Articles | Volume 20, issue 8
https://doi.org/10.5194/bg-20-1587-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1587-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Massive corals record deforestation in Malaysian Borneo through sediments in river discharge
School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH, United Kingdom
Arnoud Boom
School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH, United Kingdom
Matthew Payne
School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH, United Kingdom
Nicola Browne
Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
Curtin Malaysia Research Institute, Curtin University Malaysia, Miri, 98009, Malaysia
Noreen J. Evans
School of Earth and Planetary Sciences/John de Laeter Centre, Curtin University, Bentley, WA 6102, Australia
Philip Holdship
School of Earth Sciences, Oxford University, Oxford, OX1 2JD, United Kingdom
Kai Rankenburg
School of Earth and Planetary Sciences/John de Laeter Centre, Curtin University, Bentley, WA 6102, Australia
Ramasamy Nagarajan
Department of Applied Sciences (Applied Geology), Curtin University Malaysia, Miri, 98009, Malaysia
Curtin Malaysia Research Institute, Curtin University Malaysia, Miri, 98009, Malaysia
Bradley J. McDonald
School of Earth and Planetary Sciences/John de Laeter Centre, Curtin University, Bentley, WA 6102, Australia
Jennifer McIlwain
Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
Curtin Malaysia Research Institute, Curtin University Malaysia, Miri, 98009, Malaysia
Jens Zinke
School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH, United Kingdom
Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
Curtin Malaysia Research Institute, Curtin University Malaysia, Miri, 98009, Malaysia
Related authors
No articles found.
Thomas M. DeCarlo, Oliwia Jasnos, Avi Strange, Andreas Andersson, Angel T. Bautista VII, Sierra Bloomer, Isaiah W. Bolden, Maartje Bosman, Thomas C. Brachert, Giulia B. Braz, Gabriel O. Cardoso, Juan P. Carricart-Ganivet, Jessica E. Carilli, Karl D. Castillo, Leticia Cavole, Sylvia Chan, Xuefei Chen, Ben Chomitz, Thierry Correge, Travis A. Courtney, Mikayla Deigan, Juan Pablo D'Olivo, Robert Dunbar, Ian C. Enochs, Ludmilla Falsarella, Thomas Felis, Gabriela Gutierrez-Estrada, Brighton Hedger, Shijian Hu, Seamus Jameson, Stacy Jupiter, Paul Kench, Diego K. Kersting, Ke Lin, Yi-Wei Liu, Carla A. B. Lorigados, Derek P. Manzello, Malcolm T. McCulloch, Miguel Mies, Rodrigo L. Moura, Ferdinand Oberle, Natan Pereira, Nancy Prouty, Riovie D. Ramos, Haojia Ren, Emma Ryan, Diane M. Thompson, Lauren T. Toth, Marina J. Vergotti, Jody M. Webster, and Jens Zinke
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-598, https://doi.org/10.5194/essd-2025-598, 2025
Preprint under review for ESSD
Short summary
Short summary
We present CoralCache, a virtual coral core repository with global coverage. This repository fills a key gap by enabling researchers to transparently archive and share the raw core image datasets and the visual interpretations of those images, rather than simply the summarized growth rate data, which on their own cannot be traced or precisely reproduced. CoralCache is designed to meet the data-sharing principles of findability, accessibility, interoperability, and reusability (FAIR).
Miriam Pfeiffer, Hideko Takayanagi, Lars Reuning, Takaaki K. Watanabe, Saori Ito, Dieter Garbe-Schönberg, Tsuyoshi Watanabe, Chung-Che Wu, Chuan-Chou Shen, Jens Zinke, Geert-Jan A. Brummer, and Sri Yudawati Cahyarini
Clim. Past, 21, 211–237, https://doi.org/10.5194/cp-21-211-2025, https://doi.org/10.5194/cp-21-211-2025, 2025
Short summary
Short summary
A coral reconstruction of past climate shows changes in the seasonal cycle of sea surface temperature in the south-eastern tropical Indian Ocean. An enhanced seasonal cycle suggests that the tropical rainfall belt shifted northwards between 1856–1918. We explain this with greater warming in the north-eastern Indian Ocean relative to the south-east, which strengthens surface winds and coastal upwelling in the eastern Indian Ocean, leading to greater cooling south of the Equator.
Cate Kooymans, Charles W. Magee Jr., Kathryn Waltenberg, Noreen J. Evans, Simon Bodorkos, Yuri Amelin, Sandra L. Kamo, and Trevor Ireland
Geochronology, 6, 337–363, https://doi.org/10.5194/gchron-6-337-2024, https://doi.org/10.5194/gchron-6-337-2024, 2024
Short summary
Short summary
Zircon is a mineral where uranium decays to lead. Some radiation damage lets lead escape. A method called chemical abrasion (CA) dissolves out the damaged portions of zircon so that remaining zircon retains lead. We compare ion beam analyses of untreated and chemically abraded zircons. The ion beam ages for untreated zircons match the reference values for untreated zircon. The ion beam ages for CA zircon match CA reference ages. Other elements are unaffected by the chemical abrasion process.
