Articles | Volume 18, issue 6
https://doi.org/10.5194/bg-18-2161-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/bg-18-2161-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A decade of dimethyl sulfide (DMS), dimethylsulfoniopropionate (DMSP) and dimethyl sulfoxide (DMSO) measurements in the southwestern Baltic Sea
GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker
Weg 20, 24105 Kiel, Germany
Cathleen Schlundt
GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker
Weg 20, 24105 Kiel, Germany
Dennis Booge
GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker
Weg 20, 24105 Kiel, Germany
Hermann W. Bange
GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker
Weg 20, 24105 Kiel, Germany
Related authors
Yanan Zhao, Dennis Booge, Christa A. Marandino, Cathleen Schlundt, Astrid Bracher, Elliot L. Atlas, Jonathan Williams, and Hermann W. Bange
Biogeosciences, 19, 701–714, https://doi.org/10.5194/bg-19-701-2022, https://doi.org/10.5194/bg-19-701-2022, 2022
Short summary
Short summary
We present here, for the first time, simultaneously measured dimethylsulfide (DMS) seawater concentrations and DMS atmospheric mole fractions from the Peruvian upwelling region during two cruises in December 2012 and October 2015. Our results indicate low oceanic DMS concentrations and atmospheric DMS molar fractions in surface waters and the atmosphere, respectively. In addition, the Peruvian upwelling region was identified as an insignificant source of DMS emissions during both periods.
Joachim Schönfeld, Hermann W. Bange, Helmke Hepach, and Svenja Reents
EGUsphere, https://doi.org/10.5194/egusphere-2025-2672, https://doi.org/10.5194/egusphere-2025-2672, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The current state of intertidal waters at Bottsand lagoon on the Baltic Sea coast, and on the mudflats off Schobüll on the North Sea coast of Schleswig-Holstein, Germany was assessed with a 36-month time series of water level, temperature, and salinity measurements. Periods of strong precipitation, high Elbe river discharge, and high solar radiation caused a higher data variability as compared to the off shore monitoring stations Boknis Eck in the Baltic and Sylt Roads in the North Sea.
Pratirupa Bardhan, Claudia Frey, Gregor Rehder, and Hermann W. Bange
EGUsphere, https://doi.org/10.5194/egusphere-2025-2518, https://doi.org/10.5194/egusphere-2025-2518, 2025
Short summary
Short summary
Nitrous oxide (N2O), a potent greenhouse gas, is released from coastal seas & estuaries, yet we don't fully understand how it is formed and consumed. In this study we collected water from several sites in the central Baltic Sea. N2O came from ammonia in oxic waters. Deep waters with low to no oxygen noted more active N2O cycling. The seafloor was a source in some areas. Typically N2O is produced by bacteria, but our results indicate possibility of other players like fungi or chemical reactions.
Gesa Schulz, Kirstin Dähnke, Tina Sanders, Jan Penopp, Hermann W. Bange, Rena Czeschel, and Birgit Gaye
EGUsphere, https://doi.org/10.5194/egusphere-2025-1660, https://doi.org/10.5194/egusphere-2025-1660, 2025
Short summary
Short summary
Oxygen minimum zones (OMZs) are low-oxygen ocean areas that deplete nitrogen, a key marine nutrient. Understanding nitrogen cycling in OMZs is crucial for the global nitrogen cycle. This study examined nitrogen cycling in the OMZ of the Bay of Bengal and East Equatorial Indian Ocean, revealing limited mixing between both regions. Surface phytoplankton consumes nitrate, while deeper nitrification recycles nitrogen. In the BoB’s OMZ (100–300 m), nitrogen loss likely occurs via anammox.
Johnathan Daniel Maxey, Neil D. Hartstein, Hermann W. Bange, and Moritz Müller
Biogeosciences, 21, 5613–5637, https://doi.org/10.5194/bg-21-5613-2024, https://doi.org/10.5194/bg-21-5613-2024, 2024
Short summary
Short summary
The distribution of N2O in fjord-like estuaries is poorly described in the Southern Hemisphere. Our study describes N2O distribution and its drivers in one such system in Macquarie Harbour, Tasmania. Water samples were collected seasonally in 2022 and 2023. Results show the system removes atmospheric N2O when river flow is high, whereas the system emits N2O when the river flow is low. N2O generated in basins is intercepted by the surface water and exported to the ocean during high river flow.
Riel Carlo O. Ingeniero, Gesa Schulz, and Hermann W. Bange
Biogeosciences, 21, 3425–3440, https://doi.org/10.5194/bg-21-3425-2024, https://doi.org/10.5194/bg-21-3425-2024, 2024
Short summary
Short summary
Our research is the first to measure dissolved NO concentrations in temperate estuarine waters, providing insights into its distribution under varying conditions and enhancing our understanding of its production processes. Dissolved NO was supersaturated in the Elbe Estuary, indicating that it is a source of atmospheric NO. The observed distribution of dissolved NO most likely resulted from nitrification.
Dennis Booge, Jerry F. Tjiputra, Dirk J. L. Olivié, Birgit Quack, and Kirstin Krüger
Earth Syst. Dynam., 15, 801–816, https://doi.org/10.5194/esd-15-801-2024, https://doi.org/10.5194/esd-15-801-2024, 2024
Short summary
Short summary
Oceanic bromoform, produced by algae, is an important precursor of atmospheric bromine, highlighting the importance of implementing these emissions in climate models. The simulated mean oceanic concentrations align well with observations, while the mean atmospheric values are lower than the observed ones. Modelled annual mean emissions mostly occur from the sea to the air and are driven by oceanic concentrations, sea surface temperature, and wind speed, which depend on season and location.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Gesa Schulz, Tina Sanders, Yoana G. Voynova, Hermann W. Bange, and Kirstin Dähnke
Biogeosciences, 20, 3229–3247, https://doi.org/10.5194/bg-20-3229-2023, https://doi.org/10.5194/bg-20-3229-2023, 2023
Short summary
Short summary
Nitrous oxide (N2O) is an important greenhouse gas. However, N2O emissions from estuaries underlie significant uncertainties due to limited data availability and high spatiotemporal variability. We found the Elbe Estuary (Germany) to be a year-round source of N2O, with the highest emissions in winter along with high nitrogen loads. However, in spring and summer, N2O emissions did not decrease alongside lower nitrogen loads because organic matter fueled in situ N2O production along the estuary.
