Articles | Volume 21, issue 2
https://doi.org/10.5194/bg-21-625-2024
https://doi.org/10.5194/bg-21-625-2024
Research article
 | 
30 Jan 2024
Research article |  | 30 Jan 2024

Evaluation of five models for constructing forest NPP–age relationships in China based on 3121 field survey samples

Peng Li, Rong Shang, Jing M. Chen, Mingzhu Xu, Xudong Lin, Guirui Yu, Nianpeng He, and Li Xu

Related authors

China's annual forest age dataset at 30 m spatial resolution from 1986 to 2022
Rong Shang, Xudong Lin, Jing M. Chen, Yunjian Liang, Keyan Fang, Mingzhu Xu, Yulin Yan, Weimin Ju, Guirui Yu, Nianpeng He, Li Xu, Liangyun Liu, Jing Li, Wang Li, Jun Zhai, and Zhongmin Hu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-574,https://doi.org/10.5194/essd-2024-574, 2025
Preprint under review for ESSD
Short summary
Assimilation of carbonyl sulfide (COS) fluxes within the adjoint-based data assimilation system – Nanjing University Carbon Assimilation System (NUCAS v1.0)
Huajie Zhu, Mousong Wu, Fei Jiang, Michael Vossbeck, Thomas Kaminski, Xiuli Xing, Jun Wang, Weimin Ju, and Jing M. Chen
Geosci. Model Dev., 17, 6337–6363, https://doi.org/10.5194/gmd-17-6337-2024,https://doi.org/10.5194/gmd-17-6337-2024, 2024
Short summary
An improved hydro-biogeochemical model (CNMM-DNDC V6.0) for simulating dynamical forest-atmosphere exchanges of carbon and evapotranspiration at typical sites subject to subtropical and temperate monsoon climates in eastern Asia
Wei Zhang, Xunhua Zheng, Siqi Li, Shenghui Han, Chunyan Liu, Zhisheng Yao, Rui Wang, Kai Wang, Xiao Chen, Guirui Yu, Zhi Chen, Jiabing Wu, Huimin Wang, Junhua Yan, and Yong Li
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-141,https://doi.org/10.5194/gmd-2024-141, 2024
Preprint under review for GMD
Short summary
Global datasets of hourly carbon and water fluxes simulated using a satellite-based process model with dynamic parameterizations
Jiye Leng, Jing M. Chen, Wenyu Li, Xiangzhong Luo, Mingzhu Xu, Jane Liu, Rong Wang, Cheryl Rogers, Bolun Li, and Yulin Yan
Earth Syst. Sci. Data, 16, 1283–1300, https://doi.org/10.5194/essd-16-1283-2024,https://doi.org/10.5194/essd-16-1283-2024, 2024
Short summary
GLOBMAP SWF: a global annual surface water cover frequency dataset during 2000–2020
Yang Liu, Ronggao Liu, and Rong Shang
Earth Syst. Sci. Data, 14, 4505–4523, https://doi.org/10.5194/essd-14-4505-2022,https://doi.org/10.5194/essd-14-4505-2022, 2022
Short summary

Related subject area

Remote Sensing: Terrestrial
Field heterogeneity of soil texture controls leaf water potential spatial distribution in non-irrigated vineyards
Louis Delval, Jordan Bates, François Jonard, and Mathieu Javaux
EGUsphere, https://doi.org/10.5194/egusphere-2024-2555,https://doi.org/10.5194/egusphere-2024-2555, 2024
Short summary
Remote sensing reveals fire-driven enhancement of a C4 invasive alien grass on a small Mediterranean volcanic island
Riccardo Guarino, Daniele Cerra, Renzo Zaia, Alessandro Chiarucci, Pietro Lo Cascio, Duccio Rocchini, Piero Zannini, and Salvatore Pasta
Biogeosciences, 21, 2717–2730, https://doi.org/10.5194/bg-21-2717-2024,https://doi.org/10.5194/bg-21-2717-2024, 2024
Short summary
Divergent biophysical responses of western United States forests to wildfire driven by eco-climatic gradients
Surendra Shrestha, Christopher A. Williams, Brendan M. Rogers, John Rogan, and Dominik Kulakowski
Biogeosciences, 21, 2207–2226, https://doi.org/10.5194/bg-21-2207-2024,https://doi.org/10.5194/bg-21-2207-2024, 2024
Short summary
Synergistic use of Sentinel-2 and UAV-derived data for plant fractional cover distribution mapping of coastal meadows with digital elevation models
Ricardo Martínez Prentice, Miguel Villoslada, Raymond D. Ward, Thaisa F. Bergamo, Chris B. Joyce, and Kalev Sepp
Biogeosciences, 21, 1411–1431, https://doi.org/10.5194/bg-21-1411-2024,https://doi.org/10.5194/bg-21-1411-2024, 2024
Short summary
Data-based investigation of the effects of canopy structure and shadows on chlorophyll fluorescence in a deciduous oak forest
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, Abderrahmane Ounis, and Kamel Soudani
Biogeosciences, 21, 1259–1276, https://doi.org/10.5194/bg-21-1259-2024,https://doi.org/10.5194/bg-21-1259-2024, 2024
Short summary

Cited articles

Alexandrov, G. A., Oikawa, T., and Esser, G.: Estimating terrestrial NPP: what the data say and how they may be interpreted?, Ecol. Modell., 117, 361–369, https://doi.org/10.1016/S0304-3800(99)00019-8, 1999. 
Bond-Lamberty, B., Wang, C., and Gower, S. T.: Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence, Glob. Change Biol., 10, 473–487, https://doi.org/10.1111/j.1529-8817.2003.0742.x, 2004. 
Burkes, E. C., Will, R. E., Barron-Gafford, G. A., Teskey, R. O., and Shiver, B.: Biomass partitioning and growth efficiency of intensively managed Pinus taeda and Pinus elliottii stands of different planting densities, Forest Sci., 49, 224–234, 2003. 
Camenzind, T., Hättenschwiler, S., Treseder, K. K., Lehmann, A., and Rillig, M. C.: Nutrient limitation of soil microbial processes in tropical forests, Ecol. Monogr., 88, 4–21, https://doi.org/10.1002/ecm.1279, 2018. 
Chapin, F. S., III, Woodwell, G. M., Randerson, J. T., Rastetter, E. B., Lovett, G. M., Baldocchi, D. D., Clark, D. A., Harmon, M. E., and Schimel, D. S.: Reconciling carbon-cycle concepts, terminology, and methods, Ecosystems, 9, 1041–1050, https://doi.org/10.1007/s10021-005-0105-7, 2006. 
Download
Short summary
The amount of carbon that forests gain from the atmosphere, called net primary productivity (NPP), changes a lot with age. These forest NPP–age relationships could be modeled from field survey data, but we are not sure which model works best. Here we tested five different models using 3121 field survey samples in China, and the semi-empirical mathematical (SEM) function was determined as the optimal. The relationships built by SEM can improve China's forest carbon modeling and prediction.
Altmetrics
Final-revised paper
Preprint