Articles | Volume 19, issue 10
https://doi.org/10.5194/bg-19-2683-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-2683-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sources of nitrous oxide and the fate of mineral nitrogen in subarctic permafrost peat soils
Department of Environmental and Biological Sciences, University of
Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
Natural Science Building, 288 Farm Lane, East Lansing, MI 48824, USA
Maija E. Marushchak
Department of Environmental and Biological Sciences, University of
Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
Department of Biological and Environmental Science, University of
Jyväskylä, P.O. Box 35, 40014 Jyväskylä,
Finland
Tobias Rütting
Department of Earth Sciences, University of Gothenburg, P.O. Box 460, 40530 Gothenburg, Sweden
Elizabeth M. Baggs
Global Academy of Agriculture and Food Security, The Royal (Dick)
School of Veterinary Studies, University of Edinburgh, Easter Bush Campus,
Midlothian EH25 9RG, UK
Tibisay Pérez
Centro de Ciencias Atmosféricas y Biogeoquímica (IVIC), Aptdo
20634, Caracas 1020A, Venezuela
Alexander Novakovskiy
Institute of Biology, Komi SC UB RAS, 167982 Syktyvkar, Russia
Tatiana Trubnikova
Department of Environmental and Biological Sciences, University of
Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
Dmitry Kaverin
Institute of Biology, Komi SC UB RAS, 167982 Syktyvkar, Russia
Pertti J. Martikainen
Department of Environmental and Biological Sciences, University of
Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
Christina Biasi
Department of Environmental and Biological Sciences, University of
Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
Related authors
No articles found.
Nathalie Ylenia Triches, Jan Engel, Abdullah Bolek, Timo Vesala, Maija E. Marushchak, Anna-Maria Virkkala, Martin Heimann, and Mathias Göckede
Atmos. Meas. Tech., 18, 3407–3424, https://doi.org/10.5194/amt-18-3407-2025, https://doi.org/10.5194/amt-18-3407-2025, 2025
Short summary
Short summary
This study explores nitrous oxide (N2O) fluxes from a nutrient-poor sub-Arctic peatland. N2O is a potent greenhouse gas; understanding its fluxes is essential for addressing global warming. Using a new instrument and flux chambers, we introduce a system to reliably detect low N2O fluxes and provide recommendations on chamber closure times and flux calculation methods to better quantify N2O fluxes. We encourage researchers to further investigate N2O fluxes in low-nutrient environments.
Aurora Patchett, Louise Rütting, Tobias Rütting, Samuel Bodé, Sara Hallin, Jaanis Juhanson, C. Florian Stange, Mats P. Björkman, Pascal Boeckx, Gunhild Rosqvist, and Robert G. Björk
EGUsphere, https://doi.org/10.5194/egusphere-2025-2179, https://doi.org/10.5194/egusphere-2025-2179, 2025
Short summary
Short summary
This study explores how different types of fungi and plant species affect nitrogen cycling in Arctic soils. By removing certain plants, we found that fungi associated with shrubs speed up nitrogen processes more than those with grasses. Dominant plant species enhance nitrogen recycling, while rare species increase nitrogen loss. These findings help predict how Arctic ecosystems respond to climate change, highlighting the importance of fungi and plant diversity in regulating ecosystem processes.
Katharina Jentzsch, Elisa Männistö, Maija E. Marushchak, Aino Korrensalo, Lona van Delden, Eeva-Stiina Tuittila, Christian Knoblauch, and Claire C. Treat
Biogeosciences, 21, 3761–3788, https://doi.org/10.5194/bg-21-3761-2024, https://doi.org/10.5194/bg-21-3761-2024, 2024
Short summary
Short summary
During cold seasons, methane release from northern wetlands is important but often underestimated. We studied a boreal bog to understand methane emissions in spring and fall. At cold temperatures, methane release decreases due to lower production rates, but efficient methane transport through plant structures, decaying plants, and the release of methane stored in the pore water keep emissions ongoing. Understanding these seasonal processes can improve models for methane release in cold climates.