Guanlin Li, Damian L. Arévalo-Martínez, Riel Carlo O. Ingeniero, and Hermann W. Bange
EGUsphere, https://doi.org/10.5194/egusphere-2023-771, https://doi.org/10.5194/egusphere-2023-771, 2023
Preprint archived
Short summary
Short summary
Dissolved carbon monoxide (CO) surface concentrations were first measured at 14 stations in the Ria Formosa Lagoon system in May 2021. Ria Formosa was a source of atmospheric CO. Microbial consumption accounted for 83 % of the CO production. The results of a 48-hour irradiation experiment with aquaculture effluent water indicated that aquaculture facilities in the Ria Formosa Lagoon seem to be a negligible source of atmospheric CO.
Hanna I. Campen, Damian L. Arévalo-Martínez, and Hermann W. Bange
Biogeosciences, 20, 1371–1379, https://doi.org/10.5194/bg-20-1371-2023, https://doi.org/10.5194/bg-20-1371-2023, 2023
Short summary
Short summary
Carbon monoxide (CO) is a climate-relevant trace gas emitted from the ocean. However, oceanic CO cycling is understudied. Results from incubation experiments conducted in the Fram Strait (Arctic Ocean) indicated that (i) pH did not affect CO cycling and (ii) enhanced CO production and consumption were positively correlated with coloured dissolved organic matter and nitrate concentrations. This suggests microbial CO uptake to be the driving factor for CO cycling in the Arctic Ocean.
Damian L. Arévalo-Martínez, Amir Haroon, Hermann W. Bange, Ercan Erkul, Marion Jegen, Nils Moosdorf, Jens Schneider von Deimling, Christian Berndt, Michael Ernst Böttcher, Jasper Hoffmann, Volker Liebetrau, Ulf Mallast, Gudrun Massmann, Aaron Micallef, Holly A. Michael, Hendrik Paasche, Wolfgang Rabbel, Isaac Santos, Jan Scholten, Katrin Schwalenberg, Beata Szymczycha, Ariel T. Thomas, Joonas J. Virtasalo, Hannelore Waska, and Bradley A. Weymer
Biogeosciences, 20, 647–662, https://doi.org/10.5194/bg-20-647-2023, https://doi.org/10.5194/bg-20-647-2023, 2023
Short summary
Short summary
Groundwater flows at the land–ocean transition and the extent of freshened groundwater below the seafloor are increasingly relevant in marine sciences, both because they are a highly uncertain term of biogeochemical budgets and due to the emerging interest in the latter as a resource. Here, we discuss our perspectives on future research directions to better understand land–ocean connectivity through groundwater and its potential responses to natural and human-induced environmental changes.
Li Zhou, Dennis Booge, Miming Zhang, and Christa A. Marandino
Biogeosciences, 19, 5021–5040, https://doi.org/10.5194/bg-19-5021-2022, https://doi.org/10.5194/bg-19-5021-2022, 2022
Short summary
Short summary
Trace gas air–sea exchange exerts an important control on air quality and climate, especially in the Southern Ocean (SO). Almost all of the measurements there are skewed to summer, but it is essential to expand our measurement database over greater temporal and spatial scales. Therefore, we report measured concentrations of dimethylsulfide (DMS, as well as related sulfur compounds) and isoprene in the Atlantic sector of the SO. The observations of isoprene are the first in the winter in the SO.
Sonja Gindorf, Hermann W. Bange, Dennis Booge, and Annette Kock
Biogeosciences, 19, 4993–5006, https://doi.org/10.5194/bg-19-4993-2022, https://doi.org/10.5194/bg-19-4993-2022, 2022
Short summary
Short summary
Methane is a climate-relevant greenhouse gas which is emitted to the atmosphere from coastal areas such as the Baltic Sea. We measured the methane concentration in the water column of the western Kiel Bight. Methane concentrations were higher in September than in June. We found no relationship between the 2018 European heatwave and methane concentrations. Our results show that the methane distribution in the water column is strongly affected by temporal and spatial variabilities.
Yanan Zhao, Dennis Booge, Christa A. Marandino, Cathleen Schlundt, Astrid Bracher, Elliot L. Atlas, Jonathan Williams, and Hermann W. Bange
Biogeosciences, 19, 701–714, https://doi.org/10.5194/bg-19-701-2022, https://doi.org/10.5194/bg-19-701-2022, 2022
Short summary
Short summary
We present here, for the first time, simultaneously measured dimethylsulfide (DMS) seawater concentrations and DMS atmospheric mole fractions from the Peruvian upwelling region during two cruises in December 2012 and October 2015. Our results indicate low oceanic DMS concentrations and atmospheric DMS molar fractions in surface waters and the atmosphere, respectively. In addition, the Peruvian upwelling region was identified as an insignificant source of DMS emissions during both periods.
