A. M., Suuronen, P., Eigaard, O. R., Bastardie, F., Hintzen, N. T.,
Althaus, F., Baird, S. J., Black, J., Buhl-Mortensen, L., Campbell, A. B.,
Catarino, R., Collie, J., Cowan, J. H., Durholtz, D., Engstrom, N.,
Fairweather, T. P., Fock, H. O., Ford, R., Gálvez, P. A., Gerritsen, H.,
Góngora, M. E., González, J. A., Hiddink, J. G., Hughes, K. M.,
Intelmann, S. S., Jenkins, C., Jonsson, P., Kainge, P., Kangas, M., Kathena,
J. N., Kavadas, S., Leslie, R. W., Lewis, S. G., Lundy, M., Makin, D.,
Martin, J., Mazor, T., Gonzalez-Mirelis, G., Newman, S. J., Papadopoulou,
N., Posen, P. E., Rochester, W., Russo, T., Sala, A., Semmens, J. M., Silva,
C., Tsolos, A., Vanelslander, B., Wakefield, C. B., Wood, B. A., Hilborn,
R., Kaiser, M. J., and Jennings, S.: Bottom trawl fishing footprints on the
world's continental shelves, P. Natl. Acad. Sci. USA, 115, E10275–E10282, https://doi.org/10.1073/pnas.1802379115, 2018.
Anonymous: Integrated Management of the Marine Environment of the North Sea and
Skagerrak (Management Plan). Meld. St. 37 (2012–2013) Report to the
Storting (white paper), available at:
https://www.regjeringen.no/contentassets/f9eb7ce889be4f47b5a2df5863b1be3d/en-gb/pdfs/stm201220130037000engpdfs.pdf (last access: 15 September 2020),
2013.
Assis, J., Tyberghein, L., Bosch, S., Verbruggen, H., Serrão, E. A., and
De Clerck, O.: Bio-ORACLE v2.0: Extending marine data layers for bioclimatic
modelling, Glob. Ecol. Biogeogr., 27, 277–284, https://doi.org/10.1111/geb.12693,
2018.
Atwood, T. B., Witt, A., Mayorga, J., Hammill, E., and Sala, E.: Global
Patterns in Marine Sediment Carbon Stocks, Front. Mar. Sci., 7, 165,
https://doi.org/10.3389/fmars.2020.00165, 2020.
Avelar, S., van der Voort, T. S., and Eglinton, T. I.: Relevance of carbon
stocks of marine sediments for national greenhouse gas inventories of
maritime nations, Carbon Balance Manag., 12, 10,
https://doi.org/10.1186/s13021-017-0077-x, 2017.
Bakker, J. F. and Helder, W.: Skagerrak (northeastern North Sea) oxygen
microprofiles and porewater chemistry in sediments, Mar. Geol., 111,
299–321, https://doi.org/10.1016/0025-3227(93)90137-K, 1993.
Balzer, W.: Organic matter degradation and biogenic element cycling in a
nearshore sediment (Kiel Bight)1, Limnol. Oceanogr., 29, 1231–1246,
https://doi.org/10.4319/lo.1984.29.6.1231, 1984.
Bauer, J. E., Cai, W.-J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S.,
and Regnier, P. A. G.: The changing carbon cycle of the coastal ocean,
Nature, 504, 61–70, 2013.
Berner, R. A.: Early diagenesis: A theoretical approach, Princeton
University Press, Princeton, N.J., 1980.
Berner, R. A.: Burial of organic carbon and pyrite sulfur in the modern
ocean: Its geochemical and environmental significance, Am. J. Sci., 282,
451–473, https://doi.org/10.2475/ajs.282.4.451, 1982.
Bhagirathan, U., Meenakumari, B., Jayalakshmy, K. V, Panda, S. K., Madhu, V.
R., and Vaghela, D. T.: Impact of bottom trawling on sediment
characteristics – a study along inshore waters off Veraval coast, India,
Environ. Monit. Assess., 160, 355–369, https://doi.org/10.1007/s10661-008-0700-0,
2010.
Bianchi, T. S., Cui, X., Blair, N. E., Burdige, D. J., Eglinton, T. I., and
Galy, V.: Centers of organic carbon burial and oxidation at the land-ocean
interface, Org. Geochem., 115, 138–155,
https://doi.org/10.1016/j.orggeochem.2017.09.008, 2018.
De Borger, E., Tiano, J., Braeckman, U., Rijnsdorp, A. D., and Soetaert, K.: Impact of bottom trawling on sediment biogeochemistry: a modelling approach, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2020-328, in review, 2020.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, 2001.
Burdige, D. J.: Preservation of Organic Matter in Marine Sediments:
Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets?,
Chem. Rev., 107, 467–485, https://doi.org/10.1021/cr050347q, 2007.