Anna-Maria Virkkala, Pekka Niittynen, Julia Kemppinen, Maija E. Marushchak, Carolina Voigt, Geert Hensgens, Johanna Kerttula, Konsta Happonen, Vilna Tyystjärvi, Christina Biasi, Jenni Hultman, Janne Rinne, and Miska Luoto
Biogeosciences, 21, 335–355, https://doi.org/10.5194/bg-21-335-2024, https://doi.org/10.5194/bg-21-335-2024, 2024
Short summary
Short summary
Arctic greenhouse gas (GHG) fluxes of CO2, CH4, and N2O are important for climate feedbacks. We combined extensive in situ measurements and remote sensing data to develop machine-learning models to predict GHG fluxes at a 2 m resolution across a tundra landscape. The analysis revealed that the system was a net GHG sink and showed widespread CH4 uptake in upland vegetation types, almost surpassing the high wetland CH4 emissions at the landscape scale.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Kirsty C. Paterson, Joanna M. Cloy, Robert M. Rees, Elizabeth M. Baggs, Hugh Martineau, Dario Fornara, Andrew J. Macdonald, and Sarah Buckingham
Biogeosciences, 18, 605–620, https://doi.org/10.5194/bg-18-605-2021, https://doi.org/10.5194/bg-18-605-2021, 2021
Short summary
Short summary
Soil organic carbon sequestration across agroecosystems worldwide can contribute to mitigating the effects of climate change by reducing levels of atmospheric carbon dioxide. The maximum carbon sequestration potential is frequently estimated using the linear regression equation developed by Hassink (1997). This work examines the suitability of this equation for use in grasslands across the United Kingdom. The results highlight the need to ensure the fit of equations to the soils being studied.
Cited articles
Abbott, B. W. and Jones, J. B.: Permafrost collapse alters soil carbon
stocks, respiration, CH4, and N2O in upland tundra, Glob. Change Biol.,
21, 4570–4587, https://doi.org/10.1111/gcb.13069, 2015.
Alves, R. J. E., Wanek, W., Zappe, A., Richter, A., Svenning, M. M.,
Schleper, C., and Urich, T.: Nitrification rates in Arctic soils are
associated with functionally distinct populations of ammonia-oxidizing
archaea, ISME J., 7, 1620–1631, 2013.
Ayres, E., van der Wal, R., Sommerkorn, M., and Bardgett, R. D.: Direct
uptake of soil nitrogen by mosses, Biol. Letters, 2, 286–288,
https://doi.org/10.1098/rsbl.2006.0455, 2006.
Baggs, E. M.: Soil microbial sources of nitrous oxide: recent advances in
knowledge, emerging challenges and future direction, Curr. Opin.
Env. Sust., 3, 321–327, https://doi.org/10.1016/j.cosust.2011.08.011,
2011.
Baggs, E. M., Richter, M., Cadisch, G., and Hartwig, U. A.: Denitrification
in grass swards is increased under elevated atmospheric CO2, Soil Biol. Biochem., 35, 729–732, https://doi.org/10.1016/s0038-0717(03)00083-x, 2003.
Biasi, C., Wanek, W., Rusalimova, O., Kaiser, C., Meyer, H., Barsukov, P.,
and Richter, A.: Microtopography and plant-cover controls on nitrogen
dynamics in hummock tundra ecosystems in Siberia, Arct. Antarct.
Alp. Res., 37, 435–443,
https://doi.org/10.1657/1523-0430(2005)037[0435:mapcon]2.0.co;2, 2005.
Biasi, C., Jokinen, S., Marushchak, M. E., Hamalainen, K., Trubnikova, T.,
Oinonen, M., and Martikainen, P. J.: Microbial Respiration in Arctic Upland
and Peat Soils as a Source of Atmospheric Carbon Dioxide, Ecosystems, 17,
112–126, https://doi.org/10.1007/s10021-013-9710-z, 2014.