Charitha Pattiaratchi, Mirjam van der Mheen, Cathleen Schlundt, Bhavani E. Narayanaswamy, Appalanaidu Sura, Sara Hajbane, Rachel White, Nimit Kumar, Michelle Fernandes, and Sarath Wijeratne
Ocean Sci., 18, 1–28, https://doi.org/10.5194/os-18-1-2022, https://doi.org/10.5194/os-18-1-2022, 2022
Short summary
Short summary
The Indian Ocean receives a large proportion of plastics, but very few studies have addressed the sources, transport pathways, and sinks. There is a scarcity of observational data for the Indian Ocean. Most plastic sources are derived from rivers, although the amount derived from fishing activity (ghost nets, discarded ropes) is unknown. The unique topographic features of the Indian Ocean that create the monsoons and reversing currents have a large influence on the transport and sinks.
Wangwang Ye, Hermann W. Bange, Damian L. Arévalo-Martínez, Hailun He, Yuhong Li, Jianwen Wen, Jiexia Zhang, Jian Liu, Man Wu, and Liyang Zhan
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-334, https://doi.org/10.5194/bg-2021-334, 2022
Manuscript not accepted for further review
Short summary
Short summary
CH4 is the second important greenhouse gas after CO2. We show that CH4 consumption and sea-ice melting influence the CH4 distribution in the Ross Sea (Southern Ocean), causing undersaturation and net uptake of CH4 during summertime. This study confirms the capability of surface water in the high-latitude Southern Ocean regions to take up atmospheric CH4 which, in turn, will help to improve predictions of how CH4 release/uptake from the ocean will develop when sea-ice retreats in the future.
Samuel T. Wilson, Alia N. Al-Haj, Annie Bourbonnais, Claudia Frey, Robinson W. Fulweiler, John D. Kessler, Hannah K. Marchant, Jana Milucka, Nicholas E. Ray, Parvadha Suntharalingam, Brett F. Thornton, Robert C. Upstill-Goddard, Thomas S. Weber, Damian L. Arévalo-Martínez, Hermann W. Bange, Heather M. Benway, Daniele Bianchi, Alberto V. Borges, Bonnie X. Chang, Patrick M. Crill, Daniela A. del Valle, Laura Farías, Samantha B. Joye, Annette Kock, Jabrane Labidi, Cara C. Manning, John W. Pohlman, Gregor Rehder, Katy J. Sparrow, Philippe D. Tortell, Tina Treude, David L. Valentine, Bess B. Ward, Simon Yang, and Leonid N. Yurganov
Biogeosciences, 17, 5809–5828, https://doi.org/10.5194/bg-17-5809-2020, https://doi.org/10.5194/bg-17-5809-2020, 2020
Short summary
Short summary
The oceans are a net source of the major greenhouse gases; however there has been little coordination of oceanic methane and nitrous oxide measurements. The scientific community has recently embarked on a series of capacity-building exercises to improve the interoperability of dissolved methane and nitrous oxide measurements. This paper derives from a workshop which discussed the challenges and opportunities for oceanic methane and nitrous oxide research in the near future.
Cited articles
Alcolombri, U., Ben-Dor, S., Feldmesser, E., Levin, Y., Tawfik, D. S., and
Vardi, A.: Identification of the algal dimethyl sulfide-releasing enzyme: A
missing link in the marine sulfur cycle, Science, 348, 1466–1469,
https://doi.org/10.1126/science.aab1586, 2015.
Asher, E. C., Dacey, J. W. H., Mills, M. M., Arrigo, K. R., and Tortell, P.
D.: High concentrations and turnover rates of DMS, DMSP and DMSO in
Antarctic sea ice, Geophys. Res. Lett., 38, L23609,
https://doi.org/10.1029/2011gl049712, 2011.
Aumont, O., Belviso, S., and Monfray, P.: Dimethylsulfoniopropionate (DMSP)
and dimethylsulfide (DMS) sea surface distributions simulated from a global
three-dimensional ocean carbon cycle model, J. Geophys. Res., 107, 4-1–4-19,
https://doi.org/10.1029/1999JC000111, 2002.
Bange, H. W. and Malien, F.: Boknis Eck Time-series Database, Kiel Datamanagement Team, available at: https://www.bokniseck.de//database-access, last access: 19 November 2020.
Bange, H. W., Bergmann, K., Hansen, H. P., Kock, A., Koppe, R., Malien, F., and Ostrau, C.: Dissolved methane during hypoxic events at the Boknis Eck time series station (Eckernförde Bay, SW Baltic Sea), Biogeosciences, 7, 1279–1284, https://doi.org/10.5194/bg-7-1279-2010, 2010.
Barlow, R. G., Cummings, D. G., and Gibb, S. W.: Improved resolution of
mono- and divinyl chlorophylls a and b and zeaxanthin and lutein in
phytoplankton extracts using reverse phase C-8 HPLC, Mar. Ecol. Prog. Ser.,
161, 303–307, https://doi.org/10.3354/meps161303, 1997.
Belkin, I. M.: Rapid warming of Large Marine Ecosystems, Prog. Oceanogr., 81,
207–213, https://doi.org/10.1016/j.pocean.2009.04.011, 2009.
Belviso, S., Claustre, H., and Marty, J. C.: Evaluation of the utility of
chemotaxonomic pigments as a surrogate for particulate DMSP, Limnol.
Oceanogr., 46, 989–995, https://doi.org/10.4319/lo.2001.46.4.0989, 2001.
Bepari, K. F., Shenoy, D. M., Chndrasekhara Rao, A. V., Kurian, S., Gauns,
M. U., Naik, B. R., and Naqvi, S. W. A.: Dynamics of dimethylsulphide and
associated compounds in the coastal waters of Goa, west coast of India, J.
Mar. Syst., 207, 103228, https://doi.org/10.1016/j.jmarsys.2019.103228, 2020.
Bertics, V. J., Löscher, C. R., Salonen, I., Dale, A. W., Gier, J., Schmitz, R. A., and Treude, T.: Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the seasonally hypoxic Eckernförde Bay, Baltic Sea, Biogeosciences, 10, 1243–1258, https://doi.org/10.5194/bg-10-1243-2013, 2013.