Rachel M. Walter, Hussein R. Sayani, Thomas Felis, Kim M. Cobb, Nerilie J. Abram, Ariella K. Arzey, Alyssa R. Atwood, Logan D. Brenner, Émilie P. Dassié, Kristine L. DeLong, Bethany Ellis, Julien Emile-Geay, Matthew J. Fischer, Nathalie F. Goodkin, Jessica A. Hargreaves, K. Halimeda Kilbourne, Hedwig Krawczyk, Nicholas P. McKay, Andrea L. Moore, Sujata A. Murty, Maria Rosabelle Ong, Riovie D. Ramos, Emma V. Reed, Dhrubajyoti Samanta, Sara C. Sanchez, Jens Zinke, and the PAGES CoralHydro2k Project Members
Earth Syst. Sci. Data, 15, 2081–2116, https://doi.org/10.5194/essd-15-2081-2023, https://doi.org/10.5194/essd-15-2081-2023, 2023
Short summary
Short summary
Accurately quantifying how the global hydrological cycle will change in the future remains challenging due to the limited availability of historical climate data from the tropics. Here we present the CoralHydro2k database – a new compilation of peer-reviewed coral-based climate records from the last 2000 years. This paper details the records included in the database and where the database can be accessed and demonstrates how the database can investigate past tropical climate variability.
Jens Zinke, Takaaki K. Watanabe, Siren Rühs, Miriam Pfeiffer, Stefan Grab, Dieter Garbe-Schönberg, and Arne Biastoch
Clim. Past, 18, 1453–1474, https://doi.org/10.5194/cp-18-1453-2022, https://doi.org/10.5194/cp-18-1453-2022, 2022
Short summary
Short summary
Salinity is an important and integrative measure of changes to the water cycle steered by changes to the balance between rainfall and evaporation and by vertical and horizontal movements of water parcels by ocean currents. However, salinity measurements in our oceans are extremely sparse. To fill this gap, we have developed a 334-year coral record of seawater oxygen isotopes that reflects salinity changes in the globally important Agulhas Current system and reveals its main oceanic drivers.
Cited articles
Banzon, V., Smith, T. M., Chin, T. M., Liu, C., and Hankins, W.:
A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies, Earth Syst. Sci. Data, 8, 165–176, https://doi.org/10.5194/essd-8-165-2016, 2016.
Bessell-Browne, P., Negri, A. P., Fisher, R., Clode, P. L., and Jones, R.:
Impacts of light limitation on corals and crustose coralline algae, Sci. Rep., 7, 11553, https://doi.org/10.1038/s41598-017-11783-z, 2017.
Booij, M. J., Schipper, T. C., and Marhaento, H.:
Attributing Changes in Streamflow to Land Use and Climate Change for 472 Catchments in Australia and the United States, Water, 11, 1059, https://doi.org/10.3390/w11051059, 2019.
Brenner, L. D., Linsley, B. K., and Dunbar, R. B.:
Examining the utility of coral as a proxy for river discharge and hydroclimate variability at Coiba Island, Gulf of Chirquí, Panamá, Mar. Pollut. Bull., 118, 48–56, https://doi.org/10.1016/j.marpolbul.2017.02.013, 2017.
Browne, N., Braoun, C., McIlwain, J., Nagarajan, R., and Zinke, J.:
Borneo coral reefs subject to high sediment loads show evidence of resilience to various environmental stressors, PeerJ, 7, e7382, https://doi.org/10.7717/peerj.7382, 2019.
Burke, L., Reytar, K., Spalding, M., and Perry, A.: Reefs at risk revisited, World Resour. Inst., 1–130, ISBN 978-1-56973-762-0, 2011.
Cahyarini, S. Y., Pfeiffer, M., Timm, O., Dullo, W.-C., and Schönberg, D. G.:
Reconstructing seawater δ18O from paired coral δ18O and ratios: Methods, error analysis and problems, with examples from Tahiti (French Polynesia) and Timor (Indonesia), Geochim. Cosmochim. Ac., 72, 2841–2853, https://doi.org/10.1016/j.gca.2008.04.005, 2008.
Carilli, J. E., Norris, R. D., Black, B. A., Walsh, S. M., and McField, M.:
Local Stressors Reduce Coral Resilience to Bleaching, PLoS ONE, 4, e6324, https://doi.org/10.1371/journal.pone.0006324, 2009.
Chen, T., Li, S., and Yu, K.:
Macrobioerosion in Porites corals in subtropical northern South China Sea: a limiting factor for high-latitude reef framework development, Coral Reefs, 32, 101–108, 2013.
Chen, X., Deng, W., Wei, G., and McCulloch, M.:
Terrestrial Signature in Coral , δ18O, and δ13C Records From a Macrotide-Dominated Nearshore Reef Environment, Kimberley Region of Northwestern Australia, J. Geophys. Res.-Biogeo., 125, e2019JG005394, https://doi.org/10.1029/2019JG005394, 2020.
Colbert, D. and McManus, J.:
Importance of seasonal variability and coastal processes on estuarine manganese and barium cycling in a Pacific Northwest estuary, Cont. Shelf Res., 25, 1395–1414, https://doi.org/10.1016/j.csr.2005.02.003, 2005.