Booth, M. S., Stark, J. M., and Rastetter, E.: Controls on nitrogen cycling
in terrestrial ecosystems: A synthetic analysis of literature data,
Ecol. Monogr., 75, 139–157, https://doi.org/10.1890/04-0988, 2005.
Borge, A. F., Westermann, S., Solheim, I., and Etzelmüller, B.: Strong degradation of palsas and peat plateaus in northern Norway during the last 60 years, The Cryosphere, 11, 1–16, https://doi.org/10.5194/tc-11-1-2017, 2017.
Braun, J., Mooshammer, M., Wanek, W., Prommer, J., Walker, T. W. N.,
Rutting, T., and Richter, A.: Full N-15 tracer accounting to revisit major
assumptions of N-15 isotope pool dilution approaches for gross nitrogen
mineralization, Soil Biol. Biochem., 117, 16–26,
https://doi.org/10.1016/j.soilbio.2017.11.005, 2018.
Brüggemann, N., Rosenkranz, P., Papen, H., Pilegaard, K., and Butterbach-Bahl, K.: Pure stands of temperate forest tree species modify soil respiration and N turnover, Biogeosciences Discuss., 2, 303–331, https://doi.org/10.5194/bgd-2-303-2005, 2005.
Buckeridge, K. M. and Jefferies, R. L.: Vegetation loss alters soil nitrogen
dynamics in an Arctic salt marsh, J. Ecol., 95, 283–293,
https://doi.org/10.1111/j.1365-2745.2007.01214.x, 2007.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M.,
Jones, C., Le Quéré, C., Myneni, R. B., Piao S., and Thornton, P.: Carbon and Other Biogeochemical Cycles, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, 465–570, https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter06_FINAL.pdf (last access: 23 May 2022), 2013.
Clough, T. J., Sherlock, R. R., Cameron, K. C., Stevens, R. J., Laughlin, R.
J., and Muller, C.: Resolution of the N-15 balance enigma?, Aust.
J. Soil Res., 39, 1419–1431, https://doi.org/10.1071/sr00092, 2001.
Cookson, W., Cornforth, I. S., and Rowarth, J. S.: Winter soil temperature (2–15 ∘C) effects on nitrogen transformations in clover green manure amended or unamended soils; a laboratory and field study, Soil Biol. Biochem., 34, 1401–1415, https://doi.org/10.1016/S0038-0717(02)00083-4, 2002.
Decock, C. and Six, J.: How reliable is the intramolecular distribution of
N-15 in N2O to source partition N2O emitted from soil?, Soil Biol.
Biochem., 65, 114–127, https://doi.org/10.1016/j.soilbio.2013.05.012, 2013.
Diáková, K., Biasi, C., Čapek, P., Martikainen, P. J., Marushchak, M. E., Patova, E. N., and Šantrčková, H.: Variation in N2 Fixation in Subarctic Tundra in Relation to Landscape Position and Nitrogen Pools and Fluxes, Arct. Antarct. Alp. Res., 48, 111–125, https://doi.org/10.1657/AAAR0014-064, 2016.
Douglas, T. A., Turetsky, M. R., and Koven, C. D.: Increased rainfall
stimulates permafrost thaw across a variety of Interior Alaskan boreal
ecosystems, Npj Climate and Atmospheric Science, 3, 28,
https://doi.org/10.1038/s41612-020-0130-4, 2020.
Elberling, B., Christiansen, H. H., and Hansen, B. U.: High nitrous oxide
production from thawing permafrost, Nat. Geosci., 3, 332–335,
https://doi.org/10.1038/ngeo803, 2010.
Fawcett, J. K. and Scott, J. E.: A Rapid and precise method for the determination of urea, Journal of Clinical Pathodology, 13, 156–159, 1960.
Firestone, M. and Davidson, E.: Microbiological basis of NO and N2O
production and consumption in soil, in: Exchange of Trace Gases between
Terrestrial Ecosystems and the Atmosphere, edited by: Andreae, M. O. and Schimel, D. S., John Wiley & Sons., New York, 7–21, ISBN: 10 0471925519, 1989.
