Articles | Volume 18, issue 2
https://doi.org/10.5194/bg-18-423-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-423-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mg∕Ca, Sr∕Ca and stable isotopes from the planktonic foraminifera T. sacculifer: testing a multi-proxy approach for inferring paleotemperature and paleosalinity
UMR LOCEAN (IRD-CNRS-MNHN-Sorbonne Université), Centre IRD de
Nouméa, 101 Promenade Roger Laroque, Noumea 98848, New Caledonia
Alfred-Wegener-Institute, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
Gert Jan Reichart
Royal Netherlands Institute for Sea Research (NIOZ), Den Burg, Texel, the Netherlands
Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
Christophe Menkes
UMR ENTROPIE (IRD, Université de la Réunion, CNRS, IFREMER, UNC), Centre
IRD de Nouméa, 101 Promenade Roger Laroque, Noumea 98848, New Caledonia
Morgan Mangeas
UMR ENTROPIE (IRD, Université de la Réunion, CNRS, IFREMER, UNC), Centre
IRD de Nouméa, 101 Promenade Roger Laroque, Noumea 98848, New Caledonia
Stephan Frickenhaus
Alfred-Wegener-Institute, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
Jelle Bijma
Alfred-Wegener-Institute, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
Related authors
No articles found.
Evert de Froe, Christian Mohn, Karline Soetaert, Anna-Selma van der Kaaden, Gert-Jan Reichart, Laurence H. De Clippele, Sandra R. Maier, and Dick van Oevelen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3385, https://doi.org/10.5194/egusphere-2025-3385, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Cold-water corals are important reef-building animals in the deep sea, and are found all over the world. So far, researchers have been mapping and predicting where cold-water corals can be found using video transects and statistics. This study provides the first process-based model in which corals are predicted based on ocean currents and food particle movement. The renewal of food by tidal currents close to the seafloor and corals proved essential in predicting where they can grow or not.
Shilpa Lal, Sophie Cravatte, Christophe Menkes, Jed Macdonald, Romain LeGendre, Ines Mangolte, Cyril Dutheil, Neil Holbrook, and Simon Nicol
EGUsphere, https://doi.org/10.5194/egusphere-2025-3281, https://doi.org/10.5194/egusphere-2025-3281, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
This paper characterizes historical (1981–2023) marine heatwaves in the tropical southwestern Pacific, where they pose a challenge for marine resource dependent Islands. Heatwaves are distinguished as a function of their spatial extent, signature at the coast, and seasonality, to allow a better understanding of their impacts on ecosystems. Marine heatwaves are getting longer and more frequent, with greater spatial extents. Our results aim to inform the Pacific Islands on their vulnerability.
Jelle Bijma, Mathilde Hagens, Jens Hammes, Noah Planavsky, Philip A. E. Pogge von Strandmann, Tom Reershemius, Christopher T. Reinhard, Phil Renforth, Tim Jesper Suhrhoff, Sara Vicca, Arthur Vienne, and Dieter A. Wolf-Gladrow
EGUsphere, https://doi.org/10.5194/egusphere-2025-2740, https://doi.org/10.5194/egusphere-2025-2740, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Enhanced rock weathering is a nature based negative emission technology, that permanently stores CO2. It requires rock-flour to be added to arable land with the help of farmers. To be eligible for carbon credits calls for a simple but scientifically solid, so called, Monitoring, Reporting & Verification” (MRV). We demonstrate that the commonly used carbon-based accounting is ill-suited to close the balance in open systems such as arable land, and argue for cation-based accounting strategy.
Elwyn de la Vega, Markus Raitzsch, Gavin Foster, Jelle Bijma, Ulysses Silas Ninnemann, Michal Kucera, Tali Lea Babila, Jessica Crumpton Banks, Mohamed M. Ezat, and Audrey Morley
EGUsphere, https://doi.org/10.5194/egusphere-2025-2443, https://doi.org/10.5194/egusphere-2025-2443, 2025
Short summary
Short summary
The boron isotopic composition (δ11B) of foraminifera shells is an established proxy for the reconstruction of ocean pH. Applications to the Arctic oceans are however limited as robust calibrations in these regions are lacking. Here, we present a new calibration linking δ11B measured in two high-latitude foraminifera species to seawater pH. We show that the δ11B of the species analysed is well correlated with seawater pH and that this calibration can be applied to the paleorecord.
Anna Cutmore, Nicole Bale, Rick Hennekam, Bingjie Yang, Darci Rush, Gert-Jan Reichart, Ellen C. Hopmans, and Stefan Schouten
Clim. Past, 21, 957–971, https://doi.org/10.5194/cp-21-957-2025, https://doi.org/10.5194/cp-21-957-2025, 2025
Short summary
Short summary
As human activities lower marine oxygen levels, understanding the impact on the marine nitrogen cycle is vital. The Black Sea, which became oxygen-deprived 9600 years ago, offers key insights. By studying organic compounds linked to nitrogen cycle processes, we found that, 7200 years ago, the Black Sea's nitrogen cycle significantly altered due to severe deoxygenation. This suggests that continued marine oxygen decline could similarly alter the marine nitrogen cycle, affecting vital ecosystems.
Peter Kraal, Kristin A. Ungerhofer, Darci Rush, and Gert-Jan Reichart
EGUsphere, https://doi.org/10.5194/egusphere-2025-1870, https://doi.org/10.5194/egusphere-2025-1870, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Element cycles in oxygen-depleted areas such as upwelling areas inform future deoxygenation scenarios. The Benguela upwelling system shows strong decoupling of nitrogen and phosphorus cycling due to seasonal shelf anoxia. Anaerobic processes result in pelagic nitrogen loss as N2. At the same time, sediments are rich in fish-derived and bacterial phosphorus, with high fluxes of excess phosphate, altering deep-water nitrogen:phosphorus ratios. Such alterations can affect ocean functioning.
Yannick F. Bats, Klaas G. J. Nierop, Alice Stuart-Lee, Joost Frieling, Linda van Roij, Gert-Jan Reichart, and Appy Sluijs
EGUsphere, https://doi.org/10.5194/egusphere-2025-1678, https://doi.org/10.5194/egusphere-2025-1678, 2025
Short summary
Short summary
In this study we analyzed the molecular and stable carbon isotopic composition (δ13C) of pollen and spores (sporomorphs) that underwent chemical treatments that simulate diagenesis during fossilization. We show that the successive removal of sugars and lipids results in 13C depletion of the residual sporomorph, leaving it rich aromatic compounds. This residual aromatic-rich structure likely represents diagenetically resistant sporopollenin, implying diagenesis results in 13C depletion of pollen.