Corrège, T.:
Sea surface temperature and salinity reconstruction from coral geochemical tracers, Palaeogeogr. Palaeocl., 232, 408–428, https://doi.org/10.1016/j.palaeo.2005.10.014, 2006.
Cutter, G., Casciotti, K., Croot, P., Geibert, W., Heimbürger, L.-E., Lohan, M., Planquette, H., and van de Flierdt, T.: Sampling
and Sample-handling Protocols for GEOTRACES Cruises. Version 3, August 2017, GEOTRACES International Project Office, Ocean best practices, https://doi.org/10.25607/OBP-2, 2017.
de Villiers, S., Nelson, B. K., and Chivas, A. R.:
Biological Controls on Coral and δ18O Reconstructions of Sea Surface Temperatures, Science, 269, 1247–1249, https://doi.org/10.1126/science.269.5228.1247, 1995.
DeLong, K. L., Quinn, T. M., Taylor, F. W., Shen, C.-C., and Lin, K.:
Improving coral-base paleoclimate reconstructions by replicating 350 years of coral variations, Palaeogeogr. Palaeocl., 373, 6–24, https://doi.org/10.1016/j.palaeo.2012.08.019, 2013.
Dissard, D., Douville, E., Reynaud, S., Juillet-Leclerc, A., Montagna, P., Louvat, P., and McCulloch, M.:
Light and temperature effects on δ11B and B / Ca ratios of the zooxanthellate coral Acropora sp.: results from culturing experiments, Biogeosciences, 9, 4589–4605, https://doi.org/10.5194/bg-9-4589-2012, 2012.
D'Olivo, J. P. and McCulloch, M.:
Impact of European settlement and land use changes on Great Barrier Reef river catchments reconstructed from long-term coral records, Sci. Total Environ., 830, 154461, https://doi.org/10.1016/j.scitotenv.2022.154461, 2022.
Fabricius, K. E.:
Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis, Mar. Pollut. Bull., 50, 125–146, https://doi.org/10.1016/j.marpolbul.2004.11.028, 2005.
Fabricius, K. E., Wild, C., Wolanski, E., and Abele, D.:
Effects of transparent exopolymer particles and muddy terrigenous sediments on the survival of hard coral recruits, Estuar. Coast. Shelf S., 57, 613–621, 2003.
Fallon, S. J., McCulloch, M. T., and Alibert, C.:
Examining water temperature proxies in Porites corals from the Great Barrier Reef: a cross-shelf comparison, Coral Reefs, 22, 389–404, 2003.
Fleitmann, D., Dunbar, R. B., McCulloch, M., Mudelsee, M., Vuille, M., McClanahan, T. R., Cole, J. E., and Eggins, S.:
East African soil erosion recorded in a 300 year old coral colony from Kenya, Geophys. Res. Lett., 34, L04401, https://doi.org/10.1029/2006GL028525, 2007.
Gagan, M. K., Chivas, A. R., and Isdale, P. J.:
Timing coral-based climatic histories using 13C enrichments driven by synchronized spawning, Geology, 24, 1009–1012, 1996.
Gaveau, D. L. A., Sloan, S., Molidena, E., Yaen, H., Sheil, D., Abram, N. K., Ancrenaz, M., Nasi, R., Quinones, M., Wielaard, N., and Meijaard, E.:
Four Decades of Forest Persistence, Clearance and Logging on Borneo, PLOS ONE, 9, e101654, https://doi.org/10.1371/journal.pone.0101654, 2014.
Gaveau, D. L. A., Sheil, D., Husnayaen, Salim, M. A., Arjasakusuma, S., Ancrenaz, M., Pacheco, P., and Meijaard, E.:
Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo, Sci. Rep., 6, 32017, https://doi.org/10.1038/srep32017, 2016.
Gaveau, D. L. A., Locatelli, B., Salim, M. A., Yaen, H., Pacheco, P., and Sheil, D.:
Rise and fall of forest loss and industrial plantations in Borneo (2000–2017), Conserv. Lett., 12, e12622, https://doi.org/10.1111/conl.12622, 2019.
Gilbert, R. O.: Statistical Methods for Environmental Pollution
Monitoring, John Wiley & Sons, 348 pp., Van Nostrand Reinhold Company, ISBN 0-442-23050-8, 1987.
Glynn, P. W.:
Coral reef bleaching: facts, hypotheses and implications, Glob. Change Biol., 2, 495–509, https://doi.org/10.1111/j.1365-2486.1996.tb00063.x, 1996.
Gomyo, M. and Kuraji, K.:
Spatial and Temporal Variations in Rainfall and the ENSO-rainfall Relationship over Sarawak, Malaysian Borneo, SOLA, 5, 41–44, https://doi.org/10.2151/sola.2009-011, 2009.
Gonneea, M. E., Cohen, A. L., and Charette, M. A.: coral based
proxy of tropical hydrology: Yucatan Peninsula case study,
AGU Fall Meeting Abstracts, 5–11 December 2011, San Francisco, California, PP23A-1825, 2011.