Canfield, D. E.: Factors influencing organic carbon preservation in marine
sediments, Chem. Geol., 114, 315–329,
https://doi.org/10.1016/0009-2541(94)90061-2, 1994.
de Haas, H. and van Weering, T. C. E.: Recent sediment accumulation, organic
carbon burial and transport in the northeastern North Sea, Mar. Geol., 136,
173–187, https://doi.org/10.1016/S0025-3227(96)00072-2, 1997.
de Haas, H., Boer, W., and van Weering, T. C. E.: Recent sedimentation and
organic carbon burial in a shelf sea: the North Sea, Mar. Geol., 144,
131–146, https://doi.org/10.1016/S0025-3227(97)00082-0, 1997.
de Haas, H., van Weering, T. C. E., and de Stigter, H.: Organic carbon in
shelf seas: sinks or sources, processes and products, Cont. Shelf Res.,
22, 691–717, https://doi.org/10.1016/S0278-4343(01)00093-0, 2002.
Diesing, M.: Spatially predicted sedimentation rates, organic carbon densities and organic carbon accumulation rates in the North Sea and Skagerrak, PANGAEA, https://doi.org/10.1594/PANGAEA.928272, 2021.
Diesing, M., Kröger, S., Parker, R., Jenkins, C., Mason, C., and Weston,
K.: Predicting the standing stock of organic carbon in surface sediments of
the North–West European continental shelf, Biogeochemistry, 135,
183–200, https://doi.org/10.1007/s10533-017-0310-4, 2017.
Duarte, C. M., Middelburg, J. J., and Caraco, N.: Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, 2, 1–8, https://doi.org/10.5194/bg-2-1-2005, 2005.
Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I., and Marbà,
N.: The role of coastal plant communities for climate change mitigation and
adaptation, Nat. Clim. Change, 3, 961–968, https://doi.org/10.1038/nclimate1970,
2013.
Eigaard, O. R., Bastardie, F., Hintzen, N. T., Buhl-Mortensen, L.,
Buhl-Mortensen, P., Catarino, R., Dinesen, G. E., Egekvist, J., Fock, H. O.,
Geitner, K., Gerritsen, H. D., González, M. M., Jonsson, P., Kavadas,
S., Laffargue, P., Lundy, M., Gonzalez-Mirelis, G., Nielsen, J. R.,
Papadopoulou, N., Posen, P. E., Pulcinella, J., Russo, T., Sala, A., Silva,
C., Smith, C. J., Vanelslander, B., and Rijnsdorp, A. D.: The footprint of
bottom trawling in European waters: distribution, intensity, and seabed
integrity, ICES J. Mar. Sci., 74, 847–865, https://doi.org/10.1093/icesjms/fsw194,
2016.
Eisma, D. and Kalf, J.: Dispersal, concentration and deposition of suspended
matter in the North Sea., J. Geol. Soc. London, 144, 161–178,
https://doi.org/10.1144/gsjgs.144.1.0161, 1987.
Elvenes, S., Bøe, R., Lepland, A., and Dolan, M.: Seabed sediments of
Søre Sunnmøre, Norway, J. Maps, 15, 686–696,
https://doi.org/10.1080/17445647.2019.1659865, 2019.
Emery, K. O.: Relict sediments on continental shelves of world, Am. Assoc.
Petr. Geol. Bull., 52, 445–464, 1968.
“EMODnet Bathymetry Consortium”: EMODnet Digital Bathymetry (DTM 2018),
https://doi.org/10.12770/18ff0d48-b203-4a65-94a9-5fd8b0ec35f6, 2018.
Faust, J. C. and Knies, J.: Organic Matter Sources in North Atlantic Fjord
Sediments, Geochem. Geophy. Geosy., 20, 2872–2885,
https://doi.org/10.1029/2019GC008382, 2019.
Fennel, K., Alin, S., Barbero, L., Evans, W., Bourgeois, T., Cooley, S., Dunne, J., Feely, R. A., Hernandez-Ayon, J. M., Hu, X., Lohrenz, S., Muller-Karger, F., Najjar, R., Robbins, L., Shadwick, E., Siedlecki, S., Steiner, N., Sutton, A., Turk, D., Vlahos, P., and Wang, Z. A.: Carbon cycling in the North American coastal ocean: a synthesis, Biogeosciences, 16, 1281–1304, https://doi.org/10.5194/bg-16-1281-2019, 2019.
Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva,
D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V, Smith, P.,
Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T.,
Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M. R., Herrero, M.,
Kiesecker, J., Landis, E., Laestadius, L., Leavitt, S. M., Minnemeyer, S.,
Polasky, S., Potapov, P., Putz, F. E., Sanderman, J., Silvius, M.,
Wollenberg, E., and Fargione, J.: Natural climate solutions, P. Natl.
Acad. Sci. USA, 114, 11645–11650, https://doi.org/10.1073/pnas.1710465114, 2017.
Guevara, M., Thine, C., Olmedo, G. F., and Vargas, R. R.: Data mining: random
forest, in: Soil Organic Carbon Mapping Cookbook, edited by: Yigini, Y., Olmedo, G. F., Reiter, S., Baritz, R., Viatkin, K., and Vargas, R., FAO,
Rome, 83–98,2018.