Szabina Karancz, Lennart J. de Nooijer, Bas van der Wagt, Marcel T. J. van der Meer, Sambuddha Misra, Rick Hennekam, Zeynep Erdem, Julie Lattaud, Negar Haghipour, Stefan Schouten, and Gert-Jan Reichart
Clim. Past, 21, 679–704, https://doi.org/10.5194/cp-21-679-2025, https://doi.org/10.5194/cp-21-679-2025, 2025
Short summary
Short summary
Changes in upwelling intensity of the Benguela upwelling region during the last glacial motivated us to investigate the local CO2 history during the last glacial-to-interglacial transition. Using various geochemical tracers on archives from both subsurface and surface waters reveals enhanced storage of carbon at depth during the Last Glacial Maximum. An efficient biological pump likely prevented outgassing of CO2 from intermediate depth to the atmosphere.
Devika Varma, Laura Villanueva, Nicole J. Bale, Pierre Offre, Gert-Jan Reichart, and Stefan Schouten
Biogeosciences, 21, 4875–4888, https://doi.org/10.5194/bg-21-4875-2024, https://doi.org/10.5194/bg-21-4875-2024, 2024
Short summary
Short summary
Archaeal hydroxylated tetraether lipids are increasingly used as temperature indicators in marine settings, but the factors influencing their distribution are still unclear. Analyzing membrane lipids of two thaumarchaeotal strains showed that the growth phase of the cultures does not affect the lipid distribution, but growth temperature profoundly affects the degree of cyclization of these lipids. Also, the abundance of these lipids is species-specific and is not influenced by temperature.
Louise Delaigue, Gert-Jan Reichart, Chris Galley, Yasmina Ourradi, and Matthew Paul Humphreys
EGUsphere, https://doi.org/10.5194/egusphere-2024-2853, https://doi.org/10.5194/egusphere-2024-2853, 2024
Short summary
Short summary
Our study analyzed pH in ocean surface waters to understand how they fluctuate with changes in temperature, salinity, and biological activities. We found that temperature mainly controls daily pH variations, but biological processes also play a role, especially in affecting CO2 levels between the ocean and atmosphere. Our research shows how these factors together maintain the balance of ocean chemistry, which is crucial for predicting changes in marine environments.
Charlotte Eich, Mathijs van Manen, J. Scott P. McCain, Loay J. Jabre, Willem H. van de Poll, Jinyoung Jung, Sven B. E. H. Pont, Hung-An Tian, Indah Ardiningsih, Gert-Jan Reichart, Erin M. Bertrand, Corina P. D. Brussaard, and Rob Middag
Biogeosciences, 21, 4637–4663, https://doi.org/10.5194/bg-21-4637-2024, https://doi.org/10.5194/bg-21-4637-2024, 2024
Short summary
Short summary
Phytoplankton growth in the Southern Ocean (SO) is often limited by low iron (Fe) concentrations. Sea surface warming impacts Fe availability and can affect phytoplankton growth. We used shipboard Fe clean incubations to test how changes in Fe and temperature affect SO phytoplankton. Their abundances usually increased with Fe addition and temperature increase, with Fe being the major factor. These findings imply potential shifts in ecosystem structure, impacting food webs and elemental cycling.
Guangnan Wu, Klaas G. J. Nierop, Bingjie Yang, Stefan Schouten, Gert-Jan Reichart, and Peter Kraal
EGUsphere, https://doi.org/10.5194/egusphere-2024-3192, https://doi.org/10.5194/egusphere-2024-3192, 2024
Short summary
Short summary
Estuaries store and process large amounts of carbon, making them vital to the global carbon cycle. In the Port of Rotterdam, we studied the source of organic matter (OM) in sediments and how it influences OM breakdown. We found that marine OM degrades faster than land OM, and human activities like dredging can accelerate this by exposing sediments to oxygen. Our findings highlight the impact of human activities on carbon storage in estuaries, which is key for managing estuarine carbon dynamics.
Romain Le Gendre, David Varillon, Sylvie Fiat, Régis Hocdé, Antoine De Ramon N'Yeurt, Jérôme Aucan, Sophie Cravatte, Maxime Duphil, Alexandre Ganachaud, Baptiste Gaudron, Elodie Kestenare, Vetea Liao, Bernard Pelletier, Alexandre Peltier, Anne-Lou Schaefer, Thomas Trophime, Simon Van Wynsberge, Yves Dandonneau, Michel Allenbach, and Christophe Menkes
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-394, https://doi.org/10.5194/essd-2024-394, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Due to ocean warming, coral reef ecosystems are strongly impacted with dystrophic events and corals experiencing increasing frequencies of bleaching events. In-situ observation remains the best alternative for accurate characterization of trends and extremes in these shallow environments. This paper presents the coastal temperature dataset of the ReefTEMPS monitoring network which spreads over multiple Pacific Island Countries and Territories (PICTS) in the Western and Central South Pacific.
Sarah Albernhe, Thomas Gorgues, Olivier Titaud, Patrick Lehodey, Christophe Menkes, and Anna Conchon
State Planet Discuss., https://doi.org/10.5194/sp-2024-35, https://doi.org/10.5194/sp-2024-35, 2024
Revised manuscript accepted for SP
Short summary
Short summary
Micronekton are marine organisms gathering a wide diversity of taxa (crustaceans, fish, cephalopods, etc.), 2 to 20 cm in size. They are responsible for an important carbon export to the deep ocean and are the main prey for marine predators. We define provinces of homogeneous environmental parameters, representing areas of common micronekton biomass and vertical structure. We observe the evolution of the provinces in time from 1998 to 2023, to account for the seasonal to interannual variability.
Joost Frieling, Linda van Roij, Iris Kleij, Gert-Jan Reichart, and Appy Sluijs
Biogeosciences, 20, 4651–4668, https://doi.org/10.5194/bg-20-4651-2023, https://doi.org/10.5194/bg-20-4651-2023, 2023
Short summary
Short summary
We present a first species-specific evaluation of marine core-top dinoflagellate cyst carbon isotope fractionation (εp) to assess natural pCO2 dependency on εp and explore its geological deep-time paleo-pCO2 proxy potential. We find that εp differs between genera and species and that in Operculodinium centrocarpum, εp is controlled by pCO2 and nutrients. Our results highlight the added value of δ13C analyses of individual micrometer-scale sedimentary organic carbon particles.