Grove, C. A., Zinke, J., Scheufen, T., Maina, J., Epping, E., Boer, W., Randriamanantsoa, B., and Brummer, G.-J. A.:
Spatial linkages between coral proxies of terrestrial runoff across a large embayment in Madagascar, Biogeosciences, 9, 3063–3081, https://doi.org/10.5194/bg-9-3063-2012, 2012.
Guzha, A. C., Rufino, M. C., Okoth, S., Jacobs, S., and Nóbrega, R. L. B.:
Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa, J. Hydrol. Reg. Stud., 15, 49–67, https://doi.org/10.1016/j.ejrh.2017.11.005, 2018.
Hanor, J. S. and Chan, L.-H.:
Non-conservative behavior of barium during mixing of Mississippi River and Gulf of Mexico waters, Earth Planet. Sc. Lett., 37, 242–250, https://doi.org/10.1016/0012-821X(77)90169-8, 1977.
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., and Townshend, J. R. G.: High-Resolution Global Maps of 21st-Century Forest Cover Change, Science, 342, 850–853, https://doi.org/10.1126/science.1244693, 2013a.
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., and Townshend, J. R. G.: High-Resolution Global Maps of 21st-Century Forest Cover Change, GLAD [data set], https://glad.earthengine.app/view/global-forest-change (last access: 17 April 2023), 2013b.
Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., and Caldeira, K.:
Coral reefs under rapid climate change and ocean acidification, Science, 318, 1737–1742, 2007.
Hollocher, K. and Ruiz, J.:
Major and Trace Element Determinations on Nist Glass Standard Reference Materials 611, 612, 614 and 1834 by Inductively Coupled Plasma-Mass Spectrometry, Geostandard Newslett., 19, 27–34, https://doi.org/10.1111/j.1751-908X.1995.tb00149.x, 1995.
JetBrains: PyCharm [online], JetBrains, https://www.jetbrains.com/pycharm/, last access: 8 January 2022.
Jiang, W., Yu, K., Song, Y., Zhao, J., Feng, Y., Wang, Y., and Xu, S.:
Coral geochemical record of submarine groundwater discharge back to 1870 in the northern South China Sea, Palaeogeogr. Palaeocl., 507, 30–38, https://doi.org/10.1016/j.palaeo.2018.05.045, 2018.
Jochum, K. P., Nohl, U., Herwig, K., Lammel, E., Stoll, B., and Hofmann, A. W.:
GeoReM: a new geochemical database for reference materials and isotopic standards, Geostand. Geoanal. Res., 29, 333–338, 2005.
Juneng, L. and Tangang, F. T.:
Evolution of ENSO-related rainfall anomalies in Southeast Asia region and its relationship with atmosphere–ocean variations in Indo-Pacific sector, Clim. Dynam., 25, 337–350, https://doi.org/10.1007/s00382-005-0031-6, 2005.
Jupiter, S., Roff, G., Marion, G., Henderson, M., Schrameyer, V., McCulloch, M., and Hoegh-Guldberg, O.:
Linkages between coral assemblages and coral proxies of terrestrial exposure along a cross-shelf gradient on the southern Great Barrier Reef, Coral Reefs, 27, 887–903, https://doi.org/10.1007/s00338-008-0422-3, 2008.
Karamage, F., Shao, H., Chen, X., Ndayisaba, F., Nahayo, L., Kayiranga, A., Omifolaji, J. K., Liu, T., and Zhang, C.:
Deforestation Effects on Soil Erosion in the Lake Kivu Basin, D. R. Congo-Rwanda, Forests, 7, 281, https://doi.org/10.3390/f7110281, 2016.
Krawczyk, H., Zinke, J., Browne, N., Struck, U., McIlwain, J., O'Leary, M., and Garbe-Schönberg, D.:
Corals reveal ENSO-driven synchrony of climate impacts on both terrestrial and marine ecosystems in northern Borneo, Sci. Rep., 10, 3678, https://doi.org/10.1038/s41598-020-60525-1, 2020.
Kuffner, I. B., Jokiel, P. L., Rodgers, K. S., Andersson, A. J., and Mackenzie, F. T.:
An apparent “vital effect” of calcification rate on the temperature proxy in the reef coral Montipora capitata, Geochem. Geophy. Geosy., 13, Q08004, https://doi.org/10.1029/2012GC004128, 2012.
Lea, D. W. and Spero, H. J.:
Experimental determination of barium uptake in shells of the planktonic foraminifera Orbulina universa at 22 ∘C, Geochim. Cosmochim. Ac., 56, 2673–2680, 1992.
Lea, D. W., Shen, G. T., and Boyle, E. A.:
Coralline barium records temporal variability in equatorial Pacific upwelling, Nature, 340, 373–376, 1989.
Lee, E., Livino, A., Han, S.-C., Zhang, K., Briscoe, J., Kelman, J., and Moorcroft, P.:
Land cover change explains the increasing discharge of the Paraná River, Reg. Environ. Change, 18, 1871–1881, https://doi.org/10.1007/s10113-018-1321-y, 2018.