Guisan, A. and Zimmermann, N. E.: Predictive habitat distribution models in
ecology, Ecol. Model., 135, 147–186,
https://doi.org/10.1016/S0304-3800(00)00354-9, 2000.
Hall, S. J.: The continental shelf benthic ecosystem: current status, agents
for change and future prospects, Environ. Conserv., 29, 350–374,
https://doi.org/10.1017/S0376892902000243, 2002.
Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V, Micheli, F.,
D'Agrosa, C., Bruno, J. F., Casey, K. S., Ebert, C., Fox, H. E., Fujita, R.,
Heinemann, D., Lenihan, H. S., Madin, E. M. P., Perry, M. T., Selig, E. R.,
Spalding, M., Steneck, R., and Watson, R.: A Global Map of Human Impact on
Marine Ecosystems, Science, 319, 948–952,
https://doi.org/10.1126/science.1149345, 2008.
Harris, P. T., Macmillan-Lawler, M., Rupp, J., and Baker, E. K.:
Geomorphology of the oceans, Mar. Geol., 352, 4–24,
https://doi.org/10.1016/j.margeo.2014.01.011, 2014.
Hartigan, J. A. and Wong, M. A.: Algorithm AS 136: A K-Means Clustering
Algorithm, J. R. Stat. Soc. Ser. C-Appl., 28, 100–108,
https://doi.org/10.2307/2346830, 1979.
Hartnett, H. E., Keil, R. G., Hedges, J. I., and Devol, A. H.: Influence of
oxygen exposure time on organic carbon preservation in continental margin
sediments, Nature, 391, 572, https://doi.org/10.1038/35351, 1998.
Hedges, J. I. and Keil, R. G.: Sedimentary organic matter preservation: an
assessment and speculative synthesis, Mar. Chem., 49, 81–115,
https://doi.org/10.1016/0304-4203(95)00008-F, 1995.
Hemingway, J. D., Rothman, D. H., Grant, K. E., Rosengard, S. Z., Eglinton,
T. I., Derry, L. A., and Galy, V. V.: Mineral protection regulates long-term
global preservation of natural organic carbon, Nature, 570, 228–231,
https://doi.org/10.1038/s41586-019-1280-6, 2019.
Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G.
B. M., Ribeiro, E., Samuel-Rosa, A., Kempen, B., Leenaars, J. G. B., Walsh,
M. G., and Gonzalez, M. R.: SoilGrids1km – Global Soil Information Based on
Automated Mapping, Plos One, 9, e105992, https://doi.org/10.1371/journal.pone.0105992, 2014.
Hengl, T., de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M.,
Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A.,
Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil information based on machine
learning, Plos One, 12, 1–40, https://doi.org/10.1371/journal.pone.0169748, 2017.
Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B. M., and Gräler,
B.: Random forest as a generic framework for predictive modeling of spatial
and spatio-temporal variables, PeerJ, 6, e5518, https://doi.org/10.7717/peerj.5518,
2018.
Hiddink, J. G., Jennings, S., and Kaiser, M. J.: Indicators of the Ecological
Impact of Bottom-Trawl Disturbance on Seabed Communities, Ecosystems, 9,
1190–1199, https://doi.org/10.1007/s10021-005-0164-9, 2006.
Hiddink, J. G., Jennings, S., Sciberras, M., Szostek, C. L., Hughes, K. M.,
Ellis, N., Rijnsdorp, A. D., McConnaughey, R. A., Mazor, T., Hilborn, R.,
Collie, J. S., Pitcher, C. R., Amoroso, R. O., Parma, A. M., Suuronen, P.,
and Kaiser, M. J.: Global analysis of depletion and recovery of seabed biota
after bottom trawling disturbance, P. Natl. Acad. Sci. USA, 114, 8301–8306, https://doi.org/10.1073/pnas.1618858114, 2017.
Huettel, M. and Rusch, A.: Transport and degradation of phytoplankton in
permeable sediment, Limnol. Oceanogr., 45, 534–549,
https://doi.org/10.4319/lo.2000.45.3.0534, 2000.
Huettel, M., Ziebis, W., and Forster, S.: Flow-induced uptake of particulate
matter in permeable sediments, Limnol. Oceanogr., 41, 309–322,
https://doi.org/10.4319/lo.1996.41.2.0309, 1996.
Huettel, M., Roy, H., Precht, E., and Ehrenhauss, S.: Hydrodynamical impact
on biogeochemical processes in aquatic sediments, Hydrobiologia, 494,
231–236, 2003.
Huettel, M., Berg, P., and Kostka, J. E.: Benthic Exchange and Biogeochemical
Cycling in Permeable Sediments, Ann. Rev. Mar. Sci., 6, 23–51,
https://doi.org/10.1146/annurev-marine-051413-012706, 2014.
