Articles | Volume 21, issue 3
https://doi.org/10.5194/bg-21-711-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-711-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characterization of the benthic biogeochemical dynamics after flood events in the Rhône River prodelta: a data–model approach
Laboratoire des Sciences du Climat et de l'Environnement, LSCE–IPSL, CEA–CNRS–UVSQ–Université Paris-Saclay, 91198, Gif-sur-Yvette, France
Stanley Nmor
Laboratoire des Sciences du Climat et de l'Environnement, LSCE–IPSL, CEA–CNRS–UVSQ–Université Paris-Saclay, 91198, Gif-sur-Yvette, France
Eric Viollier
Laboratoire des Sciences du Climat et de l'Environnement, LSCE–IPSL, CEA–CNRS–UVSQ–Université Paris-Saclay, 91198, Gif-sur-Yvette, France
Bruno Lansard
Laboratoire des Sciences du Climat et de l'Environnement, LSCE–IPSL, CEA–CNRS–UVSQ–Université Paris-Saclay, 91198, Gif-sur-Yvette, France
Bruno Bombled
Laboratoire des Sciences du Climat et de l'Environnement, LSCE–IPSL, CEA–CNRS–UVSQ–Université Paris-Saclay, 91198, Gif-sur-Yvette, France
Edouard Regnier
Laboratoire des Sciences du Climat et de l'Environnement, LSCE–IPSL, CEA–CNRS–UVSQ–Université Paris-Saclay, 91198, Gif-sur-Yvette, France
Gaël Monvoisin
Géosciences Paris-Saclay (GEOPS), CNRS and Université Paris-Saclay, 91405, Orsay, France
Christian Grenz
Mediterranean Institute of Oceanography (MIO), Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
Pieter van Beek
Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS), CNES–CNRS–IRD–Université Toulouse III – Paul Sabatier, 31400, Toulouse, France
Christophe Rabouille
Laboratoire des Sciences du Climat et de l'Environnement, LSCE–IPSL, CEA–CNRS–UVSQ–Université Paris-Saclay, 91198, Gif-sur-Yvette, France
Related authors
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, Bruno Bombled, Jacqueline Boutin, Yann Bozec, Steeve Comeau, Pascal Conan, Laurent Coppola, Pascale Cuet, Eva Ferreira, Jean-Pierre Gattuso, Frédéric Gazeau, Catherine Goyet, Emilie Grossteffan, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Coraline Leseurre, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Peggy Rimmelin-Maury, Jean-François Ternon, Franck Touratier, Aline Tribollet, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-464, https://doi.org/10.5194/essd-2024-464, 2024
Preprint under review for ESSD
Short summary
Short summary
This work presents a new synthesis of 67 000 total alkalinity and total dissolved inorganic carbon observations obtained between 1993 and 2023 in the global ocean, coastal zones and the Mediterranean Sea. We describe the data assemblage and associated quality control and discuss some potential uses of this dataset. The dataset is provided in a single format and include the quality flag for each sample.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, Bruno Bombled, Jacqueline Boutin, Yann Bozec, Steeve Comeau, Pascal Conan, Laurent Coppola, Pascale Cuet, Eva Ferreira, Jean-Pierre Gattuso, Frédéric Gazeau, Catherine Goyet, Emilie Grossteffan, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Coraline Leseurre, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Peggy Rimmelin-Maury, Jean-François Ternon, Franck Touratier, Aline Tribollet, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-464, https://doi.org/10.5194/essd-2024-464, 2024
Preprint under review for ESSD
Short summary
Short summary
This work presents a new synthesis of 67 000 total alkalinity and total dissolved inorganic carbon observations obtained between 1993 and 2023 in the global ocean, coastal zones and the Mediterranean Sea. We describe the data assemblage and associated quality control and discuss some potential uses of this dataset. The dataset is provided in a single format and include the quality flag for each sample.