Laura Pacho, Lennart de Nooijer, and Gert-Jan Reichart
Biogeosciences, 20, 4043–4056, https://doi.org/10.5194/bg-20-4043-2023, https://doi.org/10.5194/bg-20-4043-2023, 2023
Short summary
Short summary
We analyzed Mg / Ca and other El / Ca (Na / Ca, B / Ca, Sr / Ca and Ba / Ca) in Nodosariata. Their calcite chemistry is markedly different to that of the other calcifying orders of foraminifera. We show a relation between the species average Mg / Ca and its sensitivity to changes in temperature. Differences were reflected in both the Mg incorporation and the sensitivities of Mg / Ca to temperature.
Niels J. de Winter, Daniel Killam, Lukas Fröhlich, Lennart de Nooijer, Wim Boer, Bernd R. Schöne, Julien Thébault, and Gert-Jan Reichart
Biogeosciences, 20, 3027–3052, https://doi.org/10.5194/bg-20-3027-2023, https://doi.org/10.5194/bg-20-3027-2023, 2023
Short summary
Short summary
Mollusk shells are valuable recorders of climate and environmental changes of the past down to a daily resolution. To explore this potential, we measured changes in the composition of shells of two types of bivalves recorded at the hourly scale: the king scallop Pecten maximus and giant clams (Tridacna) that engaged in photosymbiosis. We find that photosymbiosis produces more day–night fluctuation in shell chemistry but that most of the variation is not periodic, perhaps recording weather.
Rick Hennekam, Katharine M. Grant, Eelco J. Rohling, Rik Tjallingii, David Heslop, Andrew P. Roberts, Lucas J. Lourens, and Gert-Jan Reichart
Clim. Past, 18, 2509–2521, https://doi.org/10.5194/cp-18-2509-2022, https://doi.org/10.5194/cp-18-2509-2022, 2022
Short summary
Short summary
The ratio of titanium to aluminum (Ti/Al) is an established way to reconstruct North African climate in eastern Mediterranean Sea sediments. We demonstrate here how to obtain reliable Ti/Al data using an efficient scanning method that allows rapid acquisition of long climate records at low expense. Using this method, we reconstruct a 3-million-year North African climate record. African environmental variability was paced predominantly by low-latitude insolation from 3–1.2 million years ago.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Carolien M. H. van der Weijst, Josse Winkelhorst, Wesley de Nooijer, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past, 18, 961–973, https://doi.org/10.5194/cp-18-961-2022, https://doi.org/10.5194/cp-18-961-2022, 2022
Short summary
Short summary
A hypothesized link between Pliocene (5.3–2.5 million years ago) global climate and tropical thermocline depth is currently only backed up by data from the Pacific Ocean. In our paper, we present temperature, salinity, and thermocline records from the tropical Atlantic Ocean. Surprisingly, the Pliocene thermocline evolution was remarkably different in the Atlantic and Pacific. We need to reevaluate the mechanisms that drive thermocline depth, and how these are tied to global climate change.
Alice E. Webb, Didier M. de Bakker, Karline Soetaert, Tamara da Costa, Steven M. A. C. van Heuven, Fleur C. van Duyl, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 6501–6516, https://doi.org/10.5194/bg-18-6501-2021, https://doi.org/10.5194/bg-18-6501-2021, 2021
Short summary
Short summary
The biogeochemical behaviour of shallow reef communities is quantified to better understand the impact of habitat degradation and species composition shifts on reef functioning. The reef communities investigated barely support reef functions that are usually ascribed to conventional coral reefs, and the overall biogeochemical behaviour is found to be similar regardless of substrate type. This suggests a decrease in functional diversity which may therefore limit services provided by this reef.
Julie Meilland, Michael Siccha, Maike Kaffenberger, Jelle Bijma, and Michal Kucera
Biogeosciences, 18, 5789–5809, https://doi.org/10.5194/bg-18-5789-2021, https://doi.org/10.5194/bg-18-5789-2021, 2021
Short summary
Short summary
Planktonic foraminifera population dynamics has long been assumed to be controlled by synchronous reproduction and ontogenetic vertical migration (OVM). Due to contradictory observations, this concept became controversial. We here test it in the Atlantic ocean for four species of foraminifera representing the main clades. Our observations support the existence of synchronised reproduction and OVM but show that more than half of the population does not follow the canonical trajectory.
Indah Ardiningsih, Kyyas Seyitmuhammedov, Sylvia G. Sander, Claudine H. Stirling, Gert-Jan Reichart, Kevin R. Arrigo, Loes J. A. Gerringa, and Rob Middag
Biogeosciences, 18, 4587–4601, https://doi.org/10.5194/bg-18-4587-2021, https://doi.org/10.5194/bg-18-4587-2021, 2021
Short summary
Short summary
Organic Fe speciation is investigated along a natural gradient of the western Antarctic Peninsula from an ice-covered shelf to the open ocean. The two major fronts in the region affect the distribution of ligands. The excess ligands not bound to dissolved Fe (DFe) comprised up to 80 % of the total ligand concentrations, implying the potential to solubilize additional Fe input. The ligands on the shelf can increase the DFe residence time and fuel local primary production upon ice melt.
Jutta E. Wollenburg, Jelle Bijma, Charlotte Cremer, Ulf Bickmeyer, and Zora Mila Colomba Zittier
Biogeosciences, 18, 3903–3915, https://doi.org/10.5194/bg-18-3903-2021, https://doi.org/10.5194/bg-18-3903-2021, 2021
Short summary
Short summary
Cultured at in situ high-pressure conditions Cibicides and Cibicidoides taxa develop lasting ectoplasmic structures that cannot be retracted or resorbed. An ectoplasmic envelope surrounds their test and may protect the shell, e.g. versus carbonate aggressive bottom water conditions. Ectoplasmic roots likely anchor the specimens in areas of strong bottom water currents, trees enable them to elevate themselves above ground, and twigs stabilize and guide the retractable pseudopodial network.
Ove H. Meisel, Joshua F. Dean, Jorien E. Vonk, Lukas Wacker, Gert-Jan Reichart, and Han Dolman
Biogeosciences, 18, 2241–2258, https://doi.org/10.5194/bg-18-2241-2021, https://doi.org/10.5194/bg-18-2241-2021, 2021
Short summary
Short summary
Arctic permafrost lakes form thaw bulbs of unfrozen soil (taliks) beneath them where carbon degradation and greenhouse gas production are increased. We analyzed the stable carbon isotopes of Alaskan talik sediments and their porewater dissolved organic carbon and found that the top layers of these taliks are likely more actively degraded than the deeper layers. This in turn implies that these top layers are likely also more potent greenhouse gas producers than the underlying deeper layers.