Bussmann, I., Dando, P. R., Niven, S. J., and Suess, E.: Groundwater seepage
in the marine environment: role for mass flux and bacterial activity, Mar.
Ecol. Prog. Ser., 178, 169–177, https://doi.org/10.3354/meps178169, 1999.
Caruana, A. M. N. and Malin, G.: The variability in DMSP content and DMSP
lyase activity in marine dinoflagellates, Prog. Oceanogr., 120, 410–424,
https://doi.org/10.1016/j.pocean.2013.10.014, 2014.
Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic
phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326,
655, https://doi.org/10.1038/326655a0, 1987.
Claustre, H.: The trophic status of various oceanic provinces as revealed by
phytoplankton pigment signatures, Limnol. Oceanogr., 39, 1206–1210,
https://doi.org/10.4319/lo.1994.39.5.1206, 1994.
Curson, A. R. J., Todd, J. D., Sullivan, M. J., and Johnston, A. W. B.:
Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and
genes, Nat. Rev. Microbiol., 9, 849–859, https://doi.org/10.1038/nrmicro2653, 2011.
Curson, A. R. J., Liu, J., Martinez, A. B., Green, R. T., Chan, Y. H.,
Carrion, O., Williams, B. T., Zhang, S. H., Yang, G. P., Page, P. C. B.,
Zhang, X. H., and Todd, J. D.: Dimethylsulfoniopropionate biosynthesis in
marine bacteria and identification of the key gene in this process, Nat.
Microbiol., 2, 17009, https://doi.org/10.1038/nmicrobiol.2017.9, 2017.
Dacey, J. W. H., Howse, F. A., Michaels, A. F., and Wakeham, S. G.: Temporal
variability of dimethylsulfide and dimethylsulfoniopropionate in the
Sargasso Sea, Deep Sea Res. , 45, 2085–2104,
https://doi.org/10.1016/S0967-0637(98)00048-X, 1998.
Despiau, S., Gourdeau, J., Jamet, D., Geneys, C., and Jamet, J. L.: Seawater
DMS in a perturbed coastal ecosystem, Hydrobiologia, 489, 107–115,
https://doi.org/10.1023/A:1023231101012, 2002.
Dixon, J. L., Hopkins, F. E., Stephens, J. A., and Schafer, H.: Seasonal
Changes in Microbial Dissolved Organic Sulfur Transformations in Coastal
Waters, Microorganisms, 8, 337, https://doi.org/10.3390/microorganisms8030337, 2020.
Ducklow, H. W., Doney, S. C., and Steinberg, D. K.: Contributions of
Long-Term Research and Time-Series Observations to Marine Ecology and
Biogeochemistry, Annu. Rev. Mar. Sci., 1, 279–302,
https://doi.org/10.1146/annurev.marine.010908.163801, 2009.
Estrada, M., Vives, F., and Alcaraz, M.: Life and the productivity of the
open sea, in: Western Mediterranean, edited by: Margalef,
R., Pergamon Press, Oxford, UK, 148–197, 1985.
Green, D. H., Shenoy, D. M., Hart, M. C., and Hatton, A. D.: Coupling of
dimethylsulfide oxidation to biomass production by a marine Flavobacterium,
Appl. Environ. Microbiol., 77, 3137–3140, https://doi.org/10.1128/AEM.02675-10, 2011.
Green, T. K. and Hatton, A. D.: The Claw Hypothesis: A New Perspective on
the Role of Biogenic Sulphur in the Regulation of Global Climate, Oceanogr.
Mar. Biol., 52, 315–335, https://doi.org/10.1201/b17143, 2014.
Griffiths, J. R., Lehtinen, S., Suikkanen, S., and Winder, M.: Limited
evidence for common interannual trends in Baltic Sea summer phytoplankton
biomass, PLoS ONE, 15, e0231690, https://doi.org/10.1371/journal.pone.0231690, 2020.
Hansen, H. P., Giesenhagen, H. C., and Behrends, G.: Seasonal and long-term
control of bottom-water oxygen deficiency in a stratified shallow-water
coastal system, Ices. J. Mar. Sci., 56, 65–71, 1999.
Hatton, A. D. and Wilson, S. T.: Particulate dimethylsulphoxide and
dimethylsulphoniopropionate in phytoplankton cultures and Scottish coastal
waters, Aquat. Sci., 69, 330–340, https://doi.org/10.1007/s00027-007-0891-4, 2007.
Hatton, A. D., Darroch, L., and Malin, G.: The role of dimethylsulphoxide in
the marine biogeochemical cycle of dimethylsulphide, Oceanogr. Mar. Biol.
Ann. Rev., 42, 29–55, 2004.
Hatton, A. D., Shenoy, D. M., Hart, M. C., Mogg, A., and Green, D. H.:
Metabolism of DMSP, DMS and DMSO by the cultivable bacterial community
associated with the DMSP-producing dinoflagellate Scrippsiella trochoidea,
Biogeochemistry, 110, 131–146, https://doi.org/10.1007/s10533-012-9702-7, 2012.
HELCOM: Sources and pathways of nutrients to the Baltic Sea, Baltic Sea
Environ. Proc., 153, 4–46, 2018a.
HELCOM: State of the Baltic Sea–Second HELCOM holistic assessment
2011–2016, Baltic Sea Environ. Proc., 155, 1–155, 2018b.
Henriksen, P., Riemann, B., Kaas, H., Sorensen, H. M., and Sorensen, H. L.:
Effects of nutrient-limitation and irradiance on marine phytoplankton
pigments, J. Plankton Res., 24, 835–858, https://doi.org/10.1093/plankt/24.9.835, 2002.