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Preprint under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Sophie Hage, Megan L. Baker, Nathalie Babonneau, Guillaume Soulet, Bernard Dennielou, Ricardo Silva Jacinto, Robert G. Hilton, Valier Galy, François Baudin, Christophe Rabouille, Clément Vic, Sefa Sahin, Sanem Açikalin, and Peter J. Talling
Biogeosciences, 21, 4251–4272, https://doi.org/10.5194/bg-21-4251-2024, https://doi.org/10.5194/bg-21-4251-2024, 2024
Short summary
Short summary
The land-to-ocean flux of particulate organic carbon (POC) is difficult to measure, inhibiting accurate modeling of the global carbon cycle. Here, we quantify the POC flux between one of the largest rivers on Earth (Congo) and the ocean. POC in the form of vegetation and soil is transported by episodic submarine avalanches in a 1000 km long canyon at up to 5 km water depth. The POC flux induced by avalanches is at least 3 times greater than that induced by the background flow related to tides.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, David Antoine, Guillaume Bourdin, Jacqueline Boutin, Yann Bozec, Pascal Conan, Laurent Coppola, Frédéric Diaz, Eric Douville, Xavier Durrieu de Madron, Jean-Pierre Gattuso, Frédéric Gazeau, Melek Golbol, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Fabien Lombard, Férial Louanchi, Liliane Merlivat, Léa Olivier, Anne Petrenko, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Aline Tribollet, Vincenzo Vellucci, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 16, 89–120, https://doi.org/10.5194/essd-16-89-2024, https://doi.org/10.5194/essd-16-89-2024, 2024
Short summary
Short summary
This work presents a synthesis of 44 000 total alkalinity and dissolved inorganic carbon observations obtained between 1993 and 2022 in the Global Ocean and the Mediterranean Sea at the surface and in the water column. Seawater samples were measured using the same method and calibrated with international Certified Reference Material. We describe the data assemblage, quality control and some potential uses of this dataset.
Stanley I. Nmor, Eric Viollier, Lucie Pastor, Bruno Lansard, Christophe Rabouille, and Karline Soetaert
Geosci. Model Dev., 15, 7325–7351, https://doi.org/10.5194/gmd-15-7325-2022, https://doi.org/10.5194/gmd-15-7325-2022, 2022
Short summary
Short summary
The coastal marine environment serves as a transition zone in the land–ocean continuum and is susceptible to episodic phenomena such as flash floods, which cause massive organic matter deposition. Here, we present a model of sediment early diagenesis that explicitly describes this type of deposition while also incorporating unique flood deposit characteristics. This model can be used to investigate the temporal evolution of marine sediments following abrupt changes in environmental conditions.
Felipe S. Freitas, Philip A. Pika, Sabine Kasten, Bo B. Jørgensen, Jens Rassmann, Christophe Rabouille, Shaun Thomas, Henrik Sass, Richard D. Pancost, and Sandra Arndt
Biogeosciences, 18, 4651–4679, https://doi.org/10.5194/bg-18-4651-2021, https://doi.org/10.5194/bg-18-4651-2021, 2021
Short summary
Short summary
It remains challenging to fully understand what controls carbon burial in marine sediments globally. Thus, we use a model–data approach to identify patterns of organic matter reactivity at the seafloor across distinct environmental conditions. Our findings support the notion that organic matter reactivity is a dynamic ecosystem property and strongly influences biogeochemical cycling and exchange. Our results are essential to improve predictions of future changes in carbon cycling and climate.
Cécile Gautheron, Rosella Pinna-Jamme, Alexis Derycke, Floriane Ahadi, Caroline Sanchez, Frédéric Haurine, Gael Monvoisin, Damien Barbosa, Guillaume Delpech, Joseph Maltese, Philippe Sarda, and Laurent Tassan-Got
Geochronology, 3, 351–370, https://doi.org/10.5194/gchron-3-351-2021, https://doi.org/10.5194/gchron-3-351-2021, 2021
Short summary
Short summary
Apatite and zircon (U–Th) / He thermochronology is now a mainstream tool to reconstruct Earth's evolution through the history of cooling and exhumation over the first dozen kilometers. The geological implications of these data rely on the precision of measurements of He, U, Th, and Sm contents in crystals. This technical note documents the methods for He thermochronology developed at the GEOPS laboratory, Paris-Saclay University, that allow (U–Th) / He data to be obtained with precision.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Eleonora Fossile, Maria Pia Nardelli, Arbia Jouini, Bruno Lansard, Antonio Pusceddu, Davide Moccia, Elisabeth Michel, Olivier Péron, Hélène Howa, and Meryem Mojtahid
Biogeosciences, 17, 1933–1953, https://doi.org/10.5194/bg-17-1933-2020, https://doi.org/10.5194/bg-17-1933-2020, 2020
Short summary
Short summary
This study focuses on benthic foraminiferal distribution in an Arctic fjord characterised by continuous sea ice production during winter and the consequent cascading of salty and corrosive waters (brine) to the seabed. The inner fjord is dominated by calcareous species (C). In the central deep basins, where brines are persistent, calcareous foraminifera are dissolved and agglutinated (A) dominate. The high A/C ratio is suggested as a proxy for brine persistence and sea ice production.