Huguet, C., Smittenberg, R. H., Boer, W., Sinninghe Damsté, J. S., and
Schouten, S.: Twentieth century proxy records of temperature and soil
organic matter input in the Drammensfjord, southern Norway, Org. Geochem.,
38, 1838–1849, https://doi.org/10.1016/j.orggeochem.2007.06.015, 2007.
Hunt, C., Demšar, U., Dove, D., Smeaton, C., Cooper, R., and Austin, W.
E. N.: Quantifying Marine Sedimentary Carbon: A New Spatial Analysis
Approach Using Seafloor Acoustics, Imagery, and Ground-Truthing Data in
Scotland, Front. Mar. Sci., 7, 588, https://doi.org/10.3389/fmars.2020.00588, 2020.
International Hydrographic Organization: Limits of oceans and seas, IHO
Spec. Publ., 28, 39 pp., 1953.
Jenkins, C.: Sediment Accumulation Rates For the Mississippi Delta Region: a
Time-interval Synthesis, J. Sediment. Res., 88, 301–309,
https://doi.org/10.2110/jsr.2018.15, 2018.
Jennerjahn, T. C.: Relevance and magnitude of “Blue Carbon” storage in
mangrove sediments: Carbon accumulation rates vs. stocks, sources vs. sinks,
Estuar. Coast. Shelf Sci., 247, 107027,
https://doi.org/10.1016/j.ecss.2020.107027, 2020.
Jennings, S., Dinmore, T. A., Duplisea, D. E., Warr, K. J., and Lancaster, J.
E.: Trawling disturbance can modify benthic production processes, J. Anim.
Ecol., 70, 459–475, https://doi.org/10.1046/j.1365-2656.2001.00504.x, 2001.
Jin, D., Hoagland, P., and Buesseler, K. O.: The value of scientific research
on the ocean's biological carbon pump, Sci. Total Environ., 749, 141357,
https://doi.org/10.1016/j.scitotenv.2020.141357, 2020.
Jørgensen, B., Bang, M., and Blackburn, T.: Anaerobic mineralization in
marine sediments from the Baltic Sea-North Sea transition, Mar. Ecol. Prog.
Ser., 59, 39–54, https://doi.org/10.3354/meps059039, 1990.
Jørgensen, B. B.: The sulfur cycle of a coastal marine sediment
(Limfjorden, Denmark)1, Limnol. Oceanogr., 22, 814–832,
https://doi.org/10.4319/lo.1977.22.5.0814, 1977.
Keil, R.: Hoard of fjord carbon, Nat. Geosci., 8, 426, https://doi.org/10.1038/ngeo2433, 2015.
Keil, R.: Anthropogenic Forcing of Carbonate and Organic Carbon Preservation
in Marine Sediments, Ann. Rev. Mar. Sci., 9, 151–172,
https://doi.org/10.1146/annurev-marine-010816-060724, 2017.
Keil, R. G. and Hedges, J. I.: Sorption of organic matter to mineral
surfaces and the preservation of organic matter in coastal marine sediments,
Chem. Geol., 107, 385–388, https://doi.org/10.1016/0009-2541(93)90215-5, 1993.
Köchy, M., Hiederer, R., and Freibauer, A.: Global distribution of soil organic carbon – Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world, SOIL, 1, 351–365, https://doi.org/10.5194/soil-1-351-2015, 2015.
Krause-Jensen, D. and Duarte, C. M.: Substantial role of macroalgae in
marine carbon sequestration, Nat. Geosci, 9, 737–742, https://doi.org/10.1038/ngeo2790, 2016.
Kursa, M. and Rudnicki, W.: Feature selection with the Boruta Package, J.
Stat. Softw., 36, 1–11, 2010.
LaRowe, D. E., Arndt, S., Bradley, J. A., Burwicz, E., Dale, A. W., and
Amend, J. P.: Organic carbon and microbial activity in marine sediments on a
global scale throughout the Quaternary, Geochim. Cosmochim. Ac., 286,
227–247, https://doi.org/10.1016/j.gca.2020.07.017, 2020.
Lee, T. R., Wood, W. T., and Phrampus, B. J.: A Machine Learning (kNN)
Approach to Predicting Global Seafloor Total Organic Carbon, Global
Biogeochem. Cy., 33, 37–46, https://doi.org/10.1029/2018GB005992, 2019.
Legge, O., Johnson, M., Hicks, N., Jickells, T., Diesing, M., Aldridge, J.,
Andrews, J., Artioli, Y., Bakker, D. C. E., Burrows, M. T., Carr, N.,
Cripps, G., Felgate, S. L., Fernand, L., Greenwood, N., Hartman, S.,
Kröger, S., Lessin, G., Mahaffey, C., Mayor, D. J., Parker, R.,
Queirós, A. M., Shutler, J. D., Silva, T., Stahl, H., Tinker, J.,
Underwood, G. J. C., Van Der Molen, J., Wakelin, S., Weston, K., and
Williamson, P.: Carbon on the Northwest European Shelf: Contemporary Budget
and Future Influences, Front. Mar. Sci., 7, 143,
https://doi.org/10.3389/fmars.2020.00143, 2020.
