Articles | Volume 19, issue 3
https://doi.org/10.5194/bg-19-777-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-777-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Test-size evolution of the planktonic foraminifer Globorotalia menardii in the eastern tropical Atlantic since the Late Miocene
Thore Friesenhagen
CORRESPONDING AUTHOR
Natural History Museum Basel, Augustinergasse 2, 4001 Basel,
Switzerland
Department Umweltwissenschaften, University of Basel,
Bernoullistrasse 32, 4056 Basel, Switzerland
Related subject area
Paleobiogeoscience: Marine Record
Coupled otolith and foraminifera oxygen and carbon stable isotopes evidence paleoceanographic changes and fish metabolic responses
Ideas and perspectives: Human impacts alter the marine fossil record
Origin and role of non-skeletal carbonate in coralligenous build-ups: new geobiological perspectives in biomineralization processes
Serpulid microbialitic bioherms from the upper Sarmatian (Middle Miocene) of the central Paratethys Sea (NW Hungary) – witnesses of a microbial sea
Massive corals record deforestation in Malaysian Borneo through sediments in river discharge
Calcification response of planktic foraminifera to environmental change in the western Mediterranean Sea during the industrial era
Nature and origin of variations in pelagic carbonate production in the tropical ocean since the mid-Miocene (ODP Site 927)
Variation in calcification of Reticulofenestra coccoliths over the Oligocene–Early Miocene
The influence of near-surface sediment hydrothermalism on the TEX86 tetraether-lipid-based proxy and a new correction for ocean bottom lipid overprinting
Testing the effect of bioturbation and species abundance upon discrete-depth individual foraminifera analysis
Distribution of coccoliths in surface sediments across the Drake Passage and calcification of Emiliania huxleyi morphotypes
Vertical distribution of planktic foraminifera through an oxygen minimum zone: how assemblages and test morphology reflect oxygen concentrations
Reconstructing past variations in environmental conditions and paleoproductivity over the last ∼ 8000 years off north-central Chile (30° S)
A 15-million-year-long record of phenotypic evolution in the heavily calcified coccolithophore Helicosphaera and its biogeochemical implications
Shell chemistry of the boreal Campanian bivalve Rastellum diluvianum (Linnaeus, 1767) reveals temperature seasonality, growth rates and life cycle of an extinct Cretaceous oyster
Southern California margin benthic foraminiferal assemblages record recent centennial-scale changes in oxygen minimum zone
Baseline for ostracod-based northwestern Pacific and Indo-Pacific shallow-marine paleoenvironmental reconstructions: ecological modeling of species distributions
Neogene Caribbean elasmobranchs: diversity, paleoecology and paleoenvironmental significance of the Cocinetas Basin assemblage (Guajira Peninsula, Colombia)
Coastal primary productivity changes over the last millennium: a case study from the Skagerrak (North Sea)
A 1500-year multiproxy record of coastal hypoxia from the northern Baltic Sea indicates unprecedented deoxygenation over the 20th century
Technical note: An empirical method for absolute calibration of coccolith thickness
Reconstructing Holocene temperature and salinity variations in the western Baltic Sea region: a multi-proxy comparison from the Little Belt (IODP Expedition 347, Site M0059)
The oxic degradation of sedimentary organic matter 1400 Ma constrains atmospheric oxygen levels
Geochemical and microstructural characterisation of two species of cool-water bivalves (Fulvia tenuicostata and Soletellina biradiata) from Western Australia
Ecological response to collapse of the biological pump following the mass extinction at the Cretaceous–Paleogene boundary
Quantifying the Cenozoic marine diatom deposition history: links to the C and Si cycles
Anthropogenically induced environmental changes in the northeastern Adriatic Sea in the last 500 years (Panzano Bay, Gulf of Trieste)
Palaeohydrological changes over the last 50 ky in the central Gulf of Cadiz: complex forcing mechanisms mixing multi-scale processes
Dinocyst assemblage constraints on oceanographic and atmospheric processes in the eastern equatorial Atlantic over the last 44 kyr
Sedimentary response to sea ice and atmospheric variability over the instrumental period off Adélie Land, East Antarctica
Equatorward phytoplankton migration during a cold spell within the Late Cretaceous super-greenhouse
Upwellings mitigated Plio-Pleistocene heat stress for reef corals on the Florida platform (USA)
Millennial changes in North Atlantic oxygen concentrations
Vanishing coccolith vital effects with alleviated carbon limitation
Late Pleistocene glacial–interglacial shell-size–isotope variability in planktonic foraminifera as a function of local hydrography
Coral records of reef-water pH across the central Great Barrier Reef, Australia: assessing the influence of river runoff on inshore reefs
Records of past mid-depth ventilation: Cretaceous ocean anoxic event 2 vs. Recent oxygen minimum zones
Organomineral nanocomposite carbon burial during Oceanic Anoxic Event 2
Non-invasive imaging methods applied to neo- and paleo-ontological cephalopod research
Icehouse–greenhouse variations in marine denitrification
Changes in calcification of coccoliths under stable atmospheric CO2
Southern Hemisphere imprint for Indo-Asian summer monsoons during the last glacial period as revealed by Arabian Sea productivity records
The calcareous nannofossil Prinsiosphaera achieved rock-forming abundances in the latest Triassic of western Tethys: consequences for the δ13C of bulk carbonate
The Little Ice Age: evidence from a sediment record in Gullmar Fjord, Swedish west coast
Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records
Quantitative reconstruction of sea-surface conditions over the last 150 yr in the Beaufort Sea based on dinoflagellate cyst assemblages: the role of large-scale atmospheric circulation patterns
Spatial linkages between coral proxies of terrestrial runoff across a large embayment in Madagascar
Pteropods from the Caribbean Sea: variations in calcification as an indicator of past ocean carbonate saturation
Sedimentary organic matter and carbonate variations in the Chukchi Borderland in association with ice sheet and ocean-atmosphere dynamics over the last 155 kyr
First discovery of dolomite and magnesite in living coralline algae and its geobiological implications
Konstantina Agiadi, Iuliana Vasiliev, Geanina Butiseacă, George Kontakiotis, Danae Thivaiou, Evangelia Besiou, Stergios Zarkogiannis, Efterpi Koskeridou, Assimina Antonarakou, and Andreas Mulch
Biogeosciences, 21, 3869–3881, https://doi.org/10.5194/bg-21-3869-2024, https://doi.org/10.5194/bg-21-3869-2024, 2024
Short summary
Short summary
Seven million years ago, the marine gateway connecting the Mediterranean Sea with the Atlantic Ocean started to close, and, as a result, water circulation ceased. To find out how this phenomenon affected the fish living in the Mediterranean Sea, we examined the changes in the isotopic composition of otoliths of two common fish species. Although the species living at the surface fared pretty well, the bottom-water fish starved and eventually became extinct in the Mediterranean.
Rafał Nawrot, Martin Zuschin, Adam Tomašových, Michał Kowalewski, and Daniele Scarponi
Biogeosciences, 21, 2177–2188, https://doi.org/10.5194/bg-21-2177-2024, https://doi.org/10.5194/bg-21-2177-2024, 2024
Short summary
Short summary
The youngest fossil record is a crucial source of data on the history of marine ecosystems and their long-term alteration by humans. However, human activities that reshape ecosystems also alter sedimentary and biological processes that control the formation of the geological archives recording those impacts. Thus, humans have been transforming the marine fossil record in ways that affect our ability to reconstruct past ecological and climate dynamics.
Mara Cipriani, Carmine Apollaro, Daniela Basso, Pietro Bazzicalupo, Marco Bertolino, Valentina Alice Bracchi, Fabio Bruno, Gabriele Costa, Rocco Dominici, Alessandro Gallo, Maurizio Muzzupappa, Antonietta Rosso, Rossana Sanfilippo, Francesco Sciuto, Giovanni Vespasiano, and Adriano Guido
Biogeosciences, 21, 49–72, https://doi.org/10.5194/bg-21-49-2024, https://doi.org/10.5194/bg-21-49-2024, 2024
Short summary
Short summary
Who constructs the build-ups of the Mediterranean Sea? What is the role of skeletal and soft-bodied organisms in these bioconstructions? Do bacteria play a role in their formation? In this research, for the first time, the coralligenous of the Mediterranean shelf is studied from a geobiological point of view with an interdisciplinary biological and geological approach, highlighting important biotic relationships that can be used in interpreting the fossil build-up systems.
Mathias Harzhauser, Oleg Mandic, and Werner E. Piller
Biogeosciences, 20, 4775–4794, https://doi.org/10.5194/bg-20-4775-2023, https://doi.org/10.5194/bg-20-4775-2023, 2023
Short summary
Short summary
Bowl-shaped spirorbid microbialite bioherms formed during the late Middle Miocene (Sarmatian) in the central Paratethys Sea under a warm, arid climate. The microbialites and the surrounding sediment document a predominance of microbial activity in the shallow marine environments of the sea at that time. Modern microbialites are not analogues for these unique structures, which reflect a series of growth stages with an initial “start-up stage”, massive “keep-up stage” and termination of growth.