Jens Rassmann, Eryn M. Eitel, Bruno Lansard, Cécile Cathalot, Christophe Brandily, Martial Taillefert, and Christophe Rabouille
Biogeosciences, 17, 13–33, https://doi.org/10.5194/bg-17-13-2020, https://doi.org/10.5194/bg-17-13-2020, 2020
Short summary
Short summary
In this paper, we use a large set of measurements made using in situ and lab techniques to elucidate the cause of dissolved inorganic carbon fluxes in sediments from the Rhône delta and its companion compound alkalinity, which carries the absorption capacity of coastal waters with respect to atmospheric CO2. We show that sediment processes (sulfate reduction, FeS precipitation and accumulation) are crucial in generating the alkalinity fluxes observed in this study by in situ incubation chambers.
Ines Bartl, Dana Hellemann, Christophe Rabouille, Kirstin Schulz, Petra Tallberg, Susanna Hietanen, and Maren Voss
Biogeosciences, 16, 3543–3564, https://doi.org/10.5194/bg-16-3543-2019, https://doi.org/10.5194/bg-16-3543-2019, 2019
Short summary
Short summary
Irrespective of variable environmental settings in estuaries, the quality of organic particles is an important factor controlling microbial processes that facilitate a reduction of land-derived nitrogen loads to the open sea. Through the interplay of biogeochemical processing, geomorphology, and hydrodynamics, organic particles may function as a carrier and temporary reservoir of nitrogen, which has a major impact on the efficiency of nitrogen load reduction.
Jens K. Ehn, Rick A. Reynolds, Dariusz Stramski, David Doxaran, Bruno Lansard, and Marcel Babin
Biogeosciences, 16, 1583–1605, https://doi.org/10.5194/bg-16-1583-2019, https://doi.org/10.5194/bg-16-1583-2019, 2019
Short summary
Short summary
Beam attenuation at 660 nm and suspended particle matter (SPM) relationships were determined during the MALINA cruise in August 2009 to the Canadian Beaufort Sea in order to expand our knowledge of particle distributions in Arctic shelf seas. The relationship was then used to determine SPM distributions for four other expeditions to the region. SPM patterns on the shelf were explained by an interplay between wind forcing, river discharge, and melting sea ice that controls the circulation.
Daniele Brigolin, Christophe Rabouille, Bruno Bombled, Silvia Colla, Salvatrice Vizzini, Roberto Pastres, and Fabio Pranovi
Biogeosciences, 15, 1347–1366, https://doi.org/10.5194/bg-15-1347-2018, https://doi.org/10.5194/bg-15-1347-2018, 2018
Short summary
Short summary
We present the result of a study carried out in the north-western Adriatic Sea by combining two different types of models with field sampling. A mussel farm was taken as a local source of perturbation to the natural flux of particulate organic carbon to the sediment. Differences in fluxes were primarily associated with mussel physiological conditions. Although restricted, these changes in particulate organic carbon fluxes induced visible effects on sediment biogeochemistry.
Julia M. Moriarty, Courtney K. Harris, Katja Fennel, Marjorie A. M. Friedrichs, Kehui Xu, and Christophe Rabouille
Biogeosciences, 14, 1919–1946, https://doi.org/10.5194/bg-14-1919-2017, https://doi.org/10.5194/bg-14-1919-2017, 2017
Short summary
Short summary
In coastal aquatic environments, resuspension of sediment and organic material from the seabed into the overlying water can impact biogeochemistry. Here, we used a novel modeling approach to quantify this impact for the Rhône River delta. In the model, resuspension increased oxygen consumption during individual resuspension events, and when results were averaged over 2 months. This implies that observations and models that only represent calm conditions may underestimate net oxygen consumption.