Gao, L., Cui, X. Y., Hill, P. W., and Guo, Y. F.: Uptake of various nitrogen
forms by co-existing plant species in temperate and cold-temperate forests
in northeast China, Appl. Soil Ecol., 147, 103398,
https://doi.org/10.1016/j.apsoil.2019.103398, 2020.
Gardner, J. B. and Drinkwater, L. E.: The fate of nitrogen in grain cropping
systems: a meta-analysis of N-15 field experiments, Ecol. Appl.,
19, 2167–2184, https://doi.org/10.1890/08-1122.1, 2009.
Gil, J., Perez, T., Boering, K., Martikainen, P. J., and Biasi, C.:
Mechanisms responsible for high N2O emissions from subarctic permafrost
peatlands studied via stable isotope techniques, Global Biogeochem.
Cy., 31, 172–189, https://doi.org/10.1002/2015gb005370, 2017.
Goldberg, S. D., Knorr, K. H., Blodau, C., Lischeid, G., and Gebauer, G.:
Impact of altering the water table height of an acidic fen on N2O and NO
fluxes and soil concentrations, Glob. Change Biol., 16, 220–233,
https://doi.org/10.1111/j.1365-2486.2009.02015.x, 2010.
Grogan, P. and Jonasson, S.: Controls on annual nitrogen cycling in the
understory of a subarctic birch forest, Ecology, 84, 202–218,
https://doi.org/10.1890/0012-9658(2003)084[0202:coanci]2.0.co;2, 2003.
Harden, J. W., Koven, C. D., Ping, C. L., Hugelius, G., McGuire, A. D.,
Camill, P., Jorgenson, T., Kuhry, P., Michaelson, G. J., O'Donnell, J. A.,
Schuur, E. A. G., Tarnocai, C., Johnson, K., and Grosse, G.: Field
information links permafrost carbon to physical vulnerabilities of thawing,
Geophys. Res. Lett., 39, L15704, https://doi.org/10.1029/2012gl051958, 2012.
Harrison, M. D., Groffman, P. M., Mayer, P. M., and Kaushal, S. S.: Nitrate
removal in two relict oxbow urban wetlands: a N-15 mass-balance approach,
Biogeochemistry, 111, 647–660, https://doi.org/10.1007/s10533-012-9708-1, 2012.
Harty, M. A., McGeough, K. L. , Carolan, R., Müller, C., Laughlin, R. J., Lanigan, G. J., Richards, K. G., and Watson, C. J.: Gross nitrogen transformations in grassland soil react differently to urea stabilisers under laboratory and field conditions, Soil Biol. Biochem., 109, 23–34, https://doi.org/10.1016/j.soilbio.2017.01.025, 2017.
Heikkinen, J. E. P., Elsakov, V., and Martikainen, P. J.: Carbon dioxide and
methane dynamics and annual carbon balance in tundra wetland in NE Europe,
Russia, Global Biogeochem. Cy., 16, 62-1–62-15, https://doi.org/10.1029/2002gb001930, 2002.
Herman, D. J., Brooks, P. D. , Ashraf, M., Azam, F. and Mulvaney, R. M.: Evaluation of methods for nitrogen-15 analysis of inorganic nitrogen in soil extracts. II. Diffusion methods, Commun. Soil Sci. Plan., 26, 1675–1685, 1995.
Hetz, S. A. and Horn, M. A.: Burkholderiaceae Are Key AcetateAssimilators During
Complete Denitrification in Acidic Cryoturbated Peat Circles of the Arctic
Tundra, Front. Microbiol., 12, 628269, https://doi.org/10.3389/fmicb.2021.628269, 2021.
Holz, M., Aurangojeb, M., Kasimir, A., Boeckx, P., Kuzyakov, Y.,
Klemedtsson, L., and Rutting, T.: Gross Nitrogen Dynamics in the
Mycorrhizosphere of an Organic Forest Soil, Ecosystems, 19, 284–295,
https://doi.org/10.1007/s10021-015-9931-4, 2016.