Markus Raitzsch, Jelle Bijma, Torsten Bickert, Michael Schulz, Ann Holbourn, and Michal Kučera
Clim. Past, 17, 703–719, https://doi.org/10.5194/cp-17-703-2021, https://doi.org/10.5194/cp-17-703-2021, 2021
Short summary
Short summary
At approximately 14 Ma, the East Antarctic Ice Sheet expanded to almost its current extent, but the role of CO2 in this major climate transition is not entirely known. We show that atmospheric CO2 might have varied on 400 kyr cycles linked to the eccentricity of the Earth’s orbit. The resulting change in weathering and ocean carbon cycle affected atmospheric CO2 in a way that CO2 rose after Antarctica glaciated, helping to stabilize the climate system on its way to the “ice-house” world.
Sophie Cravatte, Guillaume Serazin, Thierry Penduff, and Christophe Menkes
Ocean Sci., 17, 487–507, https://doi.org/10.5194/os-17-487-2021, https://doi.org/10.5194/os-17-487-2021, 2021
Short summary
Short summary
The various currents in the southwestern Pacific Ocean contribute to the redistribution of waters from the subtropical gyre equatorward and poleward. The drivers of their interannual variability are not completely understood but are usually thought to be related to well-known climate modes of variability. Here, we suggest that oceanic chaotic variability alone, which is by definition unpredictable, explains the majority of this interannual variability south of 20° S.
Siham de Goeyse, Alice E. Webb, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 393–401, https://doi.org/10.5194/bg-18-393-2021, https://doi.org/10.5194/bg-18-393-2021, 2021
Short summary
Short summary
Foraminifera are calcifying organisms that play a role in the marine inorganic-carbon cycle and are widely used to reconstruct paleoclimates. However, the fundamental process by which they calcify remains essentially unknown. Here we use inhibitors to show that an enzyme is speeding up the conversion between bicarbonate and CO2. This helps the foraminifera acquire sufficient carbon for calcification and might aid their tolerance to elevated CO2 level.
Linda K. Dämmer, Lennart de Nooijer, Erik van Sebille, Jan G. Haak, and Gert-Jan Reichart
Clim. Past, 16, 2401–2414, https://doi.org/10.5194/cp-16-2401-2020, https://doi.org/10.5194/cp-16-2401-2020, 2020
Short summary
Short summary
The compositions of foraminifera shells often vary with environmental parameters such as temperature or salinity; thus, they can be used as proxies for these environmental variables. Often a single proxy is influenced by more than one parameter. Here, we show that while salinity impacts shell Na / Ca, temperature has no effect. We also show that the combination of different proxies (Mg / Ca and δ18O) to reconstruct salinity does not seem to work as previously thought.
Markus Raitzsch, Claire Rollion-Bard, Ingo Horn, Grit Steinhoefel, Albert Benthien, Klaus-Uwe Richter, Matthieu Buisson, Pascale Louvat, and Jelle Bijma
Biogeosciences, 17, 5365–5375, https://doi.org/10.5194/bg-17-5365-2020, https://doi.org/10.5194/bg-17-5365-2020, 2020
Short summary
Short summary
The isotopic composition of boron in carbonate shells of marine unicellular organisms is a popular tool to estimate seawater pH. Usually, many shells need to be dissolved and measured for boron isotopes, but the information on their spatial distribution is lost. Here, we investigate two techniques that allow for measuring boron isotopes within single shells and show that they yield robust mean values but provide additional information on the heterogeneity within and between single shells.
Anne Roepert, Lubos Polerecky, Esmee Geerken, Gert-Jan Reichart, and Jack J. Middelburg
Biogeosciences, 17, 4727–4743, https://doi.org/10.5194/bg-17-4727-2020, https://doi.org/10.5194/bg-17-4727-2020, 2020
Short summary
Short summary
We investigated, for the first time, the spatial distribution of chlorine and fluorine in the shell walls of four benthic foraminifera species: Ammonia tepida, Amphistegina lessonii, Archaias angulatus, and Sorites marginalis. Cross sections of specimens were imaged using nanoSIMS. The distribution of Cl and F was co-located with organics in the rotaliids and rather homogeneously distributed in miliolids. We suggest that the incorporation is governed by the biomineralization pathway.
Marlow Julius Cramwinckel, Lineke Woelders, Emiel P. Huurdeman, Francien Peterse, Stephen J. Gallagher, Jörg Pross, Catherine E. Burgess, Gert-Jan Reichart, Appy Sluijs, and Peter K. Bijl
Clim. Past, 16, 1667–1689, https://doi.org/10.5194/cp-16-1667-2020, https://doi.org/10.5194/cp-16-1667-2020, 2020
Short summary
Short summary
Phases of past transient warming can be used as a test bed to study the environmental response to climate change independent of tectonic change. Using fossil plankton and organic molecules, here we reconstruct surface ocean temperature and circulation in and around the Tasman Gateway during a warming phase 40 million years ago termed the Middle Eocene Climatic Optimum. We find that plankton assemblages track ocean circulation patterns, with superimposed variability being related to temperature.
Carolien Maria Hendrina van der Weijst, Josse Winkelhorst, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-105, https://doi.org/10.5194/cp-2020-105, 2020
Manuscript not accepted for further review
Cited articles
Anand, P., Elderfield, H., and Conte, M. H.: Calibration of Mg∕Ca
thermometry in planktonic foraminifera from a sediment trap time series,
Paleoceanography 18, 1050, https://doi.org/10.1029/2002PA000846, 2003.
Anderson, G. M.: Error propagation by the Monte Carlo method in geochemical
calculations, Geochim. Cosmochim. Ac., 40, 1533–1538, https://doi.org/10.1016/0016-7037(76)90092-2, 1976.
Bahr, A., Nurnberg, D., Schonfeld, J., Garde-Schonberg, D.: Hydrological
variability in Florida Straits during Marine Isotope Stage 5 cold events,
Paleoceanography 26, PA2214, https://doi.org/10.1029/2010PA002015, 2011.
Bé, A. W. H., Spero, H. J., and Anderson, O. R.: Effects of symbiont
elimination and reinfection on the life processes of the planktonic
foraminifer Globigerinoides sacculifer Mar. Biol., 70, 73-86, https://doi.org/10.1007/bf00397298, 1982.
Bemis, B. E., Spero, H. J., Bijma, J., and Lea, D. W.: Reevaluation of the
oxygen isotopic composition of planktonic foraminifera: Experimental results
and revised paleotemperature equations, Paleoceanography, 13, 150–160, https://doi.org/10.1029/98PA00070, 1998.
Berger, W. H.: Oxygen and carbon isotopes in foraminifera: An introduction, Palaeogeogr. Palaeocl, 33, 3–7, https://doi.org/10.1016/0031-0182(81)90030-4, 1981.
Bijma, J. and Hemleben, C.: Population-dynamics of the planktic foraminifer Globigerinoides sacculifer (Brady) from the central red-sea, Deep-Sea Res. Pt. I, 41, 485510, https://doi.org/10.1016/0967-0637(94)90092-2, 1994.