Lewis, S. E., Shields, G. A., Kamber, B. S., and Lough, J. M.:
A multi-trace element coral record of land-use changes in the Burdekin River catchment, NE Australia, Palaeogeogr. Palaeocl., 246, 471–487, 2007.
Lewis, S. E., Brodie, J. E., McCulloch, M. T., Mallela, J., Jupiter, S. D., Stuart Williams, H., Lough, J. M., and Matson, E. G.:
An assessment of an environmental gradient using coral geochemical records, Whitsunday Islands, Great Barrier Reef, Australia, Mar. Pollut. Bull., 65, 306–319, https://doi.org/10.1016/j.marpolbul.2011.09.030, 2012.
Lihan, S., Lee, S. Y., Toh, S. C., and Leong, S. S.:
Plasmid-Mediated Antibiotic Resistant Escherichia coli in Sarawak Rivers and Aquaculture Farms, Northwest of Borneo, Antibiotics, 10, 776, https://doi.org/10.3390/antibiotics10070776, 2021.
Liong, R. M. Y., Hadibarata, T., Yuniarto, A., Tang, K. H. D., and Khamidun, M. H.:
Microplastic Occurrence in the Water and Sediment of Miri River Estuary, Borneo Island, Water Air Soil Poll., 232, 342, https://doi.org/10.1007/s11270-021-05297-8, 2021.
MacNeil, M. A., Mellin, C., Matthews, S., Wolff, N. H., McClanahan, T. R., Devlin, M., Drovandi, C., Mengersen, K., and Graham, N. A. J.:
Water quality mediates resilience on the Great Barrier Reef, Nat. Ecol. Evol., 3, 620–627, https://doi.org/10.1038/s41559-019-0832-3, 2019.
Maina, J., de Moel, H., Vermaat, J. E., Henrich Bruggemann, J., Guillaume, M. M. M., Grove, C. A., Madin, J. S., Mertz-Kraus, R., and Zinke, J.:
Linking coral river runoff proxies with climate variability, hydrology and land-use in Madagascar catchments, Mar. Pollut. Bull., 64, 2047–2059, https://doi.org/10.1016/j.marpolbul.2012.06.027, 2012.
Martin, P., Cherukuru, N., Tan, A. S. Y., Sanwlani, N., Mujahid, A., and Müller, M.:
Distribution and cycling of terrigenous dissolved organic carbon in peatland-draining rivers and coastal waters of Sarawak, Borneo, Biogeosciences, 15, 6847–6865, https://doi.org/10.5194/bg-15-6847-2018, 2018.
MATLAB:
MATLAB and Signal Processing Toolbox, Release 2022, https://www.mathworks.com (last access: 17 April 2023), 2022.
McCulloch, M., Fallon, S., Wyndham, T., Hendy, E., Lough, J., and Barnes, D.:
Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement, Nature, 421, 727–730, 2003.
McCulloch, M. T., Gagan, M. K., Mortimer, G. E., Chivas, A. R., and Isdale, P. J.:
A high-resolution and δ18O coral record from the Great Barrier Reef, Australia, and the 1982–1983 El Niño, Geochim. Cosmochim. Ac., 58, 2747–2754, https://doi.org/10.1016/0016-7037(94)90142-2, 1994.
McDonald, M. A., Healey, J. R., and Stevens, P. A.:
The effects of secondary forest clearance and subsequent land-use on erosion losses and soil properties in the Blue Mountains of Jamaica, Agr. Ecosyst. Environ., 92, 1–19, https://doi.org/10.1016/S0167-8809(01)00286-9, 2002.
Miettinen, J., Shi, C., and Liew, S. C.:
Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990, Glob. Ecol. Conserv., 6, 67–78, https://doi.org/10.1016/j.gecco.2016.02.004, 2016.
Millero, F. J., Feistel, R., Wright, D. G., and McDougall, T. J.:
The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale, Deep-Sea Res., 55, 50–72, 2008.
Montaggioni, L. F., Le Cornec, F., Corrège, T., and Cabioch, G.:
Coral barium/calcium record of mid-Holocene upwelling activity in New Caledonia, South-West Pacific, Palaeogeogr. Palaeocl., 237, 436–455, 2006.
Moyer, R. P., Grottoli, A. G., and Olesik, J. W.:
A multiproxy record of terrestrial inputs to the coastal ocean using minor and trace elements ( , , ) and carbon isotopes (δ13C, Δ14C) in a nearshore coral from Puerto Rico, Paleoceanography, 27, PA3205, https://doi.org/10.1029/2011PA002249, 2012.
Murphy, K.:
The ENSO-fire dynamic in insular Southeast Asia, Climatic Change, 74, 435–455, 2006.
Naciri, W.: Coral age model code, Zenodo [code], https://doi.org/10.5281/zenodo.7782385, 2022.
Nagarajan, R., Jonathan, M. P., Roy, P. D., Muthusankar, G., and Lakshumanan, C.:
Decadal evolution of a spit in the Baram river mouth in eastern Malaysia, Cont. Shelf Res., 105, 18–25, 2015.