Leipe, T., Tauber, F., Vallius, H., Virtasalo, J., Uścinowicz, S.,
Kowalski, N., Hille, S., Lindgren, S., and Myllyvirta, T.: Particulate
organic carbon (POC) in surface sediments of the Baltic Sea, Geo-Marine
Lett., 31, 175–188, https://doi.org/10.1007/s00367-010-0223-x, 2011.
Luisetti, T., Turner, R. K., Andrews, J. E., Jickells, T. D., Kröger,
S., Diesing, M., Paltriguera, L., Johnson, M. T., Parker, E. R., Bakker, D.
C. E., and Weston, K.: Quantifying and valuing carbon flows and stores in
coastal and shelf ecosystems in the UK, Ecosyst. Serv., 35, 67–76,
https://doi.org/10.1016/J.ECOSER.2018.10.013, 2019.
Luisetti, T., Ferrini, S., Grilli, G., Jickells, T. D., Kennedy, H.,
Kröger, S., Lorenzoni, I., Milligan, B., van der Molen, J., Parker, R.,
Pryce, T., Turner, R. K., and Tyllianakis, E.: Climate action requires new
accounting guidance and governance frameworks to manage carbon in shelf
seas, Nat. Commun., 11, 4599, https://doi.org/10.1038/s41467-020-18242-w, 2020.
Macreadie, P. I., Anton, A., Raven, J. A., Beaumont, N., Connolly, R. M.,
Friess, D. A., Kelleway, J. J., Kennedy, H., Kuwae, T., Lavery, P. S.,
Lovelock, C. E., Smale, D. A., Apostolaki, E. T., Atwood, T. B., Baldock,
J., Bianchi, T. S., Chmura, G. L., Eyre, B. D., Fourqurean, J. W.,
Hall-Spencer, J. M., Huxham, M., Hendriks, I. E., Krause-Jensen, D.,
Laffoley, D., Luisetti, T., Marbà, N., Masque, P., McGlathery, K. J.,
Megonigal, J. P., Murdiyarso, D., Russell, B. D., Santos, R., Serrano, O.,
Silliman, B. R., Watanabe, K., and Duarte, C. M.: The future of Blue Carbon
science, Nat. Commun., 10, 3998, https://doi.org/10.1038/s41467-019-11693-w, 2019.
Martens, C. S. and Val Klump, J.: Biogeochemical cycling in an organic-rich
coastal marine basin 4. An organic carbon budget for sediments dominated by
sulfate reduction and methanogenesis, Geochim. Cosmochim. Ac., 48,
1987–2004, https://doi.org/10.1016/0016-7037(84)90380-6, 1984.
Martín, J., Puig, P., Palanques, A., and Giamportone, A.: Commercial
bottom trawling as a driver of sediment dynamics and deep seascape evolution
in the Anthropocene, Anthropocene, 7, 1–15,
https://doi.org/10.1016/j.ancene.2015.01.002, 2014a.
Martín, J., Puig, P., Masqué, P., Palanques, A., and
Sánchez-Gómez, A.: Impact of Bottom Trawling on Deep-Sea Sediment
Properties along the Flanks of a Submarine Canyon, Plos One, 9, 1–11,
https://doi.org/10.1371/journal.pone.0104536, 2014b.
Mayer, L. M.: Surface area control of organic carbon accumulation in
continental shelf sediments, Geochim. Cosmochim. Ac., 58, 1271–1284,
https://doi.org/10.1016/0016-7037(94)90381-6, 1994.
McBratney, A. B., Mendonça Santos, M. L., and Minasny, B.: On digital
soil mapping, Geoderma, 117, 3–52, https://doi.org/10.1016/S0016-7061(03)00223-4, 2003.
Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C.
M., Lovelock, C. E., Schlesinger, W. H., and Silliman, B. R.: A blueprint for
blue carbon: toward an improved understanding of the role of vegetated
coastal habitats in sequestering CO2, Front. Ecol. Environ., 9,
552–560, https://doi.org/10.1890/110004, 2011.
Meinshausen, N.: Quantile Regression Forests, J. Mach. Learn. Res., 7,
983–999, 2006.
Middelburg, J. J.: Carbon Processing at the Seafloor, in Marine Carbon
Biogeochemistry: A Primer for Earth System Scientists, Springer
International Publishing, Cham, 57–75, 2019.
Middelburg, J. J., Soetaert, K., and Herman, P. M. J.: Empirical
relationships for use in global diagenetic models, Deep Sea Res. Part I
Oceanogr. Res. Pap., 44, 327–344, https://doi.org/10.1016/S0967-0637(96)00101-X,
1997.