Bijma, J., Faber, W. W., and Hemleben, C.: Temperature and Salinity Limits
for Growth and Survival of Some Planktonic Foraminifers in Laboratory
Cultures, J. Foramin. Res. 20, 95–116, https://doi.org/10.2113/gsjfr.20.2.95, 1990.
Bijma, J., Hemleben, C., and Wellnitz, K.: Lunar-Influenced Carbonate Flux
of the Planktic Foraminifer Globigerinoides-Sacculifer (Brady) from the Central Red-Sea, Deep-Sea Res. Pt. I, 41, 511–530,
https://doi.org/10.1016/0967-0637(94)90093-0, 1994.
Cleroux, C., Cortijo, E., Anand, P., Labeyrie, L., Bassinot, F., Caillon,
N., and Duplessy, J. C.: Mg∕Ca and Sr∕Ca ratios in planktonic foraminifera:
Proxies for upper water column temperature reconstruction,
Paleoceanography, 23, https://doi.org/10.1029/2007PA001505, 2008.
Clifford, A.: Multivariate error analysis: a handbook of error propagation
and calculation in many-parameter systems, John Wiley and Sons, ISBN 978-0470160558, 1973.
Dekens, P. S., Lea, D., W., Pak, D. K., and Spero, H. J.: Core top calibration of Mg∕Ca in tropical foraminifera: Refining paleotemperature estimation, Geochem. Geophy. Geosys., 3, 1022, https://doi.org/10.1029/2001GC000200, 2002.
de Nooijer, L. J., Reichart, G. J., Dueñas-Bohórquez, A., Wolthers, M., Ernst, S. R., Mason, P. R. D., and van der Zwaan, G. J.: Copper incorporation in foraminiferal calcite: results from culturing experiments, Biogeosciences, 4, 493–504, https://doi.org/10.5194/bg-4-493-2007, 2007.
de Nooijer, L. J., Hathorne, E. C., Reichart, G. J., Langer, G., and Bijma, J.: Variability in calcitic Mg∕Ca
and Sr∕Ca ratios in clones of the benthic foraminifer Ammonia tepida, Mar. Micropaleontol.,
107, 32–43, https://doi.org/10.1016/j.marmicro.2014.02.002, 2014.
de Nooijer, L. J., Brombacher, A., Mewes, A., Langer, G., Nehrke, G., Bijma, J., and Reichart, G.-J.: Ba incorporation in benthic foraminifera, Biogeosciences, 14, 3387–3400, https://doi.org/10.5194/bg-14-3387-2017, 2017a.
de Nooijer, L. J., van Dijk, I., Toyofuku, T., and Reichart, G. J.: The Impacts of Seawater Mg∕Ca and
Temperature on Element Incorporation in Benthic Foraminiferal Calcite, Geochem. Geophy.
Geosy., 18, 3617–3630, https://doi.org/10.1002/2017GC007183, 2017b.
Dissard, D., Nehrke, G., Reichart, G. J., Nouet, J., and Bijma, J.: Effect of
the fluorescent indicator calcein on Mg and Sr incorporation into
foraminiferal calcite, Geochem. Geophy. Geosy., 10, Q11001, https://doi.org/10.1029/2009GC002417, 2009.
Dissard, D., Nehrke, G., Reichart, G. J., Bijma, J.: The impact of salinity
on the Mg∕Ca and Sr∕Ca ratio in the benthic foraminifera Ammonia tepida:
Results from culture experiments, Geochim. Cosmochim. Ac., 74, 928–940,
https://doi.org/10.1016/j.gca.2009.10.040, 2010a.
Dissard, D., Nehrke, G., Reichart, G. J., and Bijma, J.: Impact of seawater pCO2 on calcification and Mg∕Ca and Sr∕Ca ratios in benthic foraminifera calcite: results from culturing experiments with Ammonia tepida, Biogeosciences, 7, 81–93, https://doi.org/10.5194/bg-7-81-2010, 2010b.
Dueñas-Bohórquez, A., da Rocha, R. E., Kuroyanagi, A., Bijma, J., and Reichart, G. J.: Effect of salinity and seawater calcite saturation state on Mg and Sr incorporation in cultured planktonic foraminifera, Mar. Micropaleontol., 73, 178–189, doi10.1016/j.marmicro.2009.09.002, 2009.
Dueñas-Bohórquez, A., da Rocha, R. E., Kuroyanagi, A., de Nooijer, L. J., Bijma, J., and Reichart, G. J.: Interindividual variability and ontogenetic effects on Mg and Sr incorporation in the planktonic foraminifer Globigerinoides sacculifer, Geochem. Cosmochem. Ac., 75, 520–532, https://doi.org/10.1016/j.gca.2010.10.006, 2011.
Eggins, S., De Deckker, P., and Marshall, J.: Mg∕Ca variation in planktonic
foraminifera tests: implications for reconstructing palaeo-seawater
temperature and habitat migration, Earth Planet. Sci. Lett., 212, 291–306, https://doi.org/10.1016/S0012-821X(03)00283-8, 2003.
Elderfield, H. and Ganssen, G.: Past temperature and δ18O of
surface ocean waters inferred from foraminiferal Mg/Ca ratios, Nature, 405,
442–445, https://doi.org/10.1038/35013033, 2000.
Emiliani, C.: Depth habitats of some species of pelagic foraminifera as
indicated by oxygen isotope ratios, Amer. J. Sci., 252, 149–158, https://doi.org/10.2475/ajs.252.3.149, 1954.
Epstein, S., Buchsbaum, R., Lowenstam, H. A., and Urey, C. H.: Revised
carbonate-water isotopic temperature scale, Geol. Soc. Am. Bull., 64, 1315–1326, https://doi.org/10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2, 1953.
Erez, J. and Luz, B.: Experimental Paleotemperature Equation for
Planktonic-Foraminifera, Geochim. Cosmochim. Ac., 47, 1025–1031, https://doi.org/10.1016/0016-7037(83)90232-6,
1983.
Evans, D. and Mueller, W.: LA-ICPMS elemental imaging of complex discontinuous carbonates: An example using large benthic foraminifera, J. Anal. Atom. Spec., 28, 10391044, https://doi.org/10.1039/c3ja50053e, 2013.
Evans, D., Erez, J., Oron, S., and Müller, W.: Mg/Ca-temperature and seawater-test chemistry relationships in the shallow-dwelling large benthic foraminifera Operculina ammonoides, Geochim. Cosmochim. Ac., 148, 325–342, https://doi.org/10.1016/j.gca.2014.09.039, 2015.
