Articles | Volume 21, issue 2
https://doi.org/10.5194/bg-21-625-2024
https://doi.org/10.5194/bg-21-625-2024
Research article
 | 
30 Jan 2024
Research article |  | 30 Jan 2024

Evaluation of five models for constructing forest NPP–age relationships in China based on 3121 field survey samples

Peng Li, Rong Shang, Jing M. Chen, Mingzhu Xu, Xudong Lin, Guirui Yu, Nianpeng He, and Li Xu

Related authors

Species-specific relationships between net primary productivity and forest age for subtropical China
Peng Li, Rong Shang, Jing M. Chen, Huiguang Zhang, Xiaoping Zhang, Guoshuai Zhao, Hong Yan, Jun Xiao, Xudong Lin, Lingyun Fan, Rong Wang, Jianjie Cao, and Hongda Zeng
EGUsphere, https://doi.org/10.5194/egusphere-2025-1062,https://doi.org/10.5194/egusphere-2025-1062, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary

Related subject area

Remote Sensing: Terrestrial
Field heterogeneity of soil texture controls leaf water potential spatial distribution predicted from UAS-based vegetation indices in non-irrigated vineyards
Louis Delval, Jordan Bates, François Jonard, and Mathieu Javaux
Biogeosciences, 22, 513–534, https://doi.org/10.5194/bg-22-513-2025,https://doi.org/10.5194/bg-22-513-2025, 2025
Short summary
Duration of vegetation green-up response to snowmelt on the Tibetan Plateau
Jingwen Ni, Jin Chen, Yao Tang, Jingyi Xu, Jiahui Xu, Linxin Dong, Qingyu Gu, Bailang Yu, Jianping Wu, and Yan Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2885,https://doi.org/10.5194/egusphere-2024-2885, 2024
Short summary
Detection of Fast-Changing Intra-seasonal Vegetation Dynamics of Drylands Using Solar-Induced Chlorophyll Fluorescence (SIF)
Jiaming Wen, Giulia Tagliabue, Micol Rossini, Francesco Pietro Fava, Cinzia Panigada, Lutz Merbold, Sonja Leitner, and Ying Sun
EGUsphere, https://doi.org/10.5194/egusphere-2024-2529,https://doi.org/10.5194/egusphere-2024-2529, 2024
Short summary
Remote sensing reveals fire-driven enhancement of a C4 invasive alien grass on a small Mediterranean volcanic island
Riccardo Guarino, Daniele Cerra, Renzo Zaia, Alessandro Chiarucci, Pietro Lo Cascio, Duccio Rocchini, Piero Zannini, and Salvatore Pasta
Biogeosciences, 21, 2717–2730, https://doi.org/10.5194/bg-21-2717-2024,https://doi.org/10.5194/bg-21-2717-2024, 2024
Short summary
Divergent biophysical responses of western United States forests to wildfire driven by eco-climatic gradients
Surendra Shrestha, Christopher A. Williams, Brendan M. Rogers, John Rogan, and Dominik Kulakowski
Biogeosciences, 21, 2207–2226, https://doi.org/10.5194/bg-21-2207-2024,https://doi.org/10.5194/bg-21-2207-2024, 2024
Short summary

Cited articles

Alexandrov, G. A., Oikawa, T., and Esser, G.: Estimating terrestrial NPP: what the data say and how they may be interpreted?, Ecol. Modell., 117, 361–369, https://doi.org/10.1016/S0304-3800(99)00019-8, 1999. 
Bond-Lamberty, B., Wang, C., and Gower, S. T.: Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence, Glob. Change Biol., 10, 473–487, https://doi.org/10.1111/j.1529-8817.2003.0742.x, 2004. 
Burkes, E. C., Will, R. E., Barron-Gafford, G. A., Teskey, R. O., and Shiver, B.: Biomass partitioning and growth efficiency of intensively managed Pinus taeda and Pinus elliottii stands of different planting densities, Forest Sci., 49, 224–234, 2003. 
Camenzind, T., Hättenschwiler, S., Treseder, K. K., Lehmann, A., and Rillig, M. C.: Nutrient limitation of soil microbial processes in tropical forests, Ecol. Monogr., 88, 4–21, https://doi.org/10.1002/ecm.1279, 2018. 
Chapin, F. S., III, Woodwell, G. M., Randerson, J. T., Rastetter, E. B., Lovett, G. M., Baldocchi, D. D., Clark, D. A., Harmon, M. E., and Schimel, D. S.: Reconciling carbon-cycle concepts, terminology, and methods, Ecosystems, 9, 1041–1050, https://doi.org/10.1007/s10021-005-0105-7, 2006. 
Download
Short summary
The amount of carbon that forests gain from the atmosphere, called net primary productivity (NPP), changes a lot with age. These forest NPP–age relationships could be modeled from field survey data, but we are not sure which model works best. Here we tested five different models using 3121 field survey samples in China, and the semi-empirical mathematical (SEM) function was determined as the optimal. The relationships built by SEM can improve China's forest carbon modeling and prediction.
Share
Altmetrics
Final-revised paper
Preprint