Minasny, B. and McBratney, A. B.: A conditioned Latin hypercube method for
sampling in the presence of ancillary information, Comput. Geosci., 32,
1378–1388, https://doi.org/10.1016/J.CAGEO.2005.12.009, 2006.
Mitchell, P. J., Aldridge, J., and Diesing, M.: Legacy data: How decades of
seabed sampling can produce robust predictions and versatile products,
Geosciences J., 9, 182, https://doi.org/10.3390/geosciences9040182, 2019a.
Mitchell, P., Aldridge, J., and Diesing, M.: Quantitative sediment composition predictions for the north-west European continental shelf, Cefas, UK, V1, https://doi.org/10.14466/CefasDataHub.63, 2019b.
Mitchell, P., Aldridge, J., and Diesing, M.: Predictor variables and groundtruth samples for north-west European continental shelf quantitative sediment analysis, Cefas, UK, V1, https://doi.org/10.14466/CefasDataHub.62, 2019c.
Mitchell, P. J., Spence, M. A., Aldridge, J., Kotilainen, A. T., and Diesing,
M.: Sedimentation rates in the Baltic Sea: A machine learning approach,
Cont. Shelf Res., 214, 104325,
https://doi.org/10.1016/j.csr.2020.104325, 2021.
Miteva, D. A., Murray, B. C., and Pattanayak, S. K.: Do protected areas
reduce blue carbon emissions? A quasi-experimental evaluation of mangroves
in Indonesia, Ecol. Econ., 119, 127–135,
https://doi.org/10.1016/j.ecolecon.2015.08.005, 2015.
Müller, A.: Geochemical expressions of anoxic conditions in
Nordåsvannet, a land-locked fjord in western Norway, Appl. Geochemistry,
16, 363–374, https://doi.org/10.1016/S0883-2927(00)00024-X, 2001.
Müller, P. J. and Suess, E.: Productivity, sedimentation rate, and
sedimentary organic matter in the oceans – I. Organic carbon preservation,
Deep Sea Res. Pt. A., 26, 1347–1362,
https://doi.org/10.1016/0198-0149(79)90003-7, 1979.
Najjar, R. G., Herrmann, M., Alexander, R., Boyer, E. W., Burdige, D. J.,
Butman, D., Cai, W.-J., Canuel, E. A., Chen, R. F., Friedrichs, M. A. M.,
Feagin, R. A., Griffith, P. C., Hinson, A. L., Holmquist, J. R., Hu, X.,
Kemp, W. M., Kroeger, K. D., Mannino, A., McCallister, S. L., McGillis, W.
R., Mulholland, M. R., Pilskaln, C. H., Salisbury, J., Signorini, S. R.,
St-Laurent, P., Tian, H., Tzortziou, M., Vlahos, P., Wang, Z. A., and
Zimmerman, R. C.: Carbon Budget of Tidal Wetlands, Estuaries, and Shelf
Waters of Eastern North America, Global Biogeochem. Cy., 32, 389–416,
https://doi.org/10.1002/2017GB005790, 2018.
Nellemann, C., Corcoran, E., Duarte, C. M., Valdés, L., De Young, C.,
Fonseca, L., and Grimsditch, G.: Blue Carbon: The Role of Healthy Oceans in
Binding Carbon: A Rapid Response Assessment, available at:
https://www.grida.no/publications/145 (last access: 22 March 2021), 2009.
Nordberg, K., Filipsson, H. L., Gustafsson, M., Harland, R., and Roos, P.:
Climate, hydrographic variations and marine benthic hypoxia in Koljö
Fjord, Sweden, J. Sea Res., 46, 187–200,
https://doi.org/10.1016/S1385-1101(01)00084-3, 2001.
Nordberg, K., Filipsson, H. L., Linné, P., and Gustafsson, M.: Stable
oxygen and carbon isotope information on the establishment of a new,
opportunistic foraminiferal fauna in a Swedish Skagerrak fjord basin, in
1979/1980, Mar. Micropaleontol., 73, 117–128,
https://doi.org/10.1016/j.marmicro.2009.07.006, 2009.
Oberle, F. K. J., Storlazzi, C. D., and Hanebuth, T. J. J.: What a drag:
Quantifying the global impact of chronic bottom trawling on continental
shelf sediment, J. Mar. Syst., 159, 109–119,
https://doi.org/10.1016/j.jmarsys.2015.12.007, 2016.
Palanques, A., Puig, P., Guillén, J., Demestre, M., and Martín, J.:
Effects of bottom trawling on the Ebro continental shelf sedimentary system
(NW Mediterranean), Cont. Shelf Res., 72, 83–98,
https://doi.org/10.1016/j.csr.2013.10.008, 2014.
Paradis, S., Pusceddu, A., Masqué, P., Puig, P., Moccia, D., Russo, T., and Lo Iacono, C.: Organic matter contents and degradation in a highly trawled area during fresh particle inputs (Gulf of Castellammare, southwestern Mediterranean), Biogeosciences, 16, 4307–4320, https://doi.org/10.5194/bg-16-4307-2019, 2019.