Pascal Conan, Mireille Pujo-Pay, Marina Agab, Laura Calva-Benítez, Sandrine Chifflet, Pascal Douillet, Claire Dussud, Renaud Fichez, Christian Grenz, Francisco Gutierrez Mendieta, Montserrat Origel-Moreno, Arturo Rodríguez-Blanco, Caroline Sauret, Tatiana Severin, Marc Tedetti, Rocío Torres Alvarado, and Jean-François Ghiglione
Biogeosciences, 14, 959–975, https://doi.org/10.5194/bg-14-959-2017, https://doi.org/10.5194/bg-14-959-2017, 2017
Short summary
Short summary
Coastal lagoons are extremely rich, diverse, and dynamic but very fragile ecosystems subject to anthropogenic pressures. A joint France–Mexico biogeochemical study was conducted in the Términos Lagoon under severe drought related to an El Niño Modoki episode. In short, the water column of the Términos Lagoon functioned as a nitrogen sink, but variation in mineral stoichiometry across the lagoon mainly accounted for the heterogeneity in microbial distribution and activity.
Jens Rassmann, Bruno Lansard, Lara Pozzato, and Christophe Rabouille
Biogeosciences, 13, 5379–5394, https://doi.org/10.5194/bg-13-5379-2016, https://doi.org/10.5194/bg-13-5379-2016, 2016
Short summary
Short summary
In situ O2 and pH measurements as well as determination of porewater concentrations of dissolved inorganic carbon, total alkalinity, sulfate and calcium have been measured in the sediments of the Rhône prodelta. Biogeochemical activity decreased with distance from the river mouth. Oxic processes decreased the carbonate saturation state (Ω) by lowering pH, whereas anaerobic organic matter degradation, dominated by sulfate reduction, was accompanied by increasing Ω and carbonate precipitation.
J. Ruan, F. Kherbouche, D. Genty, D. Blamart, H. Cheng, F. Dewilde, S. Hachi, R. L. Edwards, E. Régnier, and J.-L. Michelot
Clim. Past, 12, 1–14, https://doi.org/10.5194/cp-12-1-2016, https://doi.org/10.5194/cp-12-1-2016, 2016
V. Sanial, P. van Beek, B. Lansard, M. Souhaut, E. Kestenare, F. d'Ovidio, M. Zhou, and S. Blain
Biogeosciences, 12, 1415–1430, https://doi.org/10.5194/bg-12-1415-2015, https://doi.org/10.5194/bg-12-1415-2015, 2015
Short summary
Short summary
We investigated the origin and mechanisms of the natural iron fertilization that sustains a phytoplankton bloom downstream of the Kerguelen Islands. We used radium isotopes to trace the fate of shelf waters that may transport iron and other micronutrients towards offshore waters. We show that shelf waters are rapidly transferred offshore and may be transported across the polar front (PF). The PF may thus not be a strong physical barrier for chemical elements released by the shelf sediments.
K.-K. Liu, C.-K. Kang, T. Kobari, H. Liu, C. Rabouille, and K. Fennel
Biogeosciences, 11, 7061–7075, https://doi.org/10.5194/bg-11-7061-2014, https://doi.org/10.5194/bg-11-7061-2014, 2014
Short summary
Short summary
This paper provides background info on the East China Sea, Japan/East Sea and South China Sea and highlights major findings in the special issue on their biogeochemical conditions and ecosystem functions. The three seas are subject to strong impacts from human activities and/or climate forcing. Because these continental margins sustain arguably some of the most productive marine ecosystems in the world, changes in these stressed ecosystems may threaten the livelihood of a large human population.