Walid Naciri, Arnoud Boom, Matthew Payne, Nicola Browne, Noreen J. Evans, Philip Holdship, Kai Rankenburg, Ramasamy Nagarajan, Bradley J. McDonald, Jennifer McIlwain, and Jens Zinke
Biogeosciences, 20, 1587–1604, https://doi.org/10.5194/bg-20-1587-2023, https://doi.org/10.5194/bg-20-1587-2023, 2023
Short summary
Short summary
In this study, we tested the ability of massive boulder-like corals to act as archives of land use in Malaysian Borneo to palliate the lack of accurate instrumental data on deforestation before the 1980s. We used mass spectrometry to measure trace element ratios in coral cores to use as a proxy for sediment in river discharge. Results showed an extremely similar increase between our proxy and the river discharge instrumental record, demonstrating the use of these corals as reliable archives.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, José A. Flores, Javier P. Tarruella, Xavier Durrieu de Madron, Isabel Cacho, Neghar Haghipour, Aidan Hunter, and Francisco J. Sierro
Biogeosciences, 20, 1505–1528, https://doi.org/10.5194/bg-20-1505-2023, https://doi.org/10.5194/bg-20-1505-2023, 2023
Short summary
Short summary
The Mediterranean Sea is undergoing a rapid and unprecedented environmental change. Planktic foraminifera calcification is affected on different timescales. On seasonal and interannual scales, calcification trends differ according to the species and are linked mainly to sea surface temperatures and carbonate system parameters, while comparison with pre/post-industrial assemblages shows that all three species have reduced their calcification between 10 % to 35 % according to the species.
Pauline Cornuault, Thomas Westerhold, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
Biogeosciences, 20, 597–618, https://doi.org/10.5194/bg-20-597-2023, https://doi.org/10.5194/bg-20-597-2023, 2023
Short summary
Short summary
We generated high-resolution records of carbonate accumulation rate from the Miocene to the Quaternary in the tropical Atlantic Ocean to characterize the variability in pelagic carbonate production during warm climates. It follows orbital cycles, responding to local changes in tropical conditions, as well as to long-term shifts in climate and ocean chemistry. These changes were sufficiently large to play a role in the carbon cycle and global climate evolution.
José Guitián, Miguel Ángel Fuertes, José-Abel Flores, Iván Hernández-Almeida, and Heather Stoll
Biogeosciences, 19, 5007–5019, https://doi.org/10.5194/bg-19-5007-2022, https://doi.org/10.5194/bg-19-5007-2022, 2022
Short summary
Short summary
The effect of environmental conditions on the degree of calcification of marine phytoplankton remains unclear. This study implements a new microscopic approach to quantify the calcification of ancient coccolithophores, using North Atlantic sediments. Results show significant differences in the thickness and shape factor of coccoliths for samples with minimum dissolution, providing the first evaluation of phytoplankton physiology adaptation to million-year-scale variable environmental conditions.
Jeremy N. Bentley, Gregory T. Ventura, Clifford C. Walters, Stefan M. Sievert, and Jeffrey S. Seewald
Biogeosciences, 19, 4459–4477, https://doi.org/10.5194/bg-19-4459-2022, https://doi.org/10.5194/bg-19-4459-2022, 2022
Short summary
Short summary
We demonstrate the TEX86 (TetraEther indeX of 86 carbon atoms) paleoclimate proxy can become heavily impacted by the ocean floor archaeal community. The impact results from source inputs, their diagenetic and catagenetic alteration, and further overprint by the additions of lipids from the ocean floor sedimentary archaeal community. We then present a method to correct the overprints by using IPLs (intact polar lipids) extracted from both water column and subsurface archaeal communities.
Bryan C. Lougheed and Brett Metcalfe
Biogeosciences, 19, 1195–1209, https://doi.org/10.5194/bg-19-1195-2022, https://doi.org/10.5194/bg-19-1195-2022, 2022
Short summary
Short summary
Measurements on sea-dwelling shelled organisms called foraminifera retrieved from deep-sea sediment cores have been used to reconstruct sea surface temperature (SST) variation. To evaluate the method, we use a computer model to simulate millions of single foraminifera and how they become mixed in the sediment after being deposited on the seafloor. We compare the SST inferred from the single foraminifera in the sediment core to the true SST in the water, thus quantifying method uncertainties.
Nele Manon Vollmar, Karl-Heinz Baumann, Mariem Saavedra-Pellitero, and Iván Hernández-Almeida
Biogeosciences, 19, 585–612, https://doi.org/10.5194/bg-19-585-2022, https://doi.org/10.5194/bg-19-585-2022, 2022
Short summary
Short summary
We studied recent (sub-)fossil remains of a type of algae (coccolithophores) off southernmost Chile and across the Drake Passage, adding to the scarce knowledge that exists in the Southern Ocean, a rapidly changing environment. We found that those can be used to reconstruct the surface ocean conditions in the north but not in the south. We also found variations in shape in the dominant species Emiliania huxleyi depending on the location, indicating subtle adaptations to environmental conditions.
Catherine V. Davis, Karen Wishner, Willem Renema, and Pincelli M. Hull
Biogeosciences, 18, 977–992, https://doi.org/10.5194/bg-18-977-2021, https://doi.org/10.5194/bg-18-977-2021, 2021
Práxedes Muñoz, Lorena Rebolledo, Laurent Dezileau, Antonio Maldonado, Christoph Mayr, Paola Cárdenas, Carina B. Lange, Katherine Lalangui, Gloria Sanchez, Marco Salamanca, Karen Araya, Ignacio Jara, Gabriel Easton, and Marcel Ramos
Biogeosciences, 17, 5763–5785, https://doi.org/10.5194/bg-17-5763-2020, https://doi.org/10.5194/bg-17-5763-2020, 2020
Short summary
Short summary
We analyze marine sedimentary records to study temporal changes in oxygen and productivity in marine waters of central Chile. We observed increasing oxygenation and decreasing productivity from 6000 kyr ago to the modern era that seem to respond to El Niño–Southern Oscillation activity. In the past centuries, deoxygenation and higher productivity are re-established, mainly in the northern zones of Chile and Peru. Meanwhile, in north-central Chile the deoxygenation trend is maintained.
Luka Šupraha and Jorijntje Henderiks
Biogeosciences, 17, 2955–2969, https://doi.org/10.5194/bg-17-2955-2020, https://doi.org/10.5194/bg-17-2955-2020, 2020
Short summary
Short summary
The cell size, degree of calcification and growth rates of coccolithophores impact their role in the carbon cycle and may also influence their adaptation to environmental change. Combining insights from culture experiments and the fossil record, we show that the selection for smaller cells over the past 15 Myr has been a common adaptive trait among different lineages. However, heavily calcified species maintained a more stable biogeochemical output than the ancestral lineage of E. huxleyi.
Niels J. de Winter, Clemens V. Ullmann, Anne M. Sørensen, Nicolas Thibault, Steven Goderis, Stijn J. M. Van Malderen, Christophe Snoeck, Stijn Goolaerts, Frank Vanhaecke, and Philippe Claeys
Biogeosciences, 17, 2897–2922, https://doi.org/10.5194/bg-17-2897-2020, https://doi.org/10.5194/bg-17-2897-2020, 2020
Short summary
Short summary
In this study, we present a detailed investigation of the chemical composition of 12 specimens of very well preserved, 78-million-year-old oyster shells from southern Sweden. The chemical data show how the oysters grew, the environment in which they lived and how old they became and also provide valuable information about which chemical measurements we can use to learn more about ancient climate and environment from such shells. In turn, this can help improve climate reconstructions and models.
Hannah M. Palmer, Tessa M. Hill, Peter D. Roopnarine, Sarah E. Myhre, Katherine R. Reyes, and Jonas T. Donnenfield
Biogeosciences, 17, 2923–2937, https://doi.org/10.5194/bg-17-2923-2020, https://doi.org/10.5194/bg-17-2923-2020, 2020
Short summary
Short summary
Modern climate change is causing expansions of low-oxygen zones, with detrimental impacts to marine life. To better predict future ocean oxygen change, we study past expansions and contractions of low-oxygen zones using microfossils of seafloor organisms. We find that, along the San Diego margin, the low-oxygen zone expanded into more shallow water in the last 400 years, but the conditions within and below the low-oxygen zone did not change significantly in the last 1500 years.
Yuanyuan Hong, Moriaki Yasuhara, Hokuto Iwatani, and Briony Mamo
Biogeosciences, 16, 585–604, https://doi.org/10.5194/bg-16-585-2019, https://doi.org/10.5194/bg-16-585-2019, 2019
Short summary
Short summary
This study analyzed microfaunal assemblages in surface sediments from 52 sites in Hong Kong marine waters. We selected 18 species for linear regression modeling to statistically reveal the relationship between species distribution and environmental factors. These results show environmental preferences of commonly distributed species on Asian coasts, providing a robust baseline for past environmental reconstruction of the broad Asian region using microfossils in sediment cores.
Jorge Domingo Carrillo-Briceño, Zoneibe Luz, Austin Hendy, László Kocsis, Orangel Aguilera, and Torsten Vennemann
Biogeosciences, 16, 33–56, https://doi.org/10.5194/bg-16-33-2019, https://doi.org/10.5194/bg-16-33-2019, 2019
Short summary
Short summary
By combining taxonomy and geochemistry, we corroborated the described paleoenvironments from a Neogene fossiliferous deposit of South America. Shark teeth specimens were used for taxonomic identification and as proxies for geochemical analyses. With a multidisciplinary approach we refined the understanding about the paleoenvironmental setting and the paleoecological characteristics of the studied groups, in our case, for the bull shark and its incursions into brackish waters.