Paradis, S., Goñi, M., Masqué, P., Durán, R., Arjona-Camas, M.,
Palanques, A., and Puig, P.: Persistence of Biogeochemical Alterations of
Deep-Sea Sediments by Bottom Trawling, Geophys. Res. Lett., 48 ,
e2020GL091279, https://doi.org/10.1029/2020GL091279, 2020.
Paropkari, A. L., Prakash Babu, C., and Mascarenhas, A.: A critical
evaluation of depositional parameters controlling the variability of organic
carbon in Arabian Sea sediments, Mar. Geol., 107, 213–226,
https://doi.org/10.1016/0025-3227(92)90168-H, 1992.
Precht, E. and Huettel, M.: Advective pore-water exchange driven by surface
gravity waves and its ecological implications, Limnol. Oceanogr., 48,
1674–1684, 2003.
Pusceddu, A., Fiordelmondo, C., Polymenakou, P., Polychronaki, T.,
Tselepides, A., and Danovaro, R.: Effects of bottom trawling on the quantity
and biochemical composition of organic matter in coastal marine sediments
(Thermaikos Gulf, northwestern Aegean Sea), Cont. Shelf Res., 25,
2491–2505, https://doi.org/10.1016/j.csr.2005.08.013, 2005.
Pusceddu, A., Bianchelli, S., Martín, J., Puig, P., Palanques, A.,
Masqué, P., and Danovaro, R.: Chronic and intensive bottom trawling
impairs deep-sea biodiversity and ecosystem functioning, P. Natl. Acad.
Sci. USA, 111, 8861–8866, https://doi.org/10.1073/pnas.1405454111, 2014.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, available at: https://www.r-project.org/ (last access: 23 March 2021), 2018.
Roberts, C. M., O'Leary, B. C., McCauley, D. J., Cury, P. M., Duarte, C. M.,
Lubchenco, J., Pauly, D., Sáenz-Arroyo, A., Sumaila, U. R., Wilson, R.
W., Worm, B., and Castilla, J. C.: Marine reserves can mitigate and promote
adaptation to climate change, P. Natl. Acad. Sci. USA, 114, 6167–6175, https://doi.org/10.1073/pnas.1701262114, 2017.
Seiter, K., Hensen, C., Schröter, J., and Zabel, M.: Organic carbon
content in surface sediments–defining regional provinces, Deep Sea Res.
Pt. I, 51, 2001–2026, https://doi.org/10.1016/j.dsr.2004.06.014, 2004.
Skei, J.: Geochemical and sedimentological considerations of a permanently
anoxic fjord – Framvaren, south Norway, Sediment. Geol., 36, 131–145,
https://doi.org/10.1016/0037-0738(83)90006-4, 1983.
Smeaton, C. and Austin, W. E. N.: Where's the Carbon: Exploring the Spatial
Heterogeneity of Sedimentary Carbon in Mid-Latitude Fjords, Front. Earth
Sci., 7, 269, https://doi.org/10.3389/feart.2019.00269, 2019.
Smeaton, C., Austin, W. E. N., Davies, A. L., Baltzer, A., Abell, R. E., and Howe, J. A.: Substantial stores of sedimentary carbon held in mid-latitude fjords, Biogeosciences, 13, 5771–5787, https://doi.org/10.5194/bg-13-5771-2016, 2016.
Smeaton, C., Austin, W. E. N., Davies, A. L., Baltzer, A., Howe, J. A., and Baxter, J. M.: Scotland's forgotten carbon: a national assessment of mid-latitude fjord sedimentary carbon stocks, Biogeosciences, 14, 5663–5674, https://doi.org/10.5194/bg-14-5663-2017, 2017.
Smittenberg, R. H., Pancost, R. D., Hopmans, E. C., Paetzel, M., and
Sinninghe Damsté, J. S.: A 400-year record of environmental change in an
euxinic fjord as revealed by the sedimentary biomarker record, Palaeogeogr.
Palaeoclimatol. Palaeoecol., 202, 331–351,
https://doi.org/10.1016/S0031-0182(03)00642-4, 2004.
Smittenberg, R. H., Baas, M., Green, M. J., Hopmans, E. C., Schouten, S., and
Sinninghe Damsté, J. S.: Pre- and post-industrial environmental changes
as revealed by the biogeochemical sedimentary record of Drammensfjord,
Norway, Mar. Geol., 214, 177–200,
https://doi.org/10.1016/j.margeo.2004.10.029, 2005.
Steen, A. D., Quigley, L. N. M., and Buchan, A.: Evidence for the Priming
Effect in a Planktonic Estuarine Microbial Community, Front. Mar. Sci., 3,
6, https://doi.org/10.3389/fmars.2016.00006, 2016.
Stevens Jr, D. L. and Olsen, A. R.: Variance estimation for spatially
balanced samples of environmental resources, Environmetrics, 14,
593–610, https://doi.org/10.1002/env.606, 2003.