Nagtegaal, R., Grove, C. A., Kasper, S., Zinke, J., Boer, W., and Brummer, G.-J. A.:
Spectral luminescence and geochemistry of coral aragonite: Effects of whole-core treatment, Chem. Geol., 318–319, 6–15, https://doi.org/10.1016/j.chemgeo.2012.05.006, 2012.
Natural Earth:
Free vector and raster map data at 1 : 10 m, 1 : 50 m, and 1 : 110 m scales, https://www.naturalearthdata.com/, last access: 15 February 2023.
Neil, D. T., Orpin, A. R., Ridd, P. V., and Yu, B.:
Sediment yield and impacts from river catchments to the Great Barrier Reef lagoon: a review, Mar. Freshwater Res., 53, 733–752, https://doi.org/10.1071/mf00151, 2002.
NOAA Physical Sciences Laboratory:
Home, https://psl.noaa.gov/, last access: 16 May 2022.
Pan, X., Chin, M., Ichoku, C. M., and Field, R. D.:
Connecting Indonesian Fires and Drought With the Type of El Niño and Phase of the Indian Ocean Dipole During 1979–2016, J. Geophys. Res.-Atmos., 123, 7974–7988, https://doi.org/10.1029/2018JD028402, 2018.
Parker, D. E., Folland, C. K., and Jackson, M.:
Marine surface temperature: Observed variations and data requirements, Climatic Change, 31, 559–600, https://doi.org/10.1007/BF01095162, 1995.
Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J.: Iolite: Freeware for the visualisation and processing of mass spectrometric data, J. Anal. Atom. Spectrom., 26, 2508–2518, 2011.
Pittman, A. M. and Carlson, K. M.:
NASA satellite data used to study the impact of oil palm expansion across Indonesian Borneo, Earth Obs., 25, 12–15, 2013.
Prabakaran, K., Nagarajan, R., Eswaramoorthi, S., Anandkumar, A., and Franco, F. M.:
Environmental significance and geochemical speciation of trace elements in Lower Baram River sediments, Chemosphere, 219, 933–953, 2019.
Prabakaran, K., Eswaramoorthi, S., Nagarajan, R., Anandkumar, A., and Franco, F. M.:
Geochemical behaviour and risk assessment of trace elements in a tropical river, Northwest Borneo, Chemosphere, 252, 126430, https://doi.org/10.1016/j.chemosphere.2020.126430, 2020.
Prouty, N. G., Hughen, K. A., and Carilli, J.:
Geochemical signature of land-based activities in Caribbean coral surface samples, Coral Reefs, 27, 727, https://doi.org/10.1007/s00338-008-0413-4, 2008.
Quinn, T. M. and Taylor, F. W.:
SST artifacts in coral proxy records produced by early marine diagenesis in a modern coral from Rabaul, Papua New Guinea, Geophys. Res. Lett., 33, L04601, https://doi.org/10.1029/2005GL024972, 2006.
Reed, E. V., Thompson, D. M., and Anchukaitis, K. J.:
Coral-Based Sea Surface Salinity Reconstructions and the Role of Observational Uncertainties in Inferred Variability and Trends, Paleoceanogr. Paleocl., 37, e2021PA004371, https://doi.org/10.1029/2021PA004371, 2022.
Ren, L., Linsley, B. K., Wellington, G. M., Schrag, D. P., and Hoegh-Guldberg, O.:
Deconvolving the δ18O seawater component from subseasonal coral δ18O and at Rarotonga in the southwestern subtropical Pacific for the period 1726 to 1997, Geochim. Cosmochim. Ac., 67, 1609–1621, https://doi.org/10.1016/S0016-7037(02)00917-1, 2003.
Restrepo, J. D., Kettner, A. J., and Syvitski, J. P. M.:
Recent deforestation causes rapid increase in river sediment load in the Colombian Andes, Anthropocene, 10, 13–28, https://doi.org/10.1016/j.ancene.2015.09.001, 2015.
Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., and Schlax, M. G.:
Daily High-Resolution-Blended Analyses for Sea Surface Temperature, J. Climate, 20, 5473–5496, https://doi.org/10.1175/2007JCLI1824.1, 2007.
Rogers, C. S.:
Responses of coral reefs and reef organisms to sedimentation, Mar. Ecol. Prog. Ser. Oldendorf, 62, 185–202, 1990.
Sa'adi, Z., Shahid, S., Ismail, T., Chung, E.-S., and Wang, X.-J.:
Distributional changes in rainfall and river flow in Sarawak, Malaysia, Asia-Pac, J. Atmos. Sci., 53, 489–500, 2017a.
Sa'adi, Z., Shahid, S., Chung, E.-S., and bin Ismail, T.:
Projection of spatial and temporal changes of rainfall in Sarawak of Borneo Island using statistical downscaling of CMIP5 models, Atmos. Res., 197, 446–460, https://doi.org/10.1016/j.atmosres.2017.08.002, 2017b.
Saha, N., Webb, G. E., and Zhao, J.-X.:
Coral skeletal geochemistry as a monitor of inshore water quality, Sci. Total Environ., 566–567, 652–684, https://doi.org/10.1016/j.scitotenv.2016.05.066, 2016.