Huber, C., Oberhauser, A., and Kreutzer, K.: Deposition of ammonia to the
forest floor under spruce and beech at the Hoglwald site, Plant Soil,
240, 3–11, https://doi.org/10.1023/a:1015825024164, 2002.
Kaiser, C., Meyer, H., Biasi, C., Rusalimova, O., Barsukov, P., and Richter,
A.: Conservation of soil organic matter through cryoturbation in arctic
soils in Siberia, J. Geophys. Res.-Biogeo., 112, G02017,
https://doi.org/10.1029/2006jg000258, 2007.
Kappelmeyer, U., Kuschk, P., and Stottmeister, U.: Model experiments on the
influence of artificial humic compounds on chemodenitrification, Water Air
Soil Poll., 147, 317–330, https://doi.org/10.1023/a:1024518027312, 2003.
Kaverin, D. A., Pastukhov, A. V., Lapteva, E. M., Biasi, C., Marushchak, M.,
and Martikainen, P.: Morphology and properties of the soils of permafrost
peatlands in the southeast of the Bol'shezemel'skaya tundra, Eurasian Soil
Sci., 49, 498–511, https://doi.org/10.1134/s1064229316050069, 2016.
Kirkham, D. and Bartholomew, W.: Equations for following nutrient
transformations in soil, utilizing tracer data, Soil Sci. Soc.
Am. J., 18, 33–34, 1954.
Kirkham, D. and Bartholomew, W.: Equations for following nutrient
transformations in Soil, utilizing tracer data: II, Soil Sci. Soc.
Ame. J., 19, 189–192, 1955.
Liimatainen, M., Voigt, C., Martikainen, P. J., Hytonen, J., Regina, K.,
Oskarsson, H., and Maljanen, M.: Factors controlling nitrous oxide emissions
from managed northern peat soils with low carbon to nitrogen ratio, Soil
Biol. Biochem., 122, 186–195, https://doi.org/10.1016/j.soilbio.2018.04.006,
2018.
Ma, W. K., Schautz, A., Fishback, L. A. E., Bedard-Haughn, A., Farrell, R.
E., and Siciliano, S. D.: Assessing the potential of ammonia oxidizing
bacteria to produce nitrous oxide in soils of a high arctic lowland
ecosystem on Devon Island, Canada, Soil Biol. Biochem., 39,
2001–2013, https://doi.org/10.1016/j.soilbio.2007.03.001, 2007.
Maljanen, M., Sigurdsson, B. D., Guðmundsson, J., Óskarsson, H., Huttunen, J. T., and Martikainen, P. J.: Greenhouse gas balances of managed peatlands in the Nordic countries – present knowledge and gaps, Biogeosciences, 7, 2711–2738, https://doi.org/10.5194/bg-7-2711-2010, 2010.
Marushchak, M. E., Pitkamaki, A., Koponen, H., Biasi, C., Seppala, M., and
Martikainen, P. J.: Hot spots for nitrous oxide emissions found in different
types of permafrost peatlands, Glob. Change Biol., 17, 2601–2614,
https://doi.org/10.1111/j.1365-2486.2011.02442.x, 2011.
Marushchak, M. E., Kiepe, I., Biasi, C., Elsakov, V., Friborg, T., Johansson, T., Soegaard, H., Virtanen, T., and Martikainen, P. J.: Carbon dioxide balance of subarctic tundra from plot to regional scales, Biogeosciences, 10, 437–452, https://doi.org/10.5194/bg-10-437-2013, 2013.
Marushchak, M. E., Kerttula, J., Diáková, K., Faguet, A., Gil, J., Grosse, G., Knoblauch, C., Lashchinskiy, N., Martikainen, P. J., Morgenstern, A., Nykamb, M., Ronkainen, J. G., Siljanen, H. M. P., van Delden, L., Voigt, C., Zimov, N., Zimov, S., and Biasi, C.: Thawing Yedoma permafrost is a neglected nitrous oxide source, Nat. Commun., 12, 7107, https://doi.org/10.1038/s41467-021-27386-2, 2021.