Thornton, S. F. and McManus, J.: Application of Organic Carbon and Nitrogen
Stable Isotope and C/N Ratios as Source Indicators of Organic Matter
Provenance in Estuarine Systems: Evidence from the Tay Estuary, Scotland,
Estuar. Coast. Shelf Sci., 38, 219–233,
https://doi.org/10.1006/ecss.1994.1015, 1994.
Tillin, H. M., Hiddink, J. G., Jennings, S., and Kaiser, M. J.: Chronic
bottom trawling alters the functional composition of benthic invertebrate
communities on a sea-basin scale, Mar. Ecol. Prog. Ser., 318, 31–45,
https://doi.org/10.3354/meps318031, 2006.
Tyberghein, L., Verbruggen, H., Pauly, K., Troupin, C., Mineur, F., and De
Clerck, O.: Bio-ORACLE: a global environmental dataset for marine species
distribution modelling, Glob. Ecol. Biogeogr., 21, 272–281,
https://doi.org/10.1111/j.1466-8238.2011.00656.x, 2012.
van de Velde, S., Van Lancker, V., Hidalgo-Martinez, S., Berelson, W. M., and
Meysman, F. J. R.: Anthropogenic disturbance keeps the coastal seafloor
biogeochemistry in a transient state, Sci. Rep.-UK, 8, 5582,
https://doi.org/10.1038/s41598-018-23925-y, 2018.
Velinsky, D. J., and Fogel, M. L.: Cycling of dissolved and particulate
nitrogen and carbon in the Framvaren Fjord, Norway: stable isotopic
variations, Mar. Chem., 67, 161–180,
https://doi.org/10.1016/S0304-4203(99)00057-2, 1999.
van der Voort, T. S., Blattmann, T. M., Usman, M., Montluçon, D., Loeffler, T., Tavagna, M. L., Gruber, N., and Eglinton, T. I.: MOSAIC (Modern Ocean Sediment Archive and Inventory of Carbon): A (radio)carbon-centric database for seafloor surficial sediments, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2020-199, in review, 2020.
van Weering, T. C. E., Berger, G. W., and Okkels, E.: Sediment transport,
resuspension and accumulation rates in the northeastern Skagerrak, Mar.
Geol., 111, 269–285, https://doi.org/10.1016/0025-3227(93)90135-I,
1993.
Van Weering, T. C. E.: Recent Sediments and Sediment Transport in the Northern North Sea: Surface Sediments of the Skagerrak, in: Holocene Marine Sedimentation in the North Sea Basin, edited by: Nio, S.‐D., Schüttenhelm, R. T. E., and Van Weering, T. C. E., Spec. Publ. Int. Assoc. Sedimentol., 5, 335–359, John Wiley & Sons, Ltd., Chichester, UK, 1981.
Williams, M. E., Amoudry, L. O., Brown, J. M., and Thompson, C. E. L.: Fine
particle retention and deposition in regions of cyclonic tidal current
rotation, Mar. Geol., 410, 122–134,
https://doi.org/10.1016/j.margeo.2019.01.006, 2019.
Wilson, R. J., Speirs, D. C., Sabatino, A., and Heath, M. R.: A synthetic map of the north-west European Shelf sedimentary environment for applications in marine science, Earth Syst. Sci. Data, 10, 109–130, https://doi.org/10.5194/essd-10-109-2018, 2018.
Zarate-Barrera, T. G. and Maldonado, J. H.: Valuing Blue Carbon: Carbon
Sequestration Benefits Provided by the Marine Protected Areas in Colombia,
Plos One, 10, e0126627,
https://doi.org/10.1371/journal.pone.0126627, 2015.
Zhang, W., Wirtz, K., Daewel, U., Wrede, A., Kröncke, I., Kuhn, G.,
Neumann, A., Meyer, J., Ma, M., and Schrum, C.: The Budget of Macrobenthic
Reworked Organic Carbon: A Modeling Case Study of the North Sea, J. Geophys.
Res.-Biogeosci., 124, 1446–1471, https://doi.org/10.1029/2019JG005109, 2019.
Zuo, Z., Eisma, D., and Berger, G. W.: Recent sediment deposition rates in
the oyster ground, North Sea, Netherlands J. Sea Res., 23, 263–269,
https://doi.org/10.1016/0077-7579(89)90047-1, 1989.
Short summary
The upper 10 cm of the seafloor of the North Sea and Skagerrak contain 231×106 t of carbon in organic form. The Norwegian Trough, the deepest sedimentary basin in the studied area, stands out as a zone of strong organic carbon accumulation with rates on par with neighbouring fjords. Conversely, large parts of the North Sea are characterised by rapid organic carbon degradation and negligible accumulation. This dual character is likely typical for continental shelf sediments worldwide.
The upper 10 cm of the seafloor of the North Sea and Skagerrak contain 231×106 t of carbon in...
Altmetrics
Final-revised paper
Preprint