Anna Binczewska, Bjørg Risebrobakken, Irina Polovodova Asteman, Matthias Moros, Amandine Tisserand, Eystein Jansen, and Andrzej Witkowski
Biogeosciences, 15, 5909–5928, https://doi.org/10.5194/bg-15-5909-2018, https://doi.org/10.5194/bg-15-5909-2018, 2018
Short summary
Short summary
Primary productivity is an important factor in the functioning and structuring of the coastal ecosystem. Thus, two sediment cores from the Skagerrak (North Sea) were investigated in order to obtain a comprehensive picture of primary productivity changes during the last millennium and identify associated forcing factors (e.g. anthropogenic, climate). The cores were dated and analysed for palaeoproductivity proxies and palaeothermometers.
Sami A. Jokinen, Joonas J. Virtasalo, Tom Jilbert, Jérôme Kaiser, Olaf Dellwig, Helge W. Arz, Jari Hänninen, Laura Arppe, Miia Collander, and Timo Saarinen
Biogeosciences, 15, 3975–4001, https://doi.org/10.5194/bg-15-3975-2018, https://doi.org/10.5194/bg-15-3975-2018, 2018
Short summary
Short summary
Oxygen deficiency is a major environmental problem deteriorating seafloor habitats especially in the coastal ocean with large human impact. Here we apply a wide set of chemical and physical analyses to a 1500-year long sediment record and show that, although long-term climate variability has modulated seafloor oxygenation in the coastal northern Baltic Sea, the oxygen loss over the 20th century is unprecedentedly severe, emphasizing the need to reduce anthropogenic nutrient input in the future.
Saúl González-Lemos, José Guitián, Miguel-Ángel Fuertes, José-Abel Flores, and Heather M. Stoll
Biogeosciences, 15, 1079–1091, https://doi.org/10.5194/bg-15-1079-2018, https://doi.org/10.5194/bg-15-1079-2018, 2018
Short summary
Short summary
Changes in atmospheric carbon dioxide affect ocean chemistry and the ability of marine organisms to manufacture shells from calcium carbonate. We describe a technique to obtain more reproducible measurements of the thickness of calcium carbonate shells made by microscopic marine algae called coccolithophores, which will allow researchers to compare how the shell thickness responds to variations in ocean chemistry in the past and present.
Ulrich Kotthoff, Jeroen Groeneveld, Jeanine L. Ash, Anne-Sophie Fanget, Nadine Quintana Krupinski, Odile Peyron, Anna Stepanova, Jonathan Warnock, Niels A. G. M. Van Helmond, Benjamin H. Passey, Ole Rønø Clausen, Ole Bennike, Elinor Andrén, Wojciech Granoszewski, Thomas Andrén, Helena L. Filipsson, Marit-Solveig Seidenkrantz, Caroline P. Slomp, and Thorsten Bauersachs
Biogeosciences, 14, 5607–5632, https://doi.org/10.5194/bg-14-5607-2017, https://doi.org/10.5194/bg-14-5607-2017, 2017
Short summary
Short summary
We present reconstructions of paleotemperature, paleosalinity, and paleoecology from the Little Belt (Site M0059) over the past ~ 8000 years and evaluate the applicability of numerous proxies. Conditions were lacustrine until ~ 7400 cal yr BP. A transition to brackish–marine conditions then occurred within ~ 200 years. Salinity proxies rarely allowed quantitative estimates but revealed congruent results, while quantitative temperature reconstructions differed depending on the proxies used.
Shuichang Zhang, Xiaomei Wang, Huajian Wang, Emma U. Hammarlund, Jin Su, Yu Wang, and Donald E. Canfield
Biogeosciences, 14, 2133–2149, https://doi.org/10.5194/bg-14-2133-2017, https://doi.org/10.5194/bg-14-2133-2017, 2017
Liza M. Roger, Annette D. George, Jeremy Shaw, Robert D. Hart, Malcolm Roberts, Thomas Becker, Bradley J. McDonald, and Noreen J. Evans
Biogeosciences, 14, 1721–1737, https://doi.org/10.5194/bg-14-1721-2017, https://doi.org/10.5194/bg-14-1721-2017, 2017
Short summary
Short summary
The shell compositions of bivalve species from south Western Australia are described here to better understand the factors involved in their formation. The shell composition can be used to reconstruct past environmental conditions, but certain species manifest an offset compared to the environmental parameters measured. As shown here, shells that experience the same conditions can present different compositions in relation to structure, organic composition and environmental conditions.
Johan Vellekoop, Lineke Woelders, Sanem Açikalin, Jan Smit, Bas van de Schootbrugge, Ismail Ö. Yilmaz, Henk Brinkhuis, and Robert P. Speijer
Biogeosciences, 14, 885–900, https://doi.org/10.5194/bg-14-885-2017, https://doi.org/10.5194/bg-14-885-2017, 2017
Short summary
Short summary
The Cretaceous–Paleogene boundary, ~ 66 Ma, is characterized by a mass extinction. We studied groups of both surface-dwelling and bottom-dwelling organisms to unravel the oceanographic consequences of these extinctions. Our integrated records indicate that a reduction of the transport of organic matter to the sea floor resulted in enhanced recycling of nutrients in the upper water column and decreased food supply at the sea floor in the first tens of thousands of years after the extinctions.
Johan Renaudie
Biogeosciences, 13, 6003–6014, https://doi.org/10.5194/bg-13-6003-2016, https://doi.org/10.5194/bg-13-6003-2016, 2016
Short summary
Short summary
Marine planktonic diatoms are today both the main silica and carbon exporter to the deep sea. However, 50 million years ago, radiolarians were the main silica exporter and diatoms were a rare, geographically restricted group. Quantification of their rise to dominance suggest that diatom abundance is primarily controlled by the continental weathering and has a negative feedback, observable on a geological timescale, on the carbon cycle.
Jelena Vidović, Rafał Nawrot, Ivo Gallmetzer, Alexandra Haselmair, Adam Tomašových, Michael Stachowitsch, Vlasta Ćosović, and Martin Zuschin
Biogeosciences, 13, 5965–5981, https://doi.org/10.5194/bg-13-5965-2016, https://doi.org/10.5194/bg-13-5965-2016, 2016
Short summary
Short summary
We studied the ecological history of the Gulf of Trieste. Before the 20th century, the only activity here was ore mining, releasing high amounts of mercury into its northern part, Panzano Bay. Mercury did not cause changes to microorganisms, as it is not bioavailable. In the 20th century, agriculture caused nutrient enrichment in the bay and increased diversity of microorganisms. Industrial activities increased the concentrations of pollutants, causing only minor changes to microorganisms.
Aurélie Penaud, Frédérique Eynaud, Antje Helga Luise Voelker, and Jean-Louis Turon
Biogeosciences, 13, 5357–5377, https://doi.org/10.5194/bg-13-5357-2016, https://doi.org/10.5194/bg-13-5357-2016, 2016
Short summary
Short summary
This paper presents new analyses conducted at high resolution in the Gulf of Cadiz over the last 50 ky. Palaeohydrological changes in these subtropical latitudes are discussed through dinoflagellate cyst assemblages but also dinocyst transfer function results, implying sea surface temperature and salinity as well as annual productivity reconstructions. This study is thus important for our understanding of past and future productivity regimes, also implying consequences on the biological pump.
William Hardy, Aurélie Penaud, Fabienne Marret, Germain Bayon, Tania Marsset, and Laurence Droz
Biogeosciences, 13, 4823–4841, https://doi.org/10.5194/bg-13-4823-2016, https://doi.org/10.5194/bg-13-4823-2016, 2016
Short summary
Short summary
Our approach is based on a multi-proxy study from a core collected off the Congo River and discusses surface oceanic conditions (upwelling cells, river-induced upwelling), land–sea interactions and terrestrial erosion and in particular enables us to spatially constrain the migration of atmospheric systems. This paper thus presents new data highlighting, with the highest resolution ever reached in this region, the great correlation between phytoplanktonic organisms and monsoonal mechanisms.
Philippine Campagne, Xavier Crosta, Sabine Schmidt, Marie Noëlle Houssais, Olivier Ther, and Guillaume Massé
Biogeosciences, 13, 4205–4218, https://doi.org/10.5194/bg-13-4205-2016, https://doi.org/10.5194/bg-13-4205-2016, 2016
Short summary
Short summary
Diatoms and biomarkers have been recently used for palaeoclimate reconstructions in the Southern Ocean. Few sediment-based ecological studies have investigated their relationships with environmental conditions. Here, we compare high-resolution sedimentary records with meteorological data to study relationships between our proxies and recent atmospheric and sea surface changes. Our results indicate that coupled wind pattern and sea surface variability act as the proximal forcing at that scale.