Fehrenbacher, J. S., Spero, H. J., Russell, A, D., Vetter, L., and Eggins, S.: Optimizing LA-ICP-MS analytical procedures for elemental depth profiling of foraminifera shells, Chem. Geol., 407, 29, https://doi.org/10.1016/j.chemgeo.2015.04.007, 2015.
Fontanier, C., Dissard, D., Ruffine, L., Mamo, B., Ponzevera, E., Pelleter, E., Baudin, F., Roubi, A.,
Cheron, S., Boissier, A., Gayet, N., Bernell-Fleury, S., Pitel, M., Guyader, V., Lesongeur, F.,
and Savignac, F.: Living (stained) deep-sea foraminifera from the Sea of Marmara: A preliminary
study, Deep-Sea Res. Pt. II, 153, 61–78, https://doi.org/10.1016/j.dsr2.2017.12.011, 2018.
Friedrich, O., Schiebel, R., Wilson, P. A., Weldeab, S., Beer, C. J.,
Cooper, M. J., and Fiebig, J.: Influence of test size, water depth, and ecology
on Mg∕Ca, Sr∕Ca, δ18O and δ13C in nine modern
species of planktic foraminifers, Earth Planet. Sci. Lett., 319/320, 133–145, https://doi.org/10.1016/j.epsl.2011.12.002, 2012.
Gaffey, S. J. and Bronnimann, C. E.: Effects of Bleaching on Organic and
Mineral Phases in Biogenic Carbonates, J. Sediment. Petrol., 63, 752–754,
https://doi.org/10.1029/2018GC007575, 1993.
Gray, W. R., Rae, J. W. B., Wills, R. C. J., Shevenell, A. E., Taylor, B. J., Burke, A., Foster,
G.L., and Lear, C. H.: Deglacial planktic foraminiferal boron isotope and Mg∕Ca
data from sediment core MD01-2416 in the western North Pacific Ocean, Nat.
Geosci., 11, 340–344,
https://doi.org/10.1594/PANGAEA.887381. 2018.
Gray, W. R. and Evans, D.: Nonthermal influences on Mg∕Ca in planktonic
foraminifera: A review of culture studies and application to the last
glacial maximum, Paleoceanography and Paleoclimatology, 34, 306–315, https://doi.org/10.1029/2018PA003517, 2019.
Groeneveld, J., Ho, S. L., Mackensen, A., Mohtadi, M., Laepple, T.:
Deciphering the variability in Mg∕Ca and Oxygen Isotopes of individual
foraminifera, Paleoceanography and Paleoclimatology, 34, 755–773, https://doi.org/10.1029/2018PA003533, 2019.
Hamilton, C. P., Spero, H. J., Bijma, J., and Lea, D. W.: Geochemical
investigation of gametogenic calcite addition in the planktonic foraminifera
Orbulina universa, Mar. Micropaleontol., 68, 256–267, https://doi.org/10.1016/j.marmicro.2008.04.003, 2008.
Hastings, D. W., Russell, A. D., and Emerson, S. R.: Foraminiferal magnesium
in Globeriginoides sacculifer as a paleotemperature proxy, Paleoceanography, 13, 161–169, https://doi.org/10.1029/97PA03147, 1998.
Hathorne, E. C., James, R. H., Lampitt, and Richard, S.: Environmental versus biomineralization controls on the intratest variation in the trace element composition of the planktonic foraminifera G. inflata and G. scitula, Paleoceanography, 24, PA4204, https://doi.org/10.1029/2009PA001742, 2009.
Hemleben, C., Spindler, M., and Anderson, O. R.: Modern planktonic
foraminifera, Springer, Berlin, Germany, ISBN: 978-1-4612-3544-6, 1989.
Honisch, B., Allen, K. A., Lea, D. W., Spero, H. J., Eggins, S. M.,
Arbuszewski, J., deMenocal, P., Rosenthal, Y., Russell, A. D., and Elderfield,
H.: The influence of salinity on Mg∕Ca in planktic foraminifers- Evidence
from cultures, core-top sediments and complementary δ18O,
Geochem. Cosmochem. Ac., 121, 196–213, https://doi.org/10.1016/j.gca.2013.07.028, 2013.
Hut, G.: Consultant's group meeting on stable isotope reference samples of
geochemical and hydrological investigations, Report to the Director
General, INIS-MF—10954, IAEA, Vienna, Austria, 42 pp., 1987.
Jentzen, A., Nürnberg, D., Hathorne, E. C., and Schönfeld, J.: Mg/Ca and δ18O in living planktic foraminifers from the Caribbean, Gulf of Mexico and Florida Straits, Biogeosciences, 15, 7077–7095, https://doi.org/10.5194/bg-15-7077-2018, 2018.
Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob,
D. E., Stracke, A., Birbaum, K., Frick, D. A., Gunther, D., and Enzweiler, J.:
Determination of reference values for NIST 610–617 glasses following ISO
guidelines, Geostand. Geoanal. Res., 35, 397–429, https://doi.org/10.1111/j.1751-908X.2011.00120.x,
2011.
Johnson, K. M., Wills, K. D., Butler, D. B., Johnson, W. K., and Wong, C.
S.: Coulometric Total Carbon-Dioxide Analysis for Marine Studies –
Maximizing the Performance of an Automated Gas Extraction System and
Coulometric Detector, Mar. Chem., 44, 167–187, https://doi.org/10.1016/0304-4203(93)90201-X, 1993.
Kisakurek, B., Eisenhauer, A., Bohm, F., Garbe-Schonberg, D., and Erez, J.:
Controls on shell Mg∕Ca and Sr∕Ca in cultured planktonic foraminiferan,
Globigerinoides ruber (white), Earth Planet. Sci. Lett., 273, 260–269, https://doi.org/10.1016/j.epsl.2008.06.026, 2008.
Koho, K. A., de Nooijer, L. J., and Reichart, G. J.: Combining benthic foraminiferal ecology and shell
Mn∕Ca to deconvolve past bottom water oxygenation and paleoproductivity, Geochim.
Cosmochim. Ac., 165, 294–306 https://doi.org/10.1016/j.gca.2015.06.003, 2015.
Koho, K. A., de Nooijer, L. J., Fontanier, C., Takashi, T., Oguri, K., Kitazato, H., and Reichart, G. J.:
Benthic foraminiferal Mn∕Ca ratios reflect microhabitat preferences, Biogeosciences 14, 3067–3082, https://doi.org/10.5194/bg-14-3067, 2017.
Kontakiotis, G., Mortyn, G. P., Antonarakou, A., and Drinia, H.: Assessing the
reliability of foraminiferal Mg∕Ca thermometry by comparing field-samples
and culture experiments: a review, Geol. Q., 60, 547–560,
https://doi.org/10.7306/gq.1272, 2016.