Related subject area
Biogeochemistry: Land - Sea Coupling
Distinct impacts of the El Niño–Southern Oscillation and Indian Ocean Dipole on China's gross primary production
Atmospheric CO2 exchanges measured by eddy covariance over a temperate salt marsh and influence of environmental controlling factors
Recent inorganic carbon increase in a temperate estuary driven by water quality improvement and enhanced by droughts
Alkalinity and nitrate dynamics reveal dominance of anammox in a hyper-turbid estuary
Reconciling the paradox of soil organic carbon erosion by water
The dispersal of fluvially discharged and marine, shelf-produced particulate organic matter in the northern Gulf of Mexico
Carbon dynamics at the river–estuarine transition: a comparison among tributaries of Chesapeake Bay
From soil to sea: sources and transport of organic carbon traced by tetraether lipids in the monsoonal Godavari River, India
Dissolved organic matter characterization in soils and streams in a small coastal low-Arctic catchment
Regional-scale phytoplankton dynamics and their association with glacier meltwater runoff in Svalbard
Riverine nitrogen supply to the global ocean and its limited impact on global marine primary production: a feedback study using an Earth system model
Rain-fed streams dilute inorganic nutrients but subsidise organic-matter-associated nutrients in coastal waters of the northeast Pacific Ocean
Ideas and perspectives: Biogeochemistry – some key foci for the future
Spatio-temporal variations in lateral and atmospheric carbon fluxes from the Danube Delta
Technical note: Seamless gas measurements across the land–ocean aquatic continuum – corrections and evaluation of sensor data for CO2, CH4 and O2 from field deployments in contrasting environments
Enrichment of trace metals from acid sulfate soils in sediments of the Kvarken Archipelago, eastern Gulf of Bothnia, Baltic Sea
Organic iron complexes enhance iron transport capacity along estuarine salinity gradients of Baltic estuaries
Particulate organic matter controls benthic microbial N retention and N removal in contrasting estuaries of the Baltic Sea
Export fluxes of dissolved inorganic carbon to the northern Indian Ocean from the Indian monsoonal rivers
The ballast effect of lithogenic matter and its influences on the carbon fluxes in the Indian Ocean
Integrating multimedia models to assess nitrogen losses from the Mississippi River basin to the Gulf of Mexico
Reconciling drainage and receiving basin signatures of the Godavari River system
Impacts of flocculation on the distribution and diagenesis of iron in boreal estuarine sediments
Sources, fluxes, and behaviors of fluorescent dissolved organic matter (FDOM) in the Nakdong River Estuary, Korea
Effects of changes in nutrient loading and composition on hypoxia dynamics and internal nutrient cycling of a stratified coastal lagoon
Carbon degradation in agricultural soils flooded with seawater after managed coastal realignment
A global hotspot for dissolved organic carbon in hypermaritime watersheds of coastal British Columbia
Nitrogen transformations along a shallow subterranean estuary
Modelling nutrient retention in the coastal zone of an eutrophic sea
Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost
Modelling the impact of riverine DON removal by marine bacterioplankton on primary production in the Arctic Ocean
Seasonal response of air–water CO2 exchange along the land–ocean aquatic continuum of the northeast North American coast.
Quantification of iron-rich volcanogenic dust emissions and deposition over the ocean from Icelandic dust sources
Effects of seabird nitrogen input on biomass and carbon accumulation after 50 years of primary succession on a young volcanic island, Surtsey
Impact of river discharge, upwelling and vertical mixing on the nutrient loading and productivity of the Canadian Beaufort Shelf
Seasonal contribution of terrestrial organic matter and biological oxygen demand to the Baltic Sea from three contrasting river catchments
Antarctic ice sheet fertilises the Southern Ocean
Nutrient dynamics in tropical rivers, lagoons, and coastal ecosystems of eastern Hainan Island, South China Sea
Bioavailability of riverine dissolved organic matter in three Baltic Sea estuaries and the effect of catchment land use
Seasonal dissolved inorganic nitrogen and phosphorus budgets for two sub-tropical estuaries in south Florida, USA
Export of 134 Cs and 137 Cs in the Fukushima river systems at heavy rains by Typhoon Roke in September 2011
The fate of riverine nutrients on Arctic shelves
External forcings, oceanographic processes and particle flux dynamics in Cap de Creus submarine canyon, NW Mediterranean Sea
Radium-based estimates of cesium isotope transport and total direct ocean discharges from the Fukushima Nuclear Power Plant accident
Tracing inputs of terrestrial high molecular weight dissolved organic matter within the Baltic Sea ecosystem
The role of alkalinity generation in controlling the fluxes of CO2 during exposure and inundation on tidal flats
Coupling of fog and marine microbial content in the near-shore coastal environment
Spatialized N budgets in a large agricultural Mediterranean watershed: high loading and low transfer
Effects of water discharge and sediment load on evolution of modern Yellow River Delta, China, over the period from 1976 to 2009
Carbon isotopes and lipid biomarker investigation of sources, transport and degradation of terrestrial organic matter in the Buor-Khaya Bay, SE Laptev Sea
Ran Yan, Jun Wang, Weimin Ju, Xiuli Xing, Miao Yu, Meirong Wang, Jingye Tan, Xunmei Wang, Hengmao Wang, and Fei Jiang
Biogeosciences, 21, 5027–5043, https://doi.org/10.5194/bg-21-5027-2024, https://doi.org/10.5194/bg-21-5027-2024, 2024
Short summary
Short summary
Our study reveals that the effects of the El Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) on China's gross primary production (GPP) are basically opposite, with obvious seasonal changes. Soil moisture primarily influences GPP during ENSO events (except spring) and temperature during IOD events (except fall). Quantitatively, China's annual GPP displays modest positive anomalies during La Niña and negative anomalies in El Niño years, driven by significant seasonal variations.