Hoppe, H.-G., Giesenhagen, H. C., Koppe, R., Hansen, H.-P., and Gocke, K.: Impact of change in climate and policy from 1988 to 2007 on environmental and microbial variables at the time series station Boknis Eck, Baltic Sea, Biogeosciences, 10, 4529–4546, https://doi.org/10.5194/bg-10-4529-2013, 2013.
Keller, M., Kiene, R., Kirst, G., and Visscher, P.: Biological and
environmental chemistry of DMSP and related sulfonium compounds, Springer
Science and Business Media, Berlin, Germany, 2012.
Keller, M. D., Bellows, W. K., and Guillard, R. R. L.: Dimethyl Sulfide
Production in Marine-Phytoplankton, Acs. Symposium. Series., 393, 167–182,
1989.
Kiene, R. P.: Dimethyl Sulfide Metabolism in Salt-Marsh Sediments, Fems.
Microbiol. Ecol., 53, 71–78, https://doi.org/10.1016/0378-1097(88)90014-6, 1988.
Kiene, R. P., Linn, L. J., and Bruton, J. A.: New and important roles for
DMSP in marine microbial communities, J. Sea. Res., 43, 209–224,
https://doi.org/10.1016/S1385-1101(00)00023-X, 2000.
Kiene, R. P., Nowinski, B., Esson, K., Preston, C., Marin, R., Birch, J.,
Scholin, C., Ryan, J., and Moran, M. A.: Unprecedented DMSP Concentrations
in a Massive Dinoflagellate Bloom in Monterey Bay, CA, Geophys. Res. Lett.,
46, 12279–12288, https://doi.org/10.1029/2019gl085496, 2019.
Kirst, G., Thiel, C., Wolff, H., Nothnagel, J., Wanzek, M., and Ulmke, R.:
Dimethylsulfoniopropionate (DMSP) in icealgae and its possible biological
role, Mar. Chem., 35, 381–388, https://doi.org/10.1016/S0304-4203(09)90030-5, 1991.
Kuss, J., Nausch, G., Engelke, C., von Weber, M., Lutterbeck, H., Naumann,
M., Waniek, J. J., and Schulz-Bull, D. E.: Changes of Nutrient
Concentrations in the Western Baltic Sea in the Transition Between Inner
Coastal Waters and the Central Basins: Time Series From 1995 to 2016 With
Source Analysis, Front. Earth. Sci., 8, 106, https://doi.org/10.3389/feart.2020.00106, 2020.
Kwint, R. L. J. and Kramer, K. J. M.: Annual cycle of the production and
fate of DMS and DMSP in a marine coastal system, Mar. Ecol. Prog. Ser., 134,
217–224, https://doi.org/10.3354/meps134217, 1996.
Leck, C. and Rodhe, H.: Emissions of marine biogenic sulfur to the
atmosphere of northern Europe, J. Atmos. Chem., 12, 63–86,
https://doi.org/10.1007/BF00053934, 1991.
Leck, C., Larsson, U., Bagander, L. E., Johansson, S., and Hajdu, S.:
Dimethyl Sulfide in the Baltic Sea – Annual Variability in Relation to
Biological-Activity, J. Geophys. Res.-Oceans, 95, 3353–3363,
https://doi.org/10.1029/JC095iC03p03353, 1990.
Lee, P. A. and De Mora, S. J.: Intracellular dimethylsulfoxide (DMSO) in
unicellular marine algae: speculations on its origin and possible biological
role, J. Phycol., 35, 8–18, https://doi.org/10.1046/j.1529-8817.1999.3510008.x, 1999.
Lee, P. A., de Mora, S. J., and Levasseur, M.: A review of dimethylsulfoxide
in aquatic environments, Atmos. Ocean, 37, 439–456,
https://doi.org/10.1080/07055900.1999.9649635, 1999.
Lennartz, S. T., Lehmann, A., Herrford, J., Malien, F., Hansen, H.-P., Biester, H., and Bange, H. W.: Long-term trends at the Boknis Eck time series station (Baltic Sea), 1957–2013: does climate change counteract the decline in eutrophication?, Biogeosciences, 11, 6323–6339, https://doi.org/10.5194/bg-11-6323-2014, 2014.
Liblik, T. and Lips, U.: Stratification Has Strengthened in the Baltic Sea
– An Analysis of 35 Years of Observational Data, Front. Earth Sci., 7, 174,
https://doi.org/10.3389/feart.2019.00174, 2019.
Lovelock, J. E., Maggs, R., and Rasmussen, R.: Atmospheric dimethyl sulphide
and the natural sulphur cycle, Nature, 237, 452–453, https://doi.org/10.1038/237452a0,
1972.
Ma, X., Sun, M., Lennartz, S. T., and Bange, H. W.: A decade of methane measurements at the Boknis Eck Time Series Station in Eckernförde Bay (southwestern Baltic Sea), Biogeosciences, 17, 3427–3438, https://doi.org/10.5194/bg-17-3427-2020, 2020.
Mackey, M. D., Mackey, D. J., Higgins, H. W., and Wright, S. W.: CHEMTAX – A
program for estimating class abundances from chemical markers: Application
to HPLC measurements of phytoplankton, Mar. Ecol. Prog. Ser., 144, 265–283,
https://doi.org/10.3354/meps144265, 1996.
Mohrholz, V.: Major baltic inflow statistics – revised, Front. Earth Sci., 5,
384, https://doi.org/10.3389/fmars.2018.00384, 2018.
Mohrholz, V., Naumann, M., Nausch, G., Krüger, S., and Gräwe, U.:
Fresh oxygen for the Baltic Sea – An exceptional saline inflow after a
decade of stagnation, J. Mar. Syst., 148, 152–166,
https://doi.org/10.1016/j.jmarsys.2015.03.005, 2015.