Niels A. G. M. van Helmond, Appy Sluijs, Nina M. Papadomanolaki, A. Guy Plint, Darren R. Gröcke, Martin A. Pearce, James S. Eldrett, João Trabucho-Alexandre, Ireneusz Walaszczyk, Bas van de Schootbrugge, and Henk Brinkhuis
Biogeosciences, 13, 2859–2872, https://doi.org/10.5194/bg-13-2859-2016, https://doi.org/10.5194/bg-13-2859-2016, 2016
Short summary
Short summary
Over the past decades large changes have been observed in the biogeographical dispersion of marine life resulting from climate change. To better understand present and future trends it is important to document and fully understand the biogeographical response of marine life during episodes of environmental change in the geological past.
Here we investigate the response of phytoplankton, the base of the marine food web, to a rapid cold spell, interrupting greenhouse conditions during the Cretaceous.
Thomas C. Brachert, Markus Reuter, Stefan Krüger, Julia Kirkerowicz, and James S. Klaus
Biogeosciences, 13, 1469–1489, https://doi.org/10.5194/bg-13-1469-2016, https://doi.org/10.5194/bg-13-1469-2016, 2016
Short summary
Short summary
We present stable isotope proxy data and calcification records from fossil reef corals. The corals investigated derive from the Florida carbonate platform and are of middle Pliocene to early Pleistocene age. From the data we infer an environment subject to intermittent upwelling on annual to decadal timescales. Calcification rates were enhanced during periods of upwelling. This is likely an effect of dampened SSTs during the upwelling.
B. A. A. Hoogakker, D. J. R. Thornalley, and S. Barker
Biogeosciences, 13, 211–221, https://doi.org/10.5194/bg-13-211-2016, https://doi.org/10.5194/bg-13-211-2016, 2016
Short summary
Short summary
Models predict a decrease in future ocean O2, driven by surface water warming and freshening in the polar regions, causing a reduction in ocean circulation. Here we assess this effect in the past, focussing on the response of deep and intermediate waters from the North Atlantic during large-scale ice rafting and millennial-scale cooling events of the last glacial.
Our assessment agrees with the models but also highlights the importance of biological processes driving ocean O2 change.
M. Hermoso, I. Z. X. Chan, H. L. O. McClelland, A. M. C. Heureux, and R. E. M. Rickaby
Biogeosciences, 13, 301–312, https://doi.org/10.5194/bg-13-301-2016, https://doi.org/10.5194/bg-13-301-2016, 2016
B. Metcalfe, W. Feldmeijer, M. de Vringer-Picon, G.-J. A. Brummer, F. J. C. Peeters, and G. M. Ganssen
Biogeosciences, 12, 4781–4807, https://doi.org/10.5194/bg-12-4781-2015, https://doi.org/10.5194/bg-12-4781-2015, 2015
Short summary
Short summary
Iron biogeochemical budgets during the natural ocean fertilisation experiment KEOPS-2 showed that complex circulation and transport pathways were responsible for differences in the mode and strength of iron supply, with vertical supply dominant on the plateau and lateral supply dominant in the plume. The exchange of iron between dissolved, biogenic and lithogenic pools was highly dynamic, resulting in a decoupling of iron supply and carbon export and controlling the efficiency of fertilisation.
J. P. D'Olivo, M. T. McCulloch, S. M. Eggins, and J. Trotter
Biogeosciences, 12, 1223–1236, https://doi.org/10.5194/bg-12-1223-2015, https://doi.org/10.5194/bg-12-1223-2015, 2015
Short summary
Short summary
The boron isotope composition in the skeleton of massive Porites corals from the central Great Barrier Reef is used to reconstruct the seawater pH over the 1940-2009 period. The long-term decline in the coral-reconstructed seawater pH is in close agreement with estimates based on the CO2 uptake by surface waters due to rising atmospheric levels. We also observed a significant relationship between terrestrial runoff data and the inshore coral boron isotopes records.
J. Schönfeld, W. Kuhnt, Z. Erdem, S. Flögel, N. Glock, M. Aquit, M. Frank, and A. Holbourn
Biogeosciences, 12, 1169–1189, https://doi.org/10.5194/bg-12-1169-2015, https://doi.org/10.5194/bg-12-1169-2015, 2015
Short summary
Short summary
Today’s oceans show distinct mid-depth oxygen minima while whole oceanic basins became transiently anoxic in the Mesozoic. To constrain past bottom-water oxygenation, we compared sediments from the Peruvian OMZ with the Cenomanian OAE 2 from Morocco. Corg accumulation rates in laminated OAE 2 sections match Holocene rates off Peru. Laminated deposits are found at oxygen levels of < 7µmol kg-1; crab burrows appear at 10µmol kg-1 today, both defining threshold values for palaeoreconstructions.
S. C. Löhr and M. J. Kennedy
Biogeosciences, 11, 4971–4983, https://doi.org/10.5194/bg-11-4971-2014, https://doi.org/10.5194/bg-11-4971-2014, 2014
R. Hoffmann, J. A. Schultz, R. Schellhorn, E. Rybacki, H. Keupp, S. R. Gerden, R. Lemanis, and S. Zachow
Biogeosciences, 11, 2721–2739, https://doi.org/10.5194/bg-11-2721-2014, https://doi.org/10.5194/bg-11-2721-2014, 2014
T. J. Algeo, P. A. Meyers, R. S. Robinson, H. Rowe, and G. Q. Jiang
Biogeosciences, 11, 1273–1295, https://doi.org/10.5194/bg-11-1273-2014, https://doi.org/10.5194/bg-11-1273-2014, 2014
C. Berger, K. J. S. Meier, H. Kinkel, and K.-H. Baumann
Biogeosciences, 11, 929–944, https://doi.org/10.5194/bg-11-929-2014, https://doi.org/10.5194/bg-11-929-2014, 2014
T. Caley, S. Zaragosi, J. Bourget, P. Martinez, B. Malaizé, F. Eynaud, L. Rossignol, T. Garlan, and N. Ellouz-Zimmermann
Biogeosciences, 10, 7347–7359, https://doi.org/10.5194/bg-10-7347-2013, https://doi.org/10.5194/bg-10-7347-2013, 2013
N. Preto, C. Agnini, M. Rigo, M. Sprovieri, and H. Westphal
Biogeosciences, 10, 6053–6068, https://doi.org/10.5194/bg-10-6053-2013, https://doi.org/10.5194/bg-10-6053-2013, 2013
I. Polovodova Asteman, K. Nordberg, and H. L. Filipsson
Biogeosciences, 10, 1275–1290, https://doi.org/10.5194/bg-10-1275-2013, https://doi.org/10.5194/bg-10-1275-2013, 2013
J.-E. Tesdal, E. D. Galbraith, and M. Kienast
Biogeosciences, 10, 101–118, https://doi.org/10.5194/bg-10-101-2013, https://doi.org/10.5194/bg-10-101-2013, 2013
L. Durantou, A. Rochon, D. Ledu, G. Massé, S. Schmidt, and M. Babin
Biogeosciences, 9, 5391–5406, https://doi.org/10.5194/bg-9-5391-2012, https://doi.org/10.5194/bg-9-5391-2012, 2012
C. A. Grove, J. Zinke, T. Scheufen, J. Maina, E. Epping, W. Boer, B. Randriamanantsoa, and G.-J. A. Brummer
Biogeosciences, 9, 3063–3081, https://doi.org/10.5194/bg-9-3063-2012, https://doi.org/10.5194/bg-9-3063-2012, 2012
D. Wall-Palmer, M. B. Hart, C. W. Smart, R. S. J. Sparks, A. Le Friant, G. Boudon, C. Deplus, and J. C. Komorowski
Biogeosciences, 9, 309–315, https://doi.org/10.5194/bg-9-309-2012, https://doi.org/10.5194/bg-9-309-2012, 2012
S. F. Rella and M. Uchida
Biogeosciences, 8, 3545–3553, https://doi.org/10.5194/bg-8-3545-2011, https://doi.org/10.5194/bg-8-3545-2011, 2011
M. C. Nash, U. Troitzsch, B. N. Opdyke, J. M. Trafford, B. D. Russell, and D. I. Kline
Biogeosciences, 8, 3331–3340, https://doi.org/10.5194/bg-8-3331-2011, https://doi.org/10.5194/bg-8-3331-2011, 2011
Cited articles
André, A., Weiner, A., Quillévéré, F., Aurahs, R., Morard,
R., Douady, C. J., de Garidel-Thoron, T., Escarguel, G., de Vargas, C., and
Kucera, M.: The cryptic and the apparent reversed: lack of genetic
differentiation within the morphologically diverse plexus of the planktonic
foraminifer Globigerinoides sacculifer, Paleobiology, 39, 21–39, https://doi.org/10.5061/dryad.rb06j, 2013.
André, A., Quillévéré, F., Schiebel, R., Morard, R., Howa,
H., Meilland, J., and Douady, C. J.: Disconnection between genetic and
morphological diversity in the planktonic foraminifer Neogloboquadrina
pachyderma from the Indian sector of the Southern Ocean, Mar.
Micropaleontol., 144, 14–24, https://doi.org/10.1016/j.marmicro.2018.10.001,
2018.
Bard, E. and Rickaby, R. E. M.: Migration of the subtropical front as a
modulator of glacial climate, Nature, 460, 380–383, https://doi.org/10.1038/nature08189, 2009.