Langer, G., Sadekov, A., Thoms, S., Keul, N., Nehrke, G., Mewes, A.,
Greaves, M., Misra, S., Reichart, G. J., de Nooijer, L. J., Bijma, J., and
Elderfield, H.: Sr partitioning in the benthic foraminifera Ammonia aomoriensis and
Amphistegina lessonii, Chem. Geol., 440, 306–312, https://doi.org/10.1016/j.chemgeo.2016.07.018, 2016.
Lea, D. W., Mashiotta, T. A., and Spero, H. J.: Controls on magnesium and
strontium uptake in planktonic foraminifera determined by live culturing,
Geochim. Cosmochim. Ac., 63, 2369–2379, https://doi.org/10.1016/S0016-7037(99)00197-0, 1999.
Lear, C. H., Rosenthal, Y., and Slowey, N.: Benthic foraminiferal
Mg∕Ca-paleothermometry: A revised core-top calibration, Geochim. Cosmochim. Ac., 66, 3375–3387, https://doi.org/10.1016/S0016-7037(99)00197-0, 2002.
LeGrande, A. N. and Schmidt, G. A.: Global gridded data set of the oxygen
isotopic composition in seawater, Geophys. Res. Lett., 33, L12604, https://doi.org/10.1029/2006GL026011,
2006.
Lessa, D., Morard, R., Jonkers, L., Venancio, I. M., Reuter, R., Baumeister, A., Albuquerque, A. L., and Kucera, M.: Distribution of planktonic foraminifera in the subtropical South Atlantic: depth hierarchy of controlling factors, Biogeosciences, 17, 4313–4342, https://doi.org/10.5194/bg-17-4313-2020, 2020.
Levi, A., Mueller, W., and Erez, J.: Intrashell Variability of Trace Elements in Benthic Foraminifera Grown Under High CO2 Levels, Front. Earth Sci., 7, 247, https://doi.org/10.3389/feart.2019.00247, 2019.
Mewes, A., Langer, G., Reichart, G. J., de Nooijer, L. J., Nehrke, G., and
Bijma, J.: The impact of Mg contents on Sr partitioning in benthic
foraminifers, Chem. Geol., 412, 92–98, https://doi.org/10.1016/j.chemgeo.2015.06.026, 2015.
Mintrop, L., Perez, F. F., Gonzalez-Davila, M., Santana-Casiano, M. J., and
Kortzinger, A.: Alkalinity determination by potentiometry: Intercalibration
using three different methods, Cienc. Mar., 26, 23–37, https://doi.org/10.7773/cm.v26i1.573, 2000.
Mulitza, S., Boltovskoy, D., Donner, B., Meggers, H., Paul, A., and Wefer,
G.: Temperature: δO18 relationships of planktonic foraminifera
collected from surface waters, Palaeogeogr. Palaeocl., 202, 143–152, https://doi.org/10.1016/S0031-0182(03)00633-3, 2003.
Munsel, D., Kramar, U., Dissard, D., Nehrke, G., Berner, Z., Bijma, J., Reichart, G.-J., and Neumann, T.: Heavy metal incorporation in foraminiferal calcite: results from multi-element enrichment culture experiments with Ammonia tepida, Biogeosciences, 7, 2339–2350, https://doi.org/10.5194/bg-7-2339-2010, 2010.
Nürnberg, D., Bijma, J., and Hemleben, C.: Assessing the reliability of
magnesium in foraminiferal calcite as a proxy for water mass temperatures,
Geochim. Cosmochim. Ac., 60, 803–814, https://doi.org/10.1016/0016-7037(95)00446-7, 1996.
Nürnberg, D. and Groenveld, J.: Pleistocene variability of the
Subtropical Convergence at East Tasman Plateau: Evidence from planktonic
foraminifera Mg∕Ca (ODP Site 1172A), Geochem. Geophy. Geosy., 7, Q04P11, https://doi.org/10.1029/2005GC000984,
2006.
Paul, A., Mulitza, S., Pätzold, J., and Wolff, T.: Simulation of oxygen
isotopes in a global ocean model, in: Use of Proxies in paleoceanography:
Examples from the South Atlantic, edited by: Fisher, G and Wefer, G., Springer, Berlin and Heidelberg, Germany, 655-686, https://doi.org/10.1007/978-3-642-58646-0_27, 1999.
Rathburn, A. E. and DeDeckker, P.: Magnesium and strontium compositions of
Recent benthic foraminifera from the Coral Sea, Australia and Prydz Bay,
Antarctica, Mar. Micropaleontol., 32, 231–248, https://doi.org/10.1016/S0377-8398(97)00028-5, 1997.
R Development Core Team: A language and environment for statistical
computing, R Foundation for Statistical Computing, Vienna, Austria, available at: https://www.R-project.org/ (last access: 29 September 2020), 2019.
Regenberg, M., Nurnberg, D., Steph, S., Groeneveld, J., Garbe-Schonberg, D.,
Tiedemann, R., and Dullo, W. C.: Assessing the effect of dissolution on
planktonic foraminiferal Mg∕Ca ratios: Evidence from Caribbean core tops,
Geochem. Geophy. Geosy., 7, Q07P15, https://doi.org/10.1029/2005GC001019, 2006.
Regenberg, M., Steph, S., Nurnberg, D., Tiedemann, R., and Garbe-Schonberg, D.:
Calibrating Mg∕Ca ratios of multiple planktonic foraminiferal species with
δO18-calcification temperatures: Paleothermometry for the upper
water column, Earth Planet. Sci. Lett., 278, 324–336, https://doi.org/10.1016/j.epsl.2008.12.019, 2009.
Reichart, G. J., Jorissen, F., Anschutz, P., and Mason, P. R. D.: Single
foraminiferal test chemistry records the marine environment, Geology, 31, 355–358,
https://doi.org/10.1130/0091-7613(2003)031<0355:SFTCRT>2.0.CO;2,
2003.
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.:
An Improved In Situ and Satellite SST Analysis for Climate, J. Climate, 15,
1609–1625, https://doi.org/10.1175/1520-0442, 2002.
Rohling, E. J.: Paleosalinity: confidence limits and future applications,
Mar. Geol., 163, 1–11, https://doi.org/10.1016/S0025-3227(99)00097-3, 2000.
Rosenthal, Y., Boyle, E. A., and Labeyrie, L.: Last glacial maximum
paleochemistry and deepwater circulation in the Southern Ocean: Evidence
from foraminiferal cadmium, Paleoceanography, 12, 787–796, https://doi.org/10.1029/97PA02508, 1997.