Jérémy Mayen, Pierre Polsenaere, Éric Lamaud, Marie Arnaud, Pierre Kostyrka, Jean-Marc Bonnefond, Philippe Geairon, Julien Gernigon, Romain Chassagne, Thomas Lacoue-Labarthe, Aurore Regaudie de Gioux, and Philippe Souchu
Biogeosciences, 21, 993–1016, https://doi.org/10.5194/bg-21-993-2024, https://doi.org/10.5194/bg-21-993-2024, 2024
Short summary
Short summary
We deployed an atmospheric eddy covariance system to measure continuously the net ecosystem CO2 exchanges (NEE) over a salt marsh and determine the major biophysical drivers. Our results showed an annual carbon sink mainly due to photosynthesis of the marsh plants. Our study also provides relevant information on NEE fluxes during marsh immersion by decreasing daytime CO2 uptake and night-time CO2 emissions at the daily scale, whereas the immersion did not affect the annual marsh C balance.
Louise C. V. Rewrie, Burkard Baschek, Justus E. E. van Beusekom, Arne Körtzinger, Gregor Ollesch, and Yoana G. Voynova
Biogeosciences, 20, 4931–4947, https://doi.org/10.5194/bg-20-4931-2023, https://doi.org/10.5194/bg-20-4931-2023, 2023
Short summary
Short summary
After heavy pollution in the 1980s, a long-term inorganic carbon increase in the Elbe Estuary (1997–2020) was fueled by phytoplankton and organic carbon production in the upper estuary, associated with improved water quality. A recent drought (2014–2020) modulated the trend, extending the water residence time and the dry summer season into May. The drought enhanced production of inorganic carbon in the estuary but significantly decreased the annual inorganic carbon export to coastal waters.
Mona Norbisrath, Andreas Neumann, Kirstin Dähnke, Tina Sanders, Andreas Schöl, Justus E. E. van Beusekom, and Helmuth Thomas
Biogeosciences, 20, 4307–4321, https://doi.org/10.5194/bg-20-4307-2023, https://doi.org/10.5194/bg-20-4307-2023, 2023
Short summary
Short summary
Total alkalinity (TA) is the oceanic capacity to store CO2. Estuaries can be a TA source. Anaerobic metabolic pathways like denitrification (reduction of NO3− to N2) generate TA and are a major nitrogen (N) sink. Another important N sink is anammox that transforms NH4+ with NO2− into N2 without TA generation. By combining TA and N2 production, we identified a TA source, denitrification, occurring in the water column and suggest anammox as the dominant N2 producer in the bottom layer of the Ems.
Kristof Van Oost and Johan Six
Biogeosciences, 20, 635–646, https://doi.org/10.5194/bg-20-635-2023, https://doi.org/10.5194/bg-20-635-2023, 2023
Short summary
Short summary
The direction and magnitude of the net erosion-induced land–atmosphere C exchange have been the topic of a big scientific debate for more than a decade now. Many have assumed that erosion leads to a loss of soil carbon to the atmosphere, whereas others have shown that erosion ultimately leads to a carbon sink. Here, we show that the soil carbon erosion source–sink paradox is reconciled when the broad range of temporal and spatial scales at which the underlying processes operate are considered.
Yord W. Yedema, Francesca Sangiorgi, Appy Sluijs, Jaap S. Sinninghe Damsté, and Francien Peterse
Biogeosciences, 20, 663–686, https://doi.org/10.5194/bg-20-663-2023, https://doi.org/10.5194/bg-20-663-2023, 2023
Short summary
Short summary
Terrestrial organic matter (TerrOM) is transported to the ocean by rivers, where its burial can potentially form a long-term carbon sink. This burial is dependent on the type and characteristics of the TerrOM. We used bulk sediment properties, biomarkers, and palynology to identify the dispersal patterns of plant-derived, soil–microbial, and marine OM in the northern Gulf of Mexico and show that plant-derived OM is transported further into the coastal zone than soil and marine-produced TerrOM.