Sajikumar, N. and Remya, R. S.:
Impact of land cover and land use change on runoff characteristics, J. Environ. Manage., 161, 460–468, https://doi.org/10.1016/j.jenvman.2014.12.041, 2015.
Schöne, B. R.:
Arctica islandica (Bivalvia): A unique paleoenvironmental archive of the northern North Atlantic Ocean, Global Planet. Change, 111, 199–225, https://doi.org/10.1016/j.gloplacha.2013.09.013, 2013.
Screen, J. A. and Francis, J. A.:
Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability, Nat. Clim. Change, 6, 856–860, https://doi.org/10.1038/nclimate3011, 2016.
Sen, P. K.:
Estimates of the regression coefficient based on Kendall's tau, J. Am. Stat. Assoc., 63, 1379–1389, 1968.
Shi, Z. H., Ai, L., Li, X., Huang, X. D., Wu, G. L., and Liao, W.:
Partial least-squares regression for linking land-cover patterns to soil erosion and sediment yield in watersheds, J. Hydrol., 498, 165–176, https://doi.org/10.1016/j.jhydrol.2013.06.031, 2013.
Sidle, R. C., Ziegler, A. D., Negishi, J. N., Nik, A. R., Siew, R., and Turkelboom, F.:
Erosion processes in steep terrain – Truths, myths, and uncertainties related to forest management in Southeast Asia, Forest Ecol. Manag., 224, 199–225, https://doi.org/10.1016/j.foreco.2005.12.019, 2006.
Sinclair, D. J.:
Correlated trace element “vital effects” in tropical corals: A new geochemical tool for probing biomineralization, Geochim. Cosmochim. Ac., 69, 3265–3284, https://doi.org/10.1016/j.gca.2005.02.030, 2005.
Sinclair, D. J., Williams, B., and Risk, M.:
A biological origin for climate signals in corals – Trace element “vital effects” are ubiquitous in Scleractinian coral skeletons, Geophys. Res. Lett., 33, L17707, https://doi.org/10.1029/2006GL027183, 2006.
Stephens, M. and Rose, J.:
Modern stable isotopic (δ18O, δ2H, δ13C) variation in terrestrial, fluvial, estuarine and marine waters from north-central Sarawak, Malaysian Borneo, Earth Surf. Proc. Land., 30, 901–912, https://doi.org/10.1002/esp.1218, 2005.
Storlazzi, C. D., Norris, B. K., and Rosenberger, K. J.:
The influence of grain size, grain color, and suspended-sediment concentration on light attenuation: Why fine-grained terrestrial sediment is bad for coral reef ecosystems, Coral Reefs, 34, 967–975, 2015.
Straub, K. M. and Mohrig, D.:
Constructional canyons built by sheet-like turbidity currents: observations from offshore Brunei Darussalam, J. Sediment. Res., 79, 24–39, 2009.
Swarzenski, P. W., Reich, C. D., Spechler, R. M., Kindinger, J. L., and Moore, W. S.:
Using multiple geochemical tracers to characterize the hydrogeology of the submarine spring off Crescent Beach, Florida, Chem. Geol., 179, 187–202, https://doi.org/10.1016/S0009-2541(01)00322-9, 2001.
Syvitski, J. P., Morehead, M. D., Bahr, D. B., and Mulder, T.:
Estimating fluvial sediment transport: The rating parameters, Water Resour. Res., 36, 2747–2760, https://doi.org/10.1029/2000WR900133, 2000.
Tangang, F. T. and Juneng, L.:
Mechanisms of Malaysian Rainfall Anomalies, J. Climate, 17, 3616–3622, https://doi.org/10.1175/1520-0442(2004)017<3616:MOMRA>2.0.CO;2, 2004.
Tangang, F. T., Juneng, L., Salimun, E., Sei, K., and Halimatun, M.:
Climate change and variability over Malaysia: gaps in science and research information, Sains Malays., 41, 1355–1366, 2012.
Tanzil, J. T. I., Goodkin, N. F., Sin, T. M., Chen, M. L., Fabbro, G. N., Boyle, E. A., Lee, A. C., and Toh, K. B.:
Multi-colony coral skeletal from Singapore's turbid urban reefs: Relationship with contemporaneous in-situ seawater parameters, Geochim. Cosmochim. Ac., 250, 191–208, https://doi.org/10.1016/j.gca.2019.01.034, 2019.
Theil, H.:
A Rank-Invariant Method of Linear and Polynomial Regression Analysis, in: Henri Theil's Contributions to Economics and Econometrics: Econometric Theory and Methodology, edited by: Raj, B. and Koerts, J., Springer Netherlands, Dordrecht, 345–381, https://doi.org/10.1007/978-94-011-2546-8_20, 1992.
Thompson, D. M.:
Environmental records from coral skeletons: A decade of novel insights and innovation, WIREs Clim. Change, 13, e745, https://doi.org/10.1002/wcc.745, 2022.