Moran, M. A., Reisch, C. R., Kiene, R. P., and Whitman, W. B.: Genomic
insights into bacterial DMSP transformations, Ann. Rev. Mar. Sci., 4,
523–542, https://doi.org/10.1146/annurev-marine-120710-100827, 2012.
Nagao, I., Eum, Y.-J., Iwamoto, Y., Tada, Y., Suzuki, K., Tsuda, A.,
Toratani, M., Hamasaki, K., and Uematsu, M.: Biogenic sulfur compounds in
spring phytoplankton bloom in the western North Pacific off the coast of
northern Japan, Prog. Oceanogr., 165, 145–157,
https://doi.org/10.1016/j.pocean.2018.05.006, 2018.
Naumann, M., Gräwe, U., Mohrholz, V., Kuss, J., Siegel, H., Waniek, J.
J., and Schulz-Bull, D. E.: Hydrographic-hydrochemical assessment of the
Baltic Sea 2018, Meereswiss. Ber., 110,
https://doi.org/10.12754/msr-2019-0110, 2019.
Nedwell, D., Shabbeer, M., and Harrison, R.: Dimethyl sulphide in North Sea
waters and sediments, Estuar. Coast. Shelf Sci., 39, 209–217,
https://doi.org/10.1006/ecss.1994.1059, 1994.
Olenina, I., Wasmund, N., Hajdu, S., Jurgensone, I., Gromisz, S., Kownacka,
J., Toming, K., Vaiciute, D., and Olenin, S.: Assessing impacts of invasive
phytoplankton: The Baltic Sea case, Mar. Pollut. Bull., 60, 1691–1700,
https://doi.org/10.1016/j.marpolbul.2010.06.046, 2010.
Orlikowska, A. and Schulz-Bull, D. E.: Seasonal variations of volatile
organic compounds in the coastal Baltic Sea, Environ. Chem., 6, 495–507,
https://doi.org/10.1071/En09107, 2009.
Pawlowicz, R.: M_Map: A mapping package for MATLAB, version
1.4m, available at: https://www.eoas.ubc.ca/~rich/map.html, last access: 19 November 2020.
Quinn, P. K. and Bates, T. S.: The case against climate regulation via
oceanic phytoplankton sulphur emissions, Nature, 480, 51–56,
https://doi.org/10.1038/nature10580, 2011.
Rahmstorf, S., Foster, G., and Cahill, N.: Global temperature evolution:
recent trends and some pitfalls, Environ. Res. Lett., 12, 054001,
https://doi.org/10.1088/1748-9326/aa6825, 2017.
Reissmann, J. H., Burchard, H., Feistel, R., Hagen, E., Lass, H. U.,
Mohrholz, V., Nausch, G., Umlauf, L., and Wieczorek, G.: Vertical mixing in
the Baltic Sea and consequences for eutrophication – A review, Prog.
Oceanogr., 82, 47–80, https://doi.org/10.1016/j.pocean.2007.10.004, 2009.
Richir, J., Champenois, W., Engels, G., Abadie, A., Gobert, S., Lepoint, G.,
Santos, R. O. P., Silva, J., Sirjacobs, D., and Borges, A. V.: A 15-month
survey of dimethylsulfoniopropionate and dimethylsulfoxide content in
Posidonia oceanica, Front. Ecol. Evol., 7, 510, https://doi.org/10.3389/fevo.2019.00510,
2019.
Schäfer, H., Myronova, N., and Boden, R.: Microbial degradation of
dimethylsulphide and related C1-sulphur compounds: organisms and pathways
controlling fluxes of sulphur in the biosphere, J. Exp. Bot., 61, 315–334,
https://doi.org/10.1093/jxb/erp355, 2009.
Schluter, L., Mohlenberg, F., Havskum, H., and Larsen, S.: The use of
phytoplankton pigments for identifying and quantifying phytoplankton groups
in coastal areas: testing the influence of light and nutrients on
pigment/chlorophyll a ratios, Mar. Ecol. Prog. Ser., 192, 49–63,
https://doi.org/10.3354/meps192049, 2000.
Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau,
J. Am. Stat. Assoc., 63, 1379–1389, https://doi.org/10.1080/01621459.1968.10480934,
1968.
Shenoy, D. M. and Patil, J. S.: Temporal variations in
dimethylsulphoniopropionate and dimethyl sulphide in the Zuari estuary, Goa
(India), Mar. Environ. Res., 56, 387–402, https://doi.org/10.1016/S0141-1136(02)00337-9,
2003.
Shenoy, D. M., Sujith, K. B., Gauns, M. U., Patil, S., Sarkar, A., Naik, H.,
Narvekar, P. V., and Naqvi, S. W. A.: Production of dimethylsulphide during
the seasonal anoxia off Goa, Biogeochemistry, 110, 47–55,
https://doi.org/10.1007/s10533-012-9720-5, 2012.
Simo, R.: From cells to globe: approaching the dynamics of DMS(P) in the
ocean at multiple scales, Can. J. Fish. Aquat. Sci., 61, 673–684,
https://doi.org/10.1139/F04-030, 2004.
Simó, R. and Dachs, J.: Global ocean emission of dimethylsulfide
predicted from biogeophysical data, Global Biogeochem. Cy., 16,
4, https://doi.org/10.1029/2001GB001829, 2002.
Simó, R. and Vila-Costa, M.: Ubiquity of algal dimethylsulfoxide in the
surface ocean: Geographic and temporal distribution patterns, Mar.
Chem., 100, 136–146, https://doi.org/10.1016/j.marchem.2005.11.006, 2006.
Simo, R., Grimalt, J. O., and Albaigés, J.: Dissolved dimethylsulphide,
dimethylsulphoniopropionate and dimethylsulphoxide in western Mediterranean
waters, Deep Sea Res., 44, 929–950,
https://doi.org/10.1016/S0967-0645(96)00099-9, 1997.