Bartoli, G., Sarnthein, M., Weinelt, M., Erlenkeuser, H.,
Garbe-Schönberg, D., and Lea, D. W.: Final closure of Panama and the
onset of northern hemisphere glaciation, Earth Planet. Sc.
Lett., 237, 33–44, https://doi.org/10.1016/j.epsl.2005.06.020, 2005.
Bé, A. W. H., Caron, D. A., and Anderson, O. R.: Effects of feeding
frequency on life processes of the planktonic foraminifer Globigerinoides
sacculifer in laboratory culture, J. Mar. Biol.
Assoc. UK, 61, 257–277,
https://doi.org/10.1017/s002531540004604x, 1981.
Beal, L. M., De Ruijter, W. P. M., Biastoch, A., and Zahn, R.: On the role
of the Agulhas system in ocean circulation and climate, Nature, 472,
429–436, https://doi.org/10.1038/nature09983, 2011.
Berger, W. H. and Wefer, G.: Expeditions into the Past: Paleoceanographic
Studies in the South Atlantic, in: The South Atlantic,
Springer Berlin Heidelberg, 363–410, https://doi.org/10.1007/978-3-642-80353-6_21, 1996.
Berggren, W. A., Kent, D. V., Swisher, C. C., and Aubry, M.-P.: A Revised Cenozoic Geochronology and Chronostratigraphy, in: Geochronology, time scales and global stratigraphic correlation, edited by: Aubry, M. P. and Hardenbol, J., SEPM (Society for Sedimentary Geology), 54, 129–212, https://doi.org/10.2110/pec.95.04.0129, 1995.
Bermúdez, P. J. and Bolli, H. M.: Consideraciones sobre los sedimentos
del Mioceno medio al Reciente de las costas central y oriental de Venezuela, Boletin de Geologia, Ministerio de Minas e Hidrocarburos, 10, 137–223,
1969.
Biastoch, A., Böning, C. W., Schwarzkopf, F. U., and Lutjeharms, J.
R. E.: Increase in Agulhas leakage due to poleward shift of Southern
Hemisphere westerlies, Nature, 462, 495–498,
https://doi.org/10.1038/nature08519, 2009.
Billups, K., Ravelo, A. C., Zachos, J. C., and Norris, R. D.: Link between
oceanic heat transport, thermohaline circulation, and the Intertropical
Convergence Zone in the early Pliocene Atlantic, Geology, 27, 319–322,
https://doi.org/10.1130/0091-7613(1999)027<0319:lbohtt>2.3.co;2, 1999.
Blaser, P., Frank, M., and van der Flierdt, T.: Revealing past ocean
circulation with neodymium isotopes, Past Glob. Chang. Mag., 27,
54–55, https://doi.org/10.22498/pages.27.2.54, 2019.
Bolli, H. M.: The direction of coiling in the evolution of some
Globorotaliidae, Contributions from the Cushman Foundation for Foraminiferal
Research, 1, 82–89, 1950.
Bolli, H. M.: Initial Reports of the Deep Sea Drilling Project, Vol. IV,
chap. 25, The Foraminifera of Sites 23-31, LEG 4, U.S.
Government Printing Office, 577–644,
https://doi.org/10.2973/dsdp.proc.4.125.1970, 1970.
Bolli, H. M. and Premoli Silva, I.: Oligocene to Recent Planktonic
Foraminifera and Stratigraphy of the Leg 15 Sites in the Caribbean Sea, in:
Initial Reports of the Deep Sea Drilling Project, 15, edited by: Edgar, N. T., Kaneps, A. G., and Herring, J. R., U.S. Government
Printing Office, Vol. 15, 475–497, https://doi.org/10.2973/dsdp.proc.15.110.1973, 1973.
Bolli, H. M. and Saunders, J. B.: Plankton Stratigraphy, chap. 6, Oligocene
to Holocene low latitude planktic foraminifera, Cambridge
University Press, 1, 155–262, ISBN 0521235766, 1985.
Broecker, W. S.: The Great Ocean Conveyor. Oceanography, 4, 79–89, https://doi.org/10.5670/oceanog.1991.07, 1991.
Broecker, W. S. and Pena, L. D.: Delayed Holocene reappearance of G. menardii, Paleoceanogr. Paleocl., 29, 291–295,
https://doi.org/10.1002/2013PA002590, 2014.
Brombacher, A., Wilson, P. A., Bailey, I., and Ezard, T. H. G.: The Breakdown
of Static and Evolutionary Allometries during Climatic Upheaval,
Am. Nat., 190, 350–362, https://doi.org/10.1086/692570,
2017.
Brombacher, A., Wilson, P. A., Bailey, I., and Ezard, T. H. G.: The Dynamics
of Diachronous Extinction Associated With Climatic Deterioration Near the
Neogene/Quaternary Boundary, Paleoceanogr. Paleocl., 36, e2020PA004205,
https://doi.org/10.1029/2020PA004205, 2021.
Brown, K. R.: Biogeographic and morphological variation in late Pleistocene
to Holocene globorotalid foraminifera, Ph.D. thesis, University of Basel,
available at: https://edoc.unibas.ch/780/ (last access: 20 June 2012), 2007.
Buizert, C. and Schmittner, A.: Southern Ocean control of glacial AMOC
stability and Dansgaard-Oeschger interstadial duration, Paleoceanography,
30, 1595–1612, https://doi.org/10.1002/2015pa002795,
2015.
Caley, T., Jiraudeau, J., Malaizé, B., Rossignol, L., and Pierre, C.:
Agulhas leakage as a key process in the modes of Quaternary climate changes,
P. Natl. Acad. Sci. USA, 109, 6835–6839, https://doi.org/10.1073/pnas.1115545109, 2012.
Caromel, A. G. M., Schmidt, D. N., Fletcher, I., and Rayfield, E. J.:
Morphological Change During The Ontogeny Of The Planktic Foraminifera,
J. Micropalaeontol, 35, 2–19, https://doi.org/10.1144/jmpaleo2014-017, 2016.
Chaisson, W. P.: Vicarious living: Pliocene menardellids between an isthmus
and an ice sheet, Geology, 31, 1085–1088,
https://doi.org/10.1130/G19834.1,
2003.
Chaisson, W. P. and Ravelo, A. C.: Changes in upper water-column structure
at Site 925, late Miocene-Pleistocene: planktonic foraminifer assemblage and
isotopic evidence, in: Proceedings of the Ocean Drilling Program, edited by:
Shackleton, N. J., Curry, W. B., Richter, C., and Bralower, T. J., College Station, TX (Ocean Drilling Program), Vol. 154,
255–268,
https://doi.org/10.2973/odp.proc.sr.154.105.1997, 1997.
Chan, C.-H., Chan, G. C. H., Leeper, T. J., and Becker, J.: rio: A
Swiss-army knife for data file I/O, r package version 0.5.16, https://cran.r-project.org/src/contrib/Archive/rio/ (last access: 7 September 2021), 2018.
Chapman, M. R.: Biotic Response to Global Changes: The Last 145 Million
Years, The response of planktonic foraminifera to the Late Pliocene
intensification of Northern Hemisphere glaciation, 115, 79–96,
Cambridge University Press, https://doi.org/10.1017/CBO9780511535505.007, 2000.
Clemens, S. C., Murray, D. W., and Prell, W. L.: Nonstationary Phase of the
Plio-Pleistocene Asian Monsoon, Science, 274, 943–948,
https://doi.org/10.1126/science.274.5289.943, 1996.
Clyde-Brockway, C. E.: Inter-Nesting and Post-Nesting Movements and Behavior
of East Pacific Green Turtles (Cheloniamydas agassizii) from Playa Cabuyal,
Guanacaste, Costa Rica, Masterthesis, Indiana University – Purdue University
Fort Wayne, ProQuest Dissertations Publishing, 2014.
Curry, W. B., Thunell, R. C., and Honjo, S.: Seasonal changes in the
isotopic composition of planktonic foraminifera collected in Panama Basin
sediment traps, Earth Planet. Sc. Lett., 64, 33–43,
https://doi.org/10.1016/0012-821x(83)90050-x,
1983.
Dausmann, V., Frank, M., Gutjahr, M., and Rickli, J.: Glacial reduction of
AMOC strength and long–term transition in weathering inputs into the
Southern Ocean since the mid–Miocene: Evidence from radiogenic Nd and Hf
isotopes, Paleoceanography, 32, 265–283,
https://doi.org/10.1002/2016PA003056, 2017.
Davis, C. V., Fuqua, L., Pride, C., and Thunell, R.: Seasonal and
interannual changes in planktic foraminiferal fluxes and species composition
in Guaymas Basin, Gulf of California, Mar. Micropaleontol., 149, 78–88,
https://doi.org/10.1016/j.marmicro.2019.05.001,2019.
dos Santos, R. A. L., Prange, M., Castañeda, I. S., Schefuß, E.,
Mulitza, S., Schulz, M., Niedermeyer, E. M., Damsté, J. S. S., and
Schouten, S.: Glacial-interglacial variability in Atlantic meridional
overturning circulation and thermocline adjustments in the tropical North
Atlantic, Earth Planet. Sc. Lett., 300, 407–414,
https://doi.org/10.1016/j.epsl.2010.10.030, 2010.