McKane, R. B., Johnson, L. C., Shaver, G. R., Nadelhoffer, K. J., Rastetter,
E. B., Fry, B., Giblin, A. E., Kielland, K., Kwiatkowski, B. L., Laundre, J.
A., and Murray, G.: Resource-based niches provide a basis for plant species
diversity and dominance in arctic tundra, Nature, 415, 68–71,
https://doi.org/10.1038/415068a, 2002.
Meyer, H., Kaiser, C., Biasi, C., Hammerle, R., Rusalimova, O., Lashchinsky,
N., Baranyi, C., Daims, H., Barsukov, P., and Richter, A.: Soil carbon and
nitrogen dynamics along a latitudinal transect in Western Siberia, Russia,
Biogeochemistry, 81, 239–252, https://doi.org/10.1007/s10533-006-9039-1, 2006.
Miranda, K. M., Espey, M. G., and Wink, D. A.: A rapid, simple
spectrophotometric method for simultaneous detection of nitrate and nitrite,
Nitric Oxide-Biol. Ch., 5, 62–71, https://doi.org/10.1006/niox.2000.0319, 2001.
Münchmeyer, U., Russow, R., and Augusti, J.: Net and Gross Nitrogen Mineralization in Drained and Reflooded Fen Soils,
Isot. Environ. Heal. S., 36, 79–98, https://doi.org/10.1080/10256010008032934,
2000.
Nordin, A., Schmidt, I. K., and Shaver, G. R.: Nitrogen uptake by arctic
soil microbes and plants in relation to soil nitrogen supply, Ecology, 85,
955–962, https://doi.org/10.1890/03-0084, 2004.
Palmer, K., Biasi, C., and Horn, M. A.: Contrasting denitrifier communities
relate to contrasting N2O emission patterns from acidic peat soils in arctic
tundra, ISME J., 6, 1058–1077, https://doi.org/10.1038/ismej.2011.172, 2011.
Ramm, E., Liu, C. Y., Ambus, P., Butterbach-Bahl, K., Hu, B., Martikainen,
P. J., Marushchak, M. E, Mueller, C. W., Rennenberg, H., Schloter, M.,
Siljanen, H. M. P., Voigt, C., Werner, C., Biasi, C., and Dannenmann, M.: A
review of the importance of mineral nitrogen cycling in the
plant-soil-microbe system of permafrost-affected soils-changing the
paradigm, Environ. Res. Lett., 17, 013004, https://doi.org/10.1088/1748-9326/ac417e, 2022.
Repo, M. E., Susiluoto, S., Lind, S. E., Jokinen, S., Elsakov, V., Biasi,
C., Virtanen, T., and Martikainen, P. J.: Large N2O emissions from
cryoturbated peat soil in tundra, Nat. Geosci., 2, 189–192,
https://doi.org/10.1038/ngeo434, 2009.
Rütting, T., Huygens, D., Staelens, J., Muller, C., and Boeckx, P.:
Advances in N-15-tracing experiments: new labelling and data analysis
approaches, Biochem. Soc. T., 39, 279–283,
https://doi.org/10.1042/bst0390279, 2011.
Sannel, A. B. K. and Kuhry, P. : Warming-induced destabilization of peat
plateau/thermokarst lake complexes, J. Geophys. Res., 116, G03035,
https://doi.org/10.1029/2010JG001635, 2011.
Schädel, C., Bader, M. K. F., Schuur, E. A. G., Biasi, C., Bracho, R.,
Capek, P., De Baets, S., Diakova, K., Ernakovich, J., Estop-Aragones, C.,
Graham, D. E., Hartley, I. P., Iversen, C. M., Kane, E. S., Knoblauch, C.,
Lupascu, M., Martikainen, P. J., Natali, S. M., Norby, R. J., O'Donnell, J.
A., Chowdhury, T. R., Santruckova, H., Shaver, G., Sloan, V. L., Treat, C.