Tierney, J. E., Abram, N. J., Anchukaitis, K. J., Evans, M. N., Giry, C., Kilbourne, K. H., Saenger, C. P., Wu, H. C., and Zinke, J.:
Tropical sea surface temperatures for the past four centuries reconstructed from coral archives, Paleoceanography, 30, 226–252, https://doi.org/10.1002/2014PA002717, 2015.
Trauth, M. H.:
MATLAB® Recipes for Earth Sciences, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-030-38441-8, 2021.
Trouet, V. and Van Oldenborgh, G. J.:
KNMI Climate Explorer: A Web-Based Research Tool for High-Resolution Paleoclimatology, Tree-Ring Res., 69, 3–13, https://doi.org/10.3959/1536-1098-69.1.3, 2013.
Tsuyuki, S., Goh, M. H., Teo, S., Kamlun, K., and Phua, M.:
Monitoring deforestation in Sarawak, Malaysia using multitemporal Landsat data, Kanto For. Res., 62, 87–90, 2011.
Vijith, H. and Dodge-Wan, D.:
Spatio-temporal changes in rate of soil loss and erosion vulnerability of selected region in the tropical forests of Borneo during last three decades, Earth Sci. Inform., 11, 171–181, https://doi.org/10.1007/s12145-017-0321-7, 2018.
Vijith, H., Seling, L. W., and Dodge-Wan, D.:
Estimation of soil loss and identification of erosion risk zones in a forested region in Sarawak, Malaysia, Northern Borneo, Environ. Dev. Sustain., 20, 1365–1384, 2018a.
Vijith, H., Hurmain, A., and Dodge-Wan, D.:
Impacts of land use changes and land cover alteration on soil erosion rates and vulnerability of tropical mountain ranges in Borneo, Remote Sens. Appl. Soc. Environ., 12, 57–69, https://doi.org/10.1016/j.rsase.2018.09.003, 2018b.
Weber, J. N. and Woodhead, P. M. J.:
Temperature dependence of oxygen-18 concentration in reef coral carbonates, J. Geophys. Res., 77, 463–473, https://doi.org/10.1029/JC077i003p00463, 1972.
Weber, M., De Beer, D., Lott, C., Polerecky, L., Kohls, K., Abed, R. M., Ferdelman, T. G., and Fabricius, K. E.:
Mechanisms of damage to corals exposed to sedimentation, P. Natl. Acad. Sci. USA, 109, E1558–E1567, 2012.
Wilson, S., Koenig, A., and Orklid, R.:
Development of microanalytical reference material (MACS-3) for LA-ICP-MS analysis of carbonate samples, Geochim. Cosmochim. Ac. Suppl., 72, A1025, 2008.
Woodhead, J. D., Hellstrom, J., Hergt, J. M., Greig, A., and Maas, R.: Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma-mass spectrometry, Geostand. Geoanal. Res., 31, 331–343, 2007.
Yan, Y., Ling, Z., and Chen, C.:
Winter coastal upwelling off northwest Borneo in the South China Sea, Acta Oceanol. Sin., 34, 3–10, https://doi.org/10.1007/s13131-015-0590-2, 2015.
Yang, L., Nadeau, K., Meija, J., Grinberg, P., Pagliano, E., Ardini, F., Grotti, M., Schlosser, C., Streu, P., Achterberg, E. P., Sohrin, Y., Minami, T., Zheng, L., Wu, J., Chen, G., Ellwood, M. J., Turetta, C., Aguilar-Islas, A., Rember, R., Sarthou, G., Tonnard, M., Planquette, H., Matoušek, T., Crum, S., and Mester, Z.:
Inter-laboratory study for the certification of trace elements in seawater certified reference materials NASS-7 and CASS-6, Anal. Bioanal. Chem., 410, 4469–4479, https://doi.org/10.1007/s00216-018-1102-y, 2018.
Yu, T., Wang, B., You, C., Burr, G. S., Chung, C., and Chen, Y.:
Geochemical effects of biomass burning and land degradation on Lanyu Islet, Taiwan, Limnol. Oceanogr., 60, 411–418, https://doi.org/10.1002/lno.10039, 2015.
Zinke, J. and Naciri, W.: Malaysian Borneo , and δ18O Coral Data from 1985 to 2017 CE, NOAA [data set], https://www.ncei.noaa.gov/access/paleo-search/study/37855, last access: 17 April 2023.
Zinke, J., Watanabe, T. K., Rühs, S., Pfeiffer, M., Grab, S., Garbe-Schönberg, D., and Biastoch, A.:
A 334-year coral record of surface temperature and salinity variability in the greater Agulhas Current region, Clim. Past, 18, 1453–1474, https://doi.org/10.5194/cp-18-1453-2022, 2022.
Short summary
In this study, we tested the ability of massive boulder-like corals to act as archives of land use in Malaysian Borneo to palliate the lack of accurate instrumental data on deforestation before the 1980s. We used mass spectrometry to measure trace element ratios in coral cores to use as a proxy for sediment in river discharge. Results showed an extremely similar increase between our proxy and the river discharge instrumental record, demonstrating the use of these corals as reliable archives.
In this study, we tested the ability of massive boulder-like corals to act as archives of land...
Altmetrics
Final-revised paper
Preprint