Ericson, D. B. and Wollin, G.: Micropaleontological and isotopical
determinations of Pleistocene climates, Micropaleontology, 2, 257–270,
https://doi.org/10.2307/1484180, 1956.
Fairbanks, R. G., Sverdlove, M., Free, R., Wiebe, H. P., and Bé, A.
W. H.: Vertical distribution and isotopic fractionation of living planktonic
foraminifera from the Panama Basin, Nature, 298, 841–844,
https://doi.org/10.1038/298841a0,
1982.
Friesenhagen, T.: Archive to the evolutionary study about menardiform globorotallids (planktonic foraminifer) in the eastern tropical Atlantic ocean ODP Hole 667A, PANGAEA [data set and code], https://doi.pangaea.de/10.1594/PANGAEA.940563, 2022.
Gasperi, J. T. and Kennett, J. P.: Pacific Neogene-Environment, Evolution,
and Events, Biostratigraphy and paleoceanography of the Japan Sea based on
diatoms: ODP Leg 127, chap. Isotopic Evidence for Depth Stratification and
Paleoecology of Miocene Planktonic Foraminifera, Tokyo,
University of Tokyo Press, 117–147, ISBN 0 86008 491 4, ISBN 4 13 068206 7, 1992.
Gasperi, J. T. and Kennett, J. P.: Vertical thermal structure evolution of
Miocene surface waters Western equatorial Pacific DSDP Site 289, Mar.
Micropaleontol., 22, 235–254,
https://doi.org/10.1016/0377-8398(93)90046-Z, 1993.
Haarsma, R. J., Campos, E., Hazeleger, W., and Severijns, C.: Influence of
the Meridional Overturning Circulation on Tropical Atlantic Climate and
Variability, J. Clim., 21, 1403–1416,
https://doi.org/10.1175/2007JCLI1930.1, 2008.
Haug, G. H. and Tiedemann, R.: Effect of the formation of the Isthmus of
Panama on Atlantic Ocean thermohaline circulation, Nature, 393, 673–676,
https://doi.org/10.1038/31447, 1998.
Haug, G. H., Tiedemann, R., Zahn, R., and Ravelo, A. C.: Role of Panama
uplift on oceanic freshwater balance, Geology, 29, 207–210,
https://doi.org/10.1130/0091-7613(2001)029<0207:ROPUOO>2.0.CO;2,
2001.
Haywood, A. M., Dowsett, H. J., and Dolan, A. M.: Integrating geological
archives and climate models for the mid-Pliocene warm period, Nat.
Commun., 7, 10646, https://doi.org/10.1038/ncomms10646, 2016.
Hecht, A. D.: An ecologic model for test size variation in Recent planktonic
foraminifera; applications to the fossil record, J.
Foramin. Res., 6, 295–311,
https://doi.org/10.2113/gsjfr.6.4.295,1976.
Hilbrecht, H. and Thierstein, H. R.: Benthic behavior of planktic
foraminifera, Geology, 24, 200–202,
https://doi.org/10.1130/0091-7613(1996)024<0200:BBOPF>2.3.CO;2,
1996.
Hull, P. M. and Norris, R. D.: Evidence for abrupt speciation in a classic
case of gradual evolution, P. Natl. Acad. Sci. USA, 106, 21224–21229,
https://doi.org/10.1073/pnas.0902887106, 2009.
Ivanova, E. V.: Paleoceanography of the Northern Indian Ocean: Linkages to
Monsoon and Global Thermohaline Paleocirculation, in: The Global
Thermohaline Paleocirculation, Springer Netherlands, 107–145,
https://doi.org/10.1007/978-90-481-2415-2_5, 2009.
Karas, C., Nürnberg, D., Bahr, A., Groeneveld, J., Herrle, J. O.,
Tiedemann, R., and deMenocal, P. B.: Pliocene oceanic seaways and global
climate, Sci. Rep., 7, 39842, https://doi.org/10.1038/srep39842, 2017.
Jackson, J. B. C. and O'Dea, A.: Timing of the oceanographic and biological
isolation of the Caribbean Sea from the tropical eastern Pacific Ocean,
Bull. Mar. Sci., 89, 779–800,
https://doi.org/10.5343/bms.2012.1096,
2013.
Kämpf, J. and Chapman, P.: The Peruvian-Chilean Coastal Upwelling System, in: Upwelling Systems of the World, Springer International Publishing, 161–202, https://doi.org/10.1007/978-3-319-42524-5_5, 2016.
2016.
Keller, G.: Depth stratification of planktonic foraminifers in the Miocene
ocean, in: Geological Society of America Memoirs, Geol.
Soc. Am., 163, 177–196, https://doi.org/10.1130/mem163-p177,
1985.
Kennett, J. P. and Srinivasan, M. S.: Neogene planktonic foraminifera. A
phylogenetic atlas, Hutchinson Ross Publishing Company, Stroudsburg, Pa, New
York, NY, ISBN 0879330708, 1983.
Knappertsbusch, M. W.: Morphological variability of Globorotalia menardii (planktonic foraminifera) in two DSDP cores from the Caribbean Sea and the Eastern Equatorial Pacific, Carnets de Geologie, CG2007, hal-00164930, 2007a.
Knappertsbusch, M. W.: Morphometric data and processing steps of planktonic foraminifera from DSDP Site 68-502, PANGAEA, https://doi.org/10.1594/PANGAEA.863573, 2007b.
Knappertsbusch, M. W.: Morphometric data and processing steps of planktonic foraminifera from DSDP Site 68-503, PANGAEA, https://doi.org/10.1594/PANGAEA.863575, 2007c.
Knappertsbusch, M. W.: Evolution im marinen Plankton, Mitteilungen der
Naturforschenden Gesellschaften beider Basel, 13, 3–14, https://doi.org/10.5169/seals-676589, 2011.
Knappertsbusch, M. W.: Raw-data to morphometric investigations about the Neogene planktonic foraminifer Globorotalia menardii and related forms from ODP Hole 154-925B (Céara Rise, western tropical Atlantic), PANGAEA, https://doi.org/10.1594/PANGAEA.855900, 2015.
Knappertsbusch, M. W.: Evolutionary prospection in the Neogene planktic
foraminifer Globorotalia menardii and related forms from ODP Hole 925B
(Ceara Rise, western tropical Atlantic): evidence for gradual evolution
superimposed by long distance dispersal?, Swiss J. Palaeontol.,
135, 205–248, https://doi.org/10.1007/s13358-016-0113-6, 2016.
Knappertsbusch, M. W. and Mary, Y.: Mining morphological evolution in
microfossils using volume density diagrams, Palaeontologica Electronica, 15,
1–29, https://doi.org/10.26879/278,
2012.
Knappertsbusch, M. W., Binggeli, D., Herzig, A., Schmutz, L., Stapfer, S.,
Schneider, C., Eisenecker, J., and Widmer, L.: Amor – A New System For
Automated Imaging Of Microfossils For Morphometric Analyses, Palaeontologia
Electronica, 121, 12.2.2T, 2009.
Krijgsman, W., Hilgen, F. J., Raffi, I., Sierro, F. J., and Wilson, D. S.:
Chronology, causes and progression of the Messinian salinity crisis, Nature,
400, 652–655, https://doi.org/10.1038/23231, 1999.
Lamb, J. L. and Beard, J. H.: Late Neogene planktonic foraminifers in the Caribbean, Gulf of Mexico and Italian stratotypes, Harold Norman Fisk Memorial Papers, The University of Kansas Paleontological Contributions, 57, 128921806,
1972.
Laxenaire, R., Speich, S., Blanke, B., Chaigneau, A., Pegliasco, C., and
Stegner, A.: Anticyclonic Eddies Connecting the Western Boundaries of Indian
and Atlantic Oceans, J. Geophys. Res.-Ocean., 123,
7651–7677, https://doi.org/10.1029/2018JC014270, 2018.
Lazarus, D.: Tempo and mode of morphologic evolution near the origin of the
radiolarian lineage Pterocanium prismatium, Paleobiology, 12, 175–189,
https://doi.org/10.1017/s0094837300013646, 1986.
Lazarus, D.: Age Depth Plot and Age Maker: Age Modeling of Stratigraphic
Sections on the Macintosh Series of Computers, Geobyte, 7, 7–14, 5425155, 1992.
Lutjeharms, J. R. E. and Van Ballegooyen, R. C.: The Retroflection of the
Agulhas Current, J. Phys. Oceanogr., 18, 1570–1583,
https://doi.org/10.1175/1520-0485(1988)018<1570:TROTAC>2.0.CO;2,
1988.
Malmgren, B. A. and Kennett, J. P.: Biometric analysis of phenotypic
variation in Recent Globigerina bulloides d'Orbigny in the southern Indian
Ocean, Mar. Micropaleontol., 1, 3–25,
https://doi.org/10.1016/0377-8398(76)90003-7,
1976.
Malmgren, B. A., Berggren, W. A., and Lohmann, G. P.: Evidence for
punctuated gradualism in the Late Neogene Globorotalia tumida lineage of
planktonic foraminifera, Paleobiology, 9, 377–389,
https://doi.org/10.1017/s0094837300007843, 1983.