C., Turetsky, M. R., Waldrop, M. P., and Wickland, K. P.: Potential carbon
emissions dominated by carbon dioxide from thawed permafrost soils, Nat.
Clim. Change, 6, 950–953, https://doi.org/10.1038/nclimate3054, 2016.
Schimel, J. P. and Bennett, J.: Nitrogen mineralization: Challenges of a
changing paradigm, Ecology, 85, 591–602, https://doi.org/10.1890/03-8002, 2004.
Schlesinger, W. H.: Biogeochemistry. An Analysis of Global Change, 2nd Edn., Academic Press,
Toronto, San Diego, London, Boston, New York, Sydney,
Tokyo, 1997.
Schuur, E. A. G., Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O., and
Osterkamp, T. E.: The effect of permafrost thaw on old carbon release and
net carbon exchange from tundra, Nature, 459, 556–559, https://doi.org/10.1038/nature08031,
2009.
Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W.,
Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M.,
Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M.
R., Treat, C. C., and Vonk, J. E.: Climate change and the permafrost carbon
feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Siciliano, S. D., Ma, W. K., Ferguson, S., and Farrell, R. E.: Nitrifier
dominance of Arctic soil nitrous oxide emissions arises due to fungal
competition with denitrifiers for nitrate, Soil Biol. Biochem.,
41, 1104–1110, https://doi.org/10.1016/j.soilbio.2009.02.024, 2009.
Siljanen, H. M. P., Alves, R. J. E., Ronkainen, J. G., Lamprecht, R. E.,
Bhattarai, H. R., Bagnoud, A., Marushchak, M. E., Martikainen, P. J.,
Schleper, C., and Biasi, C.: Archaeal nitrification is a key driver of high
nitrous oxide emissions from arctic peatlands, Soil Biol.
Biochem., 137, 107539, https://doi.org/10.1016/j.soilbio.2019.107539, 2019.
Silvan, N., Tuittila, E. S., Kitunen, V., Vasander, H., and Laine, J.:
Nitrate uptake by Eriophorum vaginatum controls N2O production in a restored
peatland, Soil Biol. Biochem., 37, 1519–1526,
https://doi.org/10.1016/j.soilbio.2005.01.006, 2005.
Seppälä, M.: Surface abrasion of palsas by wind action in Finnish
Lapland, Geomorphology, 52, 141–148,
https://doi.org/10.1016/S0169-555X(02)00254-4, 2003.
Seppälä, M.: Synthesis of studies of palsa formation underlining
the importance of local environmental and physical characteristics,
Quaternary Res., 75, 366–370, https://doi.org/10.1016/j.yqres.2010.09.007, 2011.
Sørensen, P. L., Clemmensen, K. E., Michelsen, A., Jonasson, S., and Strom,
L.: Plant and microbial uptake and allocation of organic and inorganic
nitrogen related to plant growth forms and soil conditions at two subarctic
tundra sites in Sweden, Arct. Antarct. Alp. Res., 40, 171–180,
https://doi.org/10.1657/1523-0430(06-114)[sorensen]2.0.co;2, 2008.
Stevens, R. J., Laughlin, R. J., Burns, L. C., Arah, J. R. M., and Hood, R.
C.: Measuring the contributions of nitrification and denitrification to the
flux of nitrous oxide from soil, Soil Biol. Biochem., 29,
139–151, https://doi.org/10.1016/s0038-0717(96)00303-3, 1997.
Takakai, F., Desyatkin, A. R., Lopez, C. M. L., Fedorov, A. N., Desyatkin,
R. V., and Hatano, R.: CH4 and N2O emissions from a forest-alas
ecosystem in the permafrost taiga forest region, eastern Siberia, Russia,
J. Geophys. Res.-Biogeo., 113, G02002,
https://doi.org/10.1029/2007jg000521, 2008.