Sadekov, A., Eggins, S. M., De Deckker, P., and Kroon, D.: Uncertainties in
seawater thermometry deriving from intratest and intertest Mg∕Ca variability
in Globigerinoides ruber, Paleoceanography, 23, https://doi.org/10.1029/2007PA001452, 2008.
Schmidt, G. A.: Error analysis of paleosalinity calculations,
Paleoceanography, 14, 422–429, https://doi.org/10.1029/1999PA900008, 1999.
Schmidt, M. W., Spero, H. J., and Lea, D. W.: Links between salinity
variation in the Caribbean and North Atlantic thermohaline circulation,
Nature, 428, 160–163, https://doi.org/10.1038/nature02346, 2004.
Schmitt, A., Elliot, M., Thirumalai, K., La, C., Bassinot, F., Petersen, J., Movellan, A., Jorry, S.,
and Borgomano, J.: Single foraminifera Mg∕Ca analyses of past glacial-interglacial temperatures
derived from G. ruber sensu stricto and sensu lato morphotypes, Chem. Geol., 511, 510–520, https://doi.org/10.1016/j.chemgeo.2018.11.007, 2019.
Shackleton, N. J.: Oxygen isotope analyses and Pleistocene temperatures
re-assessed, Nature, 215, 15–17, https://doi.org/10.1038/21015a0, 1967.
Shackleton, N. J.: Depth of Pelagic Foraminifera and Isotopic Changes in
Pleistocene Oceans, Nature, 218, 79–80, https://doi.org/10.1038/218079a0, 1968.
Shackleton, N. J.: Attainment of isotopic equilibrium between ocean water
and the benthonic foraminifera genus Uvigerina:
isotopic changes in the ocean during the last glacial, Colloques Internationaux du Centre National du Recherche Scientifique, 219, 203–210,
1974.
Spero, H. J. and DeNiro, M. J.: The influence of symbiont photosynthesis on
the δ18O and δ13C values of planktonic
foraminiferal shell calcite, Symbiosis, 4, 213–228, 1987.
Spero, H. J., Mielke, K. M., Kalve, E. M., Lea, D. W., and Pak, D. K.:
Multispecies approach to reconstructing eastern equatorial Pacific
thermocline hydrography during the past 360 kyr, Paleoceanography, 18, 1022,
https://doi.org/10.1029/2002PA000814, 2003.
Spezzaferri, S., Kucera, M., Pearson, P. N., Wade, B. S., Rappo, S., Poole,
C. R., Morard, R., and Stalder, C.: Fossil and Genetic Evidence for the Polyphyletic Nature of the Planktonic Foraminifera “Globigerinoides”, and Description of the New Genus Trilobatus,
PloS ONE, 10, e0128108, https://doi.org/10.1371/journal.pone.0128108, 2015.
Steinhardt, J., Cleroux, C., Ullgren, J., de Nooijer, L., Durgadoo, J. V., Brummer, G. J., and Reichart, G. J.: Anti-cyclonic eddy imprint on calcite geochemistry of several planktonic foraminiferal species in the Mozambique Channel, Mar. Micropaleontol., 113, 33–20, https://doi.org/10.1016/j.marmicro.2014.09.001, 2014.
Steinhardt, J., Cléroux, C., de Nooijer, L. J., Brummer, G.-J., Zahn, R., Ganssen, G., and Reichart, G.-J.: Reconciling single-chamber Mg∕Ca with whole-shell δ18O in surface to deep-dwelling planktonic foraminifera from the Mozambique Channel, Biogeosciences, 12, 2411–2429, https://doi.org/10.5194/bg-12-2411-2015, 2015.
Thirumalai, K., Quinn, T. M., and Marino, G.: Constraining past seawater δ18O and temperature records developed from foraminiferal
geochemistry, Paleoceanography, 31, 1409–1422, https://doi.org/10.1002/2016PA002970, 2016.
Tierney, J. E., Haywood, A. M., Feng, R., Bhattacharya, T., and Otto-Bliesner,
B. L.: Pliocene SSTs and alkenone saturation indices, Geophys. Res.
Lett., 46, 9136–9144, https://doi.org/10.1594/PANGAEA.904916, 2019.
Toyofuku, T., Kitazato, H., Kawahata, H., Tsuchiya, M., and Nohara, M.:
Evaluation of Mg∕Ca thermometry in foraminifera: Comparison of experimental
results and measurements in nature, Paleoceanography, 15, 456–464, https://doi.org/10.1029/1999PA000460,
2000.
Urey, H. C.: The thermodynamic properties of isotopic substances, J. Chem. Soc., 562–581, https://doi.org/10.1039/jr9470000562, 1947.
Vinogradova, N., Lee, T., Boutin, J., Drushka, K., Fournier, S., Sabia,
R., Stammer, D., Bayler, E., Reul, N., Gordon, A., Melnichenko, O., Li, L.
F., Hackert, E., Martin, M., Kolodziejczyk, N., Hasson, A., Brown,
S., Misra, S., and Lindstrom, E.: Satellite Salinity Observing System: Recent
Discoveries and the Way Forward NASA, Front. Mar. Sci., 6, 243, https://doi.org/10.3389/fmars.2019.00243, 2019.
Weldeab, S., Schneider, R. R., Kölling, M., and Wefer, G.: Holocene
African droughts relate to eastern equatorial Atlantic cooling, Geology, 33, 981–984,
https://doi.org/10.1130/G21874.1, 2005.
Weldeab, S., Lea, D. W., Schneider, R. R., and Anderson, N.: 155,00 years of
west African monsoon and ocean thermal evolution, Science, 316, 130301307,
https://doi.org/10.1126/science.1140461, 2007.
Wyceh, J. B., Clay Kelly, D., Kitajima, K., Kozdon, R., Orland, I. J., and Valley,
J. W.: Combined effects of gametogenic calcification and dissolution on
δ18O measurements of the planktic foraminifer Trilobatus sacculifer, Geochem. Geophy. Geosy., 19, 4487–4501,
https://doi.org/10.1029/2018GC007908, 2018.
Short summary
Results from a data set acquired from living foraminifera T. sacculifer collected from surface waters are presented, allowing us to establish a new Mg/Ca–Sr/Ca–temperature equation improving temperature reconstructions. When combining equations, δ18Ow can be reconstructed with a precision of ± 0.5 ‰, while successive reconstructions involving Mg/Ca and δ18Oc preclude salinity reconstruction with a precision better than ± 1.69. A new direct linear fit to reconstruct salinity could be established.
Results from a data set acquired from living foraminifera T. sacculifer collected from surface...
Altmetrics
Final-revised paper
Preprint