Manivit, H.: Calcareous Nannofossil Biostratigraphy in Leg 108 Sediments,
in: Proc. ODP, Sci. Results 108, edited by: Baldauf, J., Heath, G. R.,
Ruddiman, W. F., and Sarnthein, M., College Station,
TX (Ocean Drilling Program), Vol. 108, 35–69,
https://doi.org/10.2973/odp.proc.sr.108.126.1989, 1989.
Mary, Y.: Morphologic, biogeographic and ontogenetic investigation of
Mid-Pliocene menardellids (planktonic foraminifera), Ph.D. thesis,
University of Basel, https://doi.org/10.5451/unibas-006194467, 2013.
McCarthy, G., Smeed, D., Cunningham, S., and Roberts, C.: Atlantic
Meridional Overturning Circulation, MCCIP Science Review 2017, MCCIP, Lowestoft, UK, 15–21,
https://doi.org/10.14465/2017.ARC10.002-ATL,
2017.
Merino, M. and Monreal-Gómez, M. A.: Marine Ecology, Ocean
Currents and Their Impact on Marine Life, Eolss Publishers Co.
Ltd., Oxford, 52–74, ISBN 978-1-84826-464-9,
2009.
Merle, J.: Seasonal Variability of Subsurface Thermal Structure in the
Tropical Atlantic Ocean, in: Hydrodynamics of The Equatorial Ocean,
Proceedings of The 14th International Liege Colloquium on Ocean
Hydrodynamics, Elsevier, 31–49,
https://doi.org/10.1016/s0422-9894(08)70626-3, 1983.
Mohtadi, M., Steinke, S., Groeneveld, J., Fink, H. G., Rixen, T., Hebbeln,
D., Donner, B., and Herunadi, B.: Low-latitude control on seasonal and
interannual changes in planktonic foraminiferal flux and shell geochemistry
off south Java: A sediment trap study, Paleoceanography, 24, PA1201,
https://doi.org/10.1029/2008pa001636, 2009.
Möller, K. O., John, M. S., Temming, A., Floeter, J., Sell, A. F.,
Herrmann, J.-P., and Möllmann, C.: Marine snow, zooplankton and thin
layers: indications of a trophic link from small-scale sampling with the
Video Plankton Recorder, Mar. Ecol. Prog. Ser., 468, 57–69,
https://doi.org/10.3354/meps09984, 2012.
Naidu, P. D. and Malmgren, B. A.: Monsoon upwelling effects on test size of
some planktonic foraminiferal species from the Oman Margin, Arabian Sea,
Paleoceanography, 10, 117–122, https://doi.org/10.1029/94pa02682, 1995.
Niemitz, M. D. and Billups, K.: Millennial-scale variability in western
tropical Atlantic surface ocean hydrography during the early Pliocene,
Mar. Micropaleontol., 54, 155–166,
https://doi.org/10.1016/j.marmicro.2004.10.001,
2005.
Norris, R. D.: Reconstruction Ocean History, Hydrographic and tectonic
control of plankton distribution and evolution, Springer US, 173–193,
https://doi.org/10.1007/978-1-4615-4197-4, 1999.
O'Dea, A., Lessios, H. A., Coates, A. G., Eytan, R. I., Restrepo-Moreno, S.
A., Cione, A. L., Collins, L. S., de Queiroz, A., Farris, D. W., Norris, R.
D., Stallard, R. F., Woodburne, M. O., Aguilera, O., Aubry, M.-P., Berggren,
W. A., Budd, A. F., Cozzuol, M. A., Coppard, S. E., Duque-Caro, H.,
Finnegan, S., Gasparini, G. M., Grossman, E. L., Johnson, K. G., Keigwin, L.
D., Knowlton, N., Leigh, E. G., Leonard-Pingel, J. S., Marko, P. B.,
Pyenson, N. D., Rachello-Dolmen, P. G., Soibelzon, E., Soibelzon, L., Todd,
J. A., Vermeij, G. J., and Jackson, J. B. C.: Formation of the Isthmus of
Panama, Sci. Adv., 2, e160088, https://doi.org/10.1126/sciadv.1600883,
2016.
Ortiz, J. D., Mix, A. C., and Collier, R. W.: Environmental control of
living symbiotic and asymbiotic foraminifera of the California Current,
Paleoceanography, 10, 987–1009, https://doi.org/10.1029/95pa02088, 1995.
Pearson, P. N. and Coxall, H. K.: Origin of the Eocene Planktonic
Foraminifer Hantkenina by Gradual Evolution, Palaeontology, 57, 243–267,
https://doi.org/10.1111/pala.12064, 2014.
Peeters, F. J. C., Acheson, R., Brummer, G.-J. A., de Ruijter, W. P. M.,
Schneider, R. R., Ganssen, G. M., Ufkes, E., and Kroon, D.: Vigorous
exchange between the Indian and Atlantic oceans at the end of the past five
glacial periods, Nature, 430, 661–665,
https://doi.org/10.1038/nature02785, 2004.
Pelegrí, J. L. and Benazzouz, A.: Oceanographic and biological features
in the Canary Current Large Marine Ecosystem, Vol. 115, chap. 3.4, Coastal
upwelling off North–West Africa, IOC–UNESCO, Paris, IOC
Technical Series Technical Series, 93–103, IOC/2015/TS/115 REV, http://hdl.handle.net/10261/128554 (last access: 9 October 2019), 2015.
Pfuhl, H. A. and Shackleton, N. J.: Changes in coiling direction, habitat
depth and abundance in two menardellid species, Mar. Micropaleontol.,
50, 3–20, https://doi.org/10.1016/s0377-8398(03)00063-x,
2004.
Portilho-Ramos, R. D. C., Barbosa, C. F., and Rios-Netto, A. M.: Planktonic
foraminiferal variations in the southwestern Atlantic since the last
glacial-interglacial cycle, Palaios, 29, 38–44,
https://doi.org/10.2110/palo.2012.104, 2014.
Prairie, J. C., Ziervogel, K., Camassa, R., McLaughlin, R. M., White, B. L.,
Dewald, C., and Arnosti, C.: Delayed settling of marine snow: Effects of
density gradient and particle properties and implications for carbon
cycling, Mar. Chem., 175, 28–38,
https://doi.org/10.1016/j.marchem.2015.04.006,
2015.
Ravelo, A. C. and Fairbanks, R. G.: Oxygen Isotopic Composition of Multiple
Species of Planktonic Foraminifera: Recorders of the Modern Photic Zone
Temperature Gradient, Paleoceanography, 7, 815–831,
https://doi.org/10.1029/92pa02092, 1992.
Ravelo, A. C., Fairbanks, R. G., and Philander, S. G. H.: Reconstructing
tropical Atlantic hydrography using planktonic foraminifera and an ocean
model, Paleoceanography, 5, 409–431,
https://doi.org/10.1029/pa005i003p00409,
1990.
Raymo, M. E.: The Initiation of Northern Hemisphere Glaciation, Ann.
Rev. Earth Pl. Sci., 22, 353–383,
https://doi.org/10.1146/annurev.ea.22.050194.002033,
1994.
Regenberg, M., Nielsen, S. N., Kuhnt, W., Holbourn, A., Garbe-Schönberg,
D., and Andersen, N.: Morphological, geochemical, and ecological differences
of the extant menardiform planktonic foraminifera Globorotalia menardii and
Globorotalia cultrata, Mar. Micropaleontol., 74, 96–107,
https://doi.org/10.1016/j.marmicro.2010.01.002,
2010.
Revelle, W.: psych: Procedures for Psychological, Psychometric, and
Personality Research, Northwestern University, Evanston, Illinois,
available at: https://CRAN.R-project.org/package=psych (last access: 28 September 2021), R package version 1.8.12, 2018.
Rinker, T. W. and Kurkiewicz, D.: pacman: Package Management for R, Buffalo,
New York, available at: http://github.com/trinker/pacman (last access: 17 September 2019), version 0.5.0, 2018.
Rillo, M. C., Miller, C. G., Kucera, M., and Ezard, T. H. G.: Predictability
of intraspecific size variation in extant planktonic foraminifera, bioRxiv,
https://doi.org/10.1101/468165, 2018.
Robinson, R.: Coiling Directions in Planktonic Foraminifera from the Coastal
Group of Jamaica, Gulf Coast Assoc. Geol. Soc.
Trans., 19, 555–558, 1969.
Rosenzweig, M. L. and McCord, R. D.: Incumbent replacement: evidence for
long-term evolutionary progress, Paleobiology, 17, 202–213,
https://doi.org/10.1017/s0094837300010563,
1991.
RStudio Team: RStudio: Integrated Development Environment for R, RStudio,
PBC., Boston, MA, https://www.rstudio.com/ (last access: 25 May 2021), 2020.
Rühs, S., Durgadoo, J. V., Behrens, E., and Biastoch, A.: Advective
timescales and pathways of Agulhas leakage, Geophys. Res. Lett.,
40, 3997–4000, https://doi.org/10.1002/grl.50782, 2013.
Savin, S. M., Abel, L., Barrera, E., Hodell, D., Kennett, J. P., Murphy, M.,
Keller, G., Killingley, J., and Vincent, E.: The evolution of Miocene
surface and near-surface marine temperatures: Oxygen isotopic evidence, in:
Geological Society of America Memoirs, Geol. Soc.