Simo, R., Hatton, A. D., Malin, G., and Liss, P. S.: Particulate dimethyl
sulphoxide in seawater: production by microplankton, Mar. Ecol. Prog. Ser.,
167, 291–296, https://doi.org/10.3354/meps167291, 1998.
Smetacek, V.: The Annual Cycle of Kiel Bight Plankton – a Long-Term
Analysis, Estuaries, 8, 145–157, https://doi.org/10.2307/1351864, 1985.
Smetacek, V., von Bodungen, B., Knoppers, B., Peinert, R., Pollehne, F.,
Stegmann, P., and Zeitzschel, B.: Seasonal stages characterizing the annual
cycle of an inshore pelagic system, Rapp. P. V. Reun. Cons. Int. Explor.
Mer., 183, 126–135, 1984.
Song, D., Zhang, Y., Liu, J., Zhong, H., Zheng, Y., Zhou, S., Yu, M., Todd,
J. D., and Zhang, X.: Metagenomic Insights Into the Cycling of
Dimethylsulfoniopropionate and Related Molecules in the Eastern China
Marginal Seas, Front. Microbiol., 11, 157, https://doi.org/10.3389/fmicb.2020.00157,
2020.
Speeckaert, G., Borges, A. V., Champenois, W., Royer, C., and Gypens, N.:
Annual cycle of dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide
(DMSO) related to phytoplankton succession in the Southern North Sea, Sci.
Total Environ., 622/623, 362–372, https://doi.org/10.1016/j.scitotenv.2017.11.359,
2018.
Stefels, J.: Physiological aspects of the production and conversion of DMSP
in marine algae and higher plants, J. Sea Res., 43, 183–197,
https://doi.org/10.1016/S1385-1101(00)00030-7, 2000.
Stefels, J., Steinke, M., Turner, S., Malin, G., and Belviso, S.:
Environmental constraints on the production and removal of the climatically
active gas dimethylsulphide (DMS) and implications for ecosystem modelling,
Biogeochemistry, 83, 245–275, https://doi.org/10.1007/s10533-007-9091-5, 2007.
Sunda, W., Kieber, D. J., Kiene, R. P., and Huntsman, S.: An antioxidant
function for DMSP and DMS in marine algae, Nature, 418, 317–320,
https://doi.org/10.1038/nature00851, 2002.
Thume, K., Gebser, B., Chen, L., Meyer, N., Kieber, D. J., and Pohnert, G.:
The metabolite dimethylsulfoxonium propionate extends the marine
organosulfur cycle, Nature, 563, 412–415, https://doi.org/10.1038/s41586-018-0675-0,
2018.
Toole, D. A. and Siegel, D. A.: Light-driven cycling of dimethylsulfide
(DMS) in the Sargasso Sea: Closing the loop, Geophys. Res. Lett., 31,
L09308, https://doi.org/10.1029/2004gl019581, 2004.
Townsend, D. W. and Keller, M. D.: Dimethylsulfide (DMS) and
dimethylsulfoniopropionate (DMSP) in relation to phytoplankton in the Gulf
of Maine, Mar. Ecol. Prog. Ser., 137, 229–241, https://doi.org/10.3354/meps137229, 1996.
Turner, S. M., Malin, G., Nightingale, P. D., and Liss, P. S.: Seasonal
variation of dimethyl sulphide in the North Sea and an assessment of fluxes
to the atmosphere, Mar. Chem., 54, 245–262,
https://doi.org/10.1016/0304-4203(96)00028-X, 1996.
Vairavamurthy, A., Andreae, M. O., and Iverson, R. L.: Biosynthesis of
dimethylsulfide and dimethylpropiothetin by Hymenomonas carterae in relation
to sulfur source and salinity variations, Limnol. Oceanogr., 30, 59–70,
https://doi.org/10.4319/lo.1985.30.1.0059, 1985.
Van Heukelem, L. and Thomas, C. S.: Computer-assisted high-performance
liquid chromatography method development with applications to the isolation
and analysis of phytoplankton pigments, J. Chromatogr. A, 910, 31–49,
https://doi.org/10.1016/S0378-4347(00)00603-4, 2001.
Vaquer-Sunyer, R. and Duarte, C. M.: Thresholds of hypoxia for marine
biodiversity, P. Natl. Acad. Sci. USA, 105, 15452–15457,
https://doi.org/10.1073/pnas.0803833105, 2008.
Veldhuis, M. J. W., Colijn, F., and Venekamp, L. A. H.: The spring bloom of
phaeocystis pouchetii (haptophyceae) in Dutch coastal waters, Neth. J. Sea
Res., 20, 37–48, https://doi.org/10.1016/0077-7579(86)90059-1, 1986.
Vila-Costa, M., Simo, R., Harada, H., Gasol, J. M., Slezak, D., and Kiene,
R. P.: Dimethylsulfoniopropionate uptake by marine phytoplankton, Science,
314, 652–654, https://doi.org/10.1126/science.1131043, 2006.
Vila-Costa, M., Kiene, R. P., and Simo, R.: Seasonal variability of the
dynamics of dimethylated sulfur compounds in a coastal northwest
Mediterranean site, Limnol. Oceanogr., 53, 198–211,
https://doi.org/10.4319/lo.2008.53.1.0198, 2008.
Vogt, M. and Liss, P. S.: Dimethylsulfide and climate, in: Surface
Ocean – Lower Atmosphere Processes, edited by: Le Quéré, C. and Saltzman, E. S., American Geophysical Union, Washington, DC, 197–232, 2009.
Wang, S., Elliott, S., Maltrud, M., and Cameron-Smith, P.: Influence of
explicit Phaeocystis parameterizations on the global distribution of marine
dimethyl sulfide, J. Geophys. Res.-Biogeosci., 120, 2158–2177,
https://doi.org/10.1002/2015JG003017, 2015.