Toyoda, S., Yoshida, N., and Koba, K.: Isotopocule analysis of biologically
produced nitrous oxide in various environments, Mass Spectrom. Rev.,
36, 135–160, https://doi.org/10.1002/mas.21459, 2017.
Vikman, A., Sarkkola, S., Koivusalo, H., Sallantaus, T., Laine, J., Silvan,
N., Nousiainen, H., and Nieminen, M.: Nitrogen retention by peatland buffer
areas at six forested catchments in southern and central Finland,
Hydrobiologia, 641, 171–183, https://doi.org/10.1007/s10750-009-0079-0, 2010.
Voigt, C., Lamprecht, R. E., Marushchak, M. E., Lind, S. E., Novakovskiy,
A., Aurela, M., Martikainen, P. J., and Biasi, C.: Warming of subarctic
tundra increases emissions of all three important greenhouse gases – carbon
dioxide, methane, and nitrous oxide, Glob. Change Biol., 23, 3121–3138,
https://doi.org/10.1111/gcb.13563, 2017a.
Voigt, C., Marushchak, M. E., Lamprecht, R. E., Jackowicz-Korczynski, M.,
Lindgren, A., Mastepanov, M., Granlund, L., Christensen, T. R., Tahvanainen,
T., Martikainen, P. J., and Biasi, C.: Increased nitrous oxide emissions
from Arctic peatlands after permafrost thaw, P. Natl.
Acad. Sci. USA, 114, 6238–6243,
https://doi.org/10.1073/pnas.1702902114, 2017b.
Voigt, C., Marushchak, M. E., Abbott, B. W., Elberling, B., Siciliano, S.
D., Sonnentag, O., Stewart, K. J., Yang, Y., and Martikainen, P. E.: Nitrous
oxide emissions from permafrost-affected soils, Nat. Rev. Earth Environ., 1, 420–434, https://doi.org/10.1038/s43017-020-0063-9, 2020.
Werner, C., Butterbach-Bahl, K., Haas, E., Hickler, T., and Kiese, R.: A
global inventory of N2O emissions from tropical rainforest soils using a
detailed biogeochemical model, Global Biogeochem. Cy., 21, GB3010,
https://doi.org/10.1029/2006gb002909, 2007.
Westbrook, C. J. and Devito, K. J.: Gross nitrogen transformations in soils
from uncut and cut boreal upland and peatland coniferous forest stands,
Biogeochemistry, 68, 33–49, https://doi.org/10.1023/B:BIOG.0000025739.04821.8e, 2004.
Wild, B., Schnecker, J., Knoltsch, A., Takriti, M., Mooshammer, M., Gentsch,
N., Mikutta, R., Alves, R. J. E., Gittel, A., Lashchinskiy, N., and Richter,
A.: Microbial nitrogen dynamics in organic and mineral soil horizons along a
latitudinal transect in western Siberia, Global Biogeochem. Cy., 29,
567–582, https://doi.org/10.1002/2015gb005084, 2015.
Wrage, N., van Groenigen, J. W., Oenema, O., and Baggs, E. M.: A novel
dual-isotope labelling method for distinguishing between soil sources of
N2O, Rapid Commun. Mass Sp., 19, 3298–3306,
https://doi.org/10.1002/rcm.2191, 2005.
Zeller, B., Liu, J. X., Buchmann, N., and Richter, A.: Tree girdling
increases soil N mineralization in two spruce stands, Soil Biol.
Biochem., 40, 1155–1166, https://doi.org/10.1016/j.soilbio.2007.12.009, 2008.
Short summary
N2O emissions from permafrost soils represent up to 11.6 % of total N2O emissions from natural soils, and their contribution to the global N2O budget will likely increase due to climate change. A better understanding of N2O production from permafrost soil is needed to evaluate the role of arctic ecosystems in the global N2O budget. By studying microbial N2O production processes in N2O hotspots in permafrost peatlands, we identified denitrification as the dominant source of N2O in these surfaces.
N2O emissions from permafrost soils represent up to 11.6 % of total N2O emissions from natural...
Altmetrics
Final-revised paper
Preprint