Am., 163, 49–82, https://doi.org/10.1130/mem163-p49,
1985.
Schiebel, R. and Hemleben, C.: Planktic Foraminifers in the Modern Ocean,
Springer Berlin Heidelberg, 1–110, https://doi.org/10.1007/978-3-662-50297-6, 2017.
Schmidt, D. N., Thierstein, H. R., Bollmann, J., and Schiebel, R.: Abiotic
Forcing of Plankton Evolution in the Cenozoic, Science, 303, 207–210,
https://doi.org/10.1126/science.1090592, 2004.
Schmidt, D. N., Lazarus, D., Young, J. R., and Kucera, M.: Biogeography and
evolution of body size in marine plankton, Earth-Sci. Rev., 78,
239–266, https://doi.org/10.1016/j.earscirev.2006.05.004,
2006.
Schweitzer, P. N. and Lohmann, G. P.: Ontogeny and habitat of modern
menardiiform planktonic foraminifera, J. Foramin. Res.,
21, 332–346, https://doi.org/10.2113/gsjfr.21.4.332,
1991.
Sexton, P. F. and Norris, R. D.: Dispersal and biogeography of marine
plankton: Long-distance dispersal of the foraminifer Truncorotalia
truncatulinoides, Geology, 36, 899–902,
https://doi.org/10.1130/G25232A.1,
2008.
Sexton, P. F. and Norris, R. D.: High latitude regulation of low latitude
thermocline ventilation and planktic foraminifer populations across
glacial-interglacial cycles, Elsevier, 311, 69–81,
https://doi.org/10.1016/j.epsl.2011.08.044, 2011.
Shipboard Scientific Party: Site 667, in: Proc. ODP, Init. Repts. (Pt. B), edited by: Stewart, S. K.
and Rose, W. D., College Station, TX (Ocean Drilling
Program), Vol. 108, 833–930, https://doi.org/10.2973/odp.proc.ir.108.112.1988, 1988.
Shipboard Scientific Party: Facies Patterns and Authigenic Minerals of
Upwelling Deposits off Southwest Africa, in: Proceedings of the Ocean
Drilling Program 175 Initial Reports, edited by: Baez, L. A. and Scroggs,
J. M., Ocean Drilling Program, Vol. 175, 7–25,
https://doi.org/10.2973/odp.proc.ir.175.116.1998, 1998.
Shipboard Scientific Party: Site 1237, in: Proc. ODP, Init. Repts., 202,
edited by: Tiedemann, R., Mix, A. C., Richter, C., and Ruddiman, W. F.,
College Station, TX (Ocean Drillng Program), 1–107,
https://doi.org/10.2973/odp.proc.ir.202.108.2003, 2003.
Spencer-Cervato, C. and Thierstein, H. R.: First appearance of Globorotalia
truncatulinoides: cladogenesis and immigration, Mar. Micropaleontol.,
30, 267–291, https://doi.org/10.1016/s0377-8398(97)00004-2,
1997.
Steph, S., Tiedemann, R., Groeneveld, J., Sturm, A., and Nürnberg, D.:
Proc. ODP, Sci. Results, chap. 12, Pliocene Changes in Tropical
East Pacific Upper Ocean Stratification: Response to Tropical Gateways?,
College Station, TX (Ocean Drilling Program), Vol. 202, 1–51,
https://doi.org/10.2973/odp.proc.sr.202.211.2006, 2006.
Stewart, D. R. M.: Evolution of Neogene globorotaliid foraminifera and
Miocene climate change, Doctoral dissertation, University of Bristol, https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.288306 (last access: 9 December 2014), 2003.
Thunell, R. C. and Reynolds, L. A.: Sedimentation of planktonic
foraminifera: Seasonal changes in species flux in the Panama Basin,
Micropaleontoloty, 30, 243–262, https://doi.org/10.2307/1485688, 1984.
Tiedemann, R., Sarnthein, M., and Shackleton, N. J.: Astronomic timescale
for the Pliocene Atlantic 18O and dust flux records of Ocean Drilling
Program Site 659, Paleoceanography, 9, 619–638,
https://doi.org/10.1029/94pa00208, 1994.
Timmermann, A., Okumura, Y., Clement, A., Dong, B., Guilyardi, E., Hu, A.,
Jungclaus, J. H., Renold, M., Stocker, T. F., Stouffer, R. J., Sutton, R.,
Xie, S.-P., and Yin, J.: The Influence of a Weakening of the Atlantic
Meridional Overturning Circulation on ENSO, J. Clim., 20,
4899–4919, https://doi.org/10.1175/JCLI4283.1, 2007.
Todd, C. L., Schmidt, D. N., Robinson, M. M., and De Schepper, S.: Planktic
Foraminiferal Test Size and Weight Response to the Late Pliocene
Environment, Paleoceanogr. Paleocl., 35, e2019PA003738,
https://doi.org/10.1029/2019PA003738, 2020.
van Sebille, E., Beal, L. M., and Johns, W. E.: Advective Time Scales of
Agulhas Leakage to the North Atlantic in Surface Drifter Observations and
the 3D OFES Model, J. Phys. Oceanogr., 41, 1026–1034,
https://doi.org/10.1175/2011JPO4602.1, 2011.
Villar, E., Farrant, G. K., Follows, M., Garczarek, L., Speich, S., Audic,
S., Bittner, L., Blanke, B., Brum, J. R., Brunet, C., Casotti, R., Chase,
A., Dolan, J. R., d'Ortenzio, F., Gattuso, J.-P., Grima, N., Guidi, L.,
Hill, C. N., Jahn, O., Jamet, J.-L., Le Goff, H., Lepoivre, C., Malviya, S.,
Pelletier, E., Romagnan, J.-B., Roux, S., Santini, S., Scalco, E., Schwenck,
S. M., Tanaka, A., Testor, P., Vannier, T., Vincent, F., Zingone, A.,
Dimier, C., Picheral, M., Searson, S., Kandels-Lewis, S.,
Oceanscoordinators, T., Acinas, S. G., Bork, P., Boss, E., de Vargas, C.,
Gorsky, G., Ogata, H., Pesant, S., Sullivan, M. B., Sunagawa, S., Wincker,
P., Karsenti, E., Bowler, C., Not, F., Hingamp, P., and Iudicone, D.:
Environmental characteristics of Agulhas rings affect interocean plankton
transport, Science, 348, 1261447,
https://doi.org/10.1126/science.1261447,
2015.
Wade, B. S., Pearson, P. N., Berggren, W. A., and Pälike, H.: Review
and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy
and calibration to the geomagnetic polarity and astronomical time scale,
Earth-Sci. Rev., 104, 111–142,
https://doi.org/10.1016/j.earscirev.2010.09.003, 2011.
Wade, B. S., Poole, C. R., and Boyd, J. L.: Giantism in Oligocene planktonic
foraminifera Paragloborotalia opima: Morphometric constraints from the
equatorial Pacific Ocean, Newsl. Stratigr., 49, 421–444,
https://doi.org/10.1127/nos/2016/0270, 2016.
Weaver, P. P. E. and Raymo, M. E.: Late Miocene to Holocene planktonic
foraminifers from the equatorial Atlantic, Leg 108, in: Proc. ODP, Sci.
Results 108, edited by: Baldauf, J., Heath, G. R., Ruddiman, W. F., and
Sarnthein, M., chap. 5, College Station, TX (Ocean
Drilling Program), Vol. 108, 71–91, https://doi.org/10.2973/odp.proc.sr.108.130.1989, 1989.
Wejnert, K. E., Pride, C. J., and Thunell, R. C.: The oxygen isotope
composition of planktonic foraminifera from the Guaymas Basin, Gulf of
California: Seasonal, annual, and interspecies variability, Mar.
Micropaleontol., 74, 29–37,
https://doi.org/10.1016/j.marmicro.2009.11.002,
2010.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag
New York, https://doi.org/10.1007/978-3-319-24277-4, 2016.
Wickham, H. and Bryan, J.: readxl: Read Excel Files,
available at: https://CRAN.R-project.org/package=readxl (last access: 16 September 2019), R package version 1.3.1, 2019.
Wolff, T., Mulitza, S., Rühlemann, C., and Wefer, G.: Response of the
tropical Atlantic thermocline to late Quaternary trade wind changes,
Paleoceanography, 14, 374–383, https://doi.org/10.1029/1999PA900011,
1999.
Woodhouse, A., Jackson, S. L., Jamieson, R. A., Newton, R. J., Sexton, P. F.,
and Aze, T.: Adaptive ecological niche migration does not negate extinction
susceptibility, Research Square, 11, 15411,
https://doi.org/10.1038/s41598-021-94140-5, 2021.
Short summary
Size measurements of the planktonic foraminifer Globorotalia menardii and related forms are used to investigate the shell-size evolution for the last 8 million years in the eastern tropical Atlantic Ocean. Long-term changes in the shell size coincide with major climatic, palaeogeographic and palaeoceanographic changes and suggest the occurrence of a new G. menardii type in the Atlantic Ocean ca. 2 million years ago.
Size measurements of the planktonic foraminifer Globorotalia menardii and related forms are used...
Altmetrics
Final-revised paper
Preprint