Wang, S. L., Maltrud, M., Elliott, S., Cameron-Smith, P., and Jonko, A.:
Influence of dimethyl sulfide on the carbon cycle and biological production,
Biogeochemistry, 138, 49–68, https://doi.org/10.1007/s10533-018-0430-5, 2018.
Wang, W.-L., Song, G., Primeau, F., Saltzman, E. S., Bell, T. G., and Moore, J. K.: Global ocean dimethyl sulfide climatology estimated from observations and an artificial neural network, Biogeosciences, 17, 5335–5354, https://doi.org/10.5194/bg-17-5335-2020, 2020.
Wasmund, N., Göbel, J., and Bodungen, B. V.: 100-years-changes in the
phytoplankton community of Kiel Bight (Baltic Sea), J. Mar. Syst., 73, 300–322,
https://doi.org/10.1016/j.jmarsys.2006.09.009, 2008.
Wasmund, N., Tuimala, J., Suikkanen, S., Vandepitte, L., and Kraberg, A.:
Long-term trends in phytoplankton composition in the western and central
Baltic Sea, J. Mar. Syst., 87, 145–159, https://doi.org/10.1016/j.jmarsys.2011.03.010,
2011.
Wasmund, N., Dutz, J., Pollehne, F., Siegel, H., and Zettler, M. L.:
Biologische Zustandseinschätzung der Ostsee im Jahre 2011, Meereswiss.
Ber., 89, https://doi.org/10.12754/msr-2012-0089, 2012.
Wasmund, N., Dutz, J., Pollehne, F., Siegel, H., and Zettler, M. L.:
Biologische Zustandseinschätzung der Ostsee im Jahre 2012, Meereswiss.
Ber., 92, https://doi.org/10.12754/msr-2013-0092, 2013.
Wasmund, N., Dutz, J., Pollehne, F., Siegel, H., and Zettler, M. L.:
Biological assessment of the Baltic Sea 2014, Meereswiss. Ber.,
98, https://doi.org/10.12754/msr-2015-0098, 2015.
Wasmund, N., Dutz, J., Pollehne, F., Siegel, H., and Zettler, M. L.:
Biological assessment of the Baltic Sea 2015, Meereswiss. Ber.,
102, https://doi.org/10.12754/msr-2016-0102, 2016.
Wasmund, N., Dutz, J., Pollehne, F., Siegel, H., and Zettler, M. L.:
Biological Assessment of the Baltic Sea 2017, Meereswiss. Ber.,
108, https://doi.org/10.12754/msr-2018-0108, 2018.
Watanabe, Y. W., Yoshinari, H., Sakamoto, A., Nakano, Y., Kasamatsu, N.,
Midorikawa, T., and Ono, T.: Reconstruction of sea surface dimethylsulfide
in the North Pacific during 1970s to 2000s, Mar. Chem., 103, 347–358,
https://doi.org/10.1016/j.marchem.2006.10.004, 2007.
Webb, A. L., van Leeuwe, M. A., den Os, D., Meredith, M. P. H. J. V., and
Stefels, J.: Extreme spikes in DMS flux double estimates of biogenic sulfur
export from the Antarctic coastal zone to the atmosphere, Sci. Rep., 9,
2233, https://doi.org/10.1038/s41598-019-38714-4, 2019.
Williams, B. T., Cowles, K., Martinez, A. B., Curson, A. R. J., Zheng, Y.
F., Liu, J. L., Newton-Payne, S., Hind, A. J., Li, C. Y., Rivera, P. P. L.,
Carrion, O., Liu, J., Spurgin, L. G., Brearley, C. A., Mackenzie, B. W.,
Pinchbeck, B. J., Peng, M., Pratscher, J., Zhang, X. H., Zhang, Y. Z.,
Murrell, J. C., and Todd, J. D.: Bacteria are important
dimethylsulfoniopropionate producers in coastal sediments, Nat. Microbiol.,
4, 1815–1825, https://doi.org/10.1038/s41564-019-0527-1, 2019.
Wolfe, G. V., Strom, S. L., Holmes, J. L., Radzio, T., and Olson, M. B.:
Dimethylsulfoniopropionare cleavage by marine phytoplankton in response to
mechanical, chemical, or dark stress, J. Phycol., 38, 948–960,
https://doi.org/10.1046/j.1529-8817.2002.t01-1-01100.x, 2002.
Zindler, C., Peeken, I., Marandino, C. A., and Bange, H. W.: Environmental control on the variability of DMS and DMSP in the Mauritanian upwelling region, Biogeosciences, 9, 1041–1051, https://doi.org/10.5194/bg-9-1041-2012, 2012.
Zindler, C., Bracher, A., Marandino, C. A., Taylor, B., Torrecilla, E., Kock, A., and Bange, H. W.: Sulphur compounds, methane, and phytoplankton: interactions along a north–south transit in the western Pacific Ocean, Biogeosciences, 10, 3297–3311, https://doi.org/10.5194/bg-10-3297-2013, 2013.
Zscheischler, J. and Fischer, E. M.: The record-breaking compound hot and
dry 2018 growing season in Germany, Weather. Clim. Extremes, 29, 100270,
https://doi.org/10.1016/j.wace.2020.100270, 2020.
Short summary
We present a unique and comprehensive time-series study of biogenic sulfur compounds in the southwestern Baltic Sea, from 2009 to 2018. Dimethyl sulfide is one of the key players regulating global climate change, as well as dimethylsulfoniopropionate and dimethyl sulfoxide. Their decadal trends did not follow increasing temperature but followed some algae group abundances at the Boknis Eck Time Series Station.
We present a unique and comprehensive time-series study of biogenic sulfur compounds in the...
Special issue
Altmetrics
Final-revised paper
Preprint