Paul A. Bukaveckas
Biogeosciences, 19, 4209–4226, https://doi.org/10.5194/bg-19-4209-2022, https://doi.org/10.5194/bg-19-4209-2022, 2022
Short summary
Short summary
Inland waters play an important role in the global carbon cycle by storing, transforming and transporting carbon from land to sea. Comparatively little is known about carbon dynamics at the river–estuarine transition. A study of tributaries of Chesapeake Bay showed that biological processes exerted a strong effect on carbon transformations. Peak carbon retention occurred during periods of elevated river discharge and was associated with trapping of particulate matter.
Frédérique M. S. A. Kirkels, Huub M. Zwart, Muhammed O. Usman, Suning Hou, Camilo Ponton, Liviu Giosan, Timothy I. Eglinton, and Francien Peterse
Biogeosciences, 19, 3979–4010, https://doi.org/10.5194/bg-19-3979-2022, https://doi.org/10.5194/bg-19-3979-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) that is transferred to the ocean by rivers forms a long-term sink of atmospheric CO2 upon burial on the ocean floor. We here test if certain bacterial membrane lipids can be used to trace SOC through the monsoon-fed Godavari River basin in India. We find that these lipids trace the mobilisation and transport of SOC in the wet season but that these lipids are not transferred far into the sea. This suggests that the burial of SOC on the sea floor is limited here.
Niek Jesse Speetjens, George Tanski, Victoria Martin, Julia Wagner, Andreas Richter, Gustaf Hugelius, Chris Boucher, Rachele Lodi, Christian Knoblauch, Boris P. Koch, Urban Wünsch, Hugues Lantuit, and Jorien E. Vonk
Biogeosciences, 19, 3073–3097, https://doi.org/10.5194/bg-19-3073-2022, https://doi.org/10.5194/bg-19-3073-2022, 2022
Short summary
Short summary
Climate change and warming in the Arctic exceed global averages. As a result, permanently frozen soils (permafrost) which store vast quantities of carbon in the form of dead plant material (organic matter) are thawing. Our study shows that as permafrost landscapes degrade, high concentrations of organic matter are released. Partly, this organic matter is degraded rapidly upon release, while another significant fraction enters stream networks and enters the Arctic Ocean.
Thorben Dunse, Kaixing Dong, Kjetil Schanke Aas, and Leif Christian Stige
Biogeosciences, 19, 271–294, https://doi.org/10.5194/bg-19-271-2022, https://doi.org/10.5194/bg-19-271-2022, 2022
Short summary
Short summary
We investigate the effect of glacier meltwater on phytoplankton dynamics in Svalbard. Phytoplankton forms the basis of the marine food web, and its seasonal dynamics depend on the availability of light and nutrients, both of which are affected by glacier runoff. We use satellite ocean color, an indicator of phytoplankton biomass, and glacier mass balance modeling to find that the overall effect of glacier runoff on marine productivity is positive within the major fjord systems of Svalbard.
Miriam Tivig, David P. Keller, and Andreas Oschlies
Biogeosciences, 18, 5327–5350, https://doi.org/10.5194/bg-18-5327-2021, https://doi.org/10.5194/bg-18-5327-2021, 2021
Short summary
Short summary
Nitrogen is one of the most important elements for life in the ocean. A major source is the riverine discharge of dissolved nitrogen. While global models often omit rivers as a nutrient source, we included nitrogen from rivers in our Earth system model and found that additional nitrogen affected marine biology not only locally but also in regions far off the coast. Depending on regional conditions, primary production was enhanced or even decreased due to internal feedbacks in the nitrogen cycle.
Kyra A. St. Pierre, Brian P. V. Hunt, Suzanne E. Tank, Ian Giesbrecht, Maartje C. Korver, William C. Floyd, Allison A. Oliver, and Kenneth P. Lertzman
Biogeosciences, 18, 3029–3052, https://doi.org/10.5194/bg-18-3029-2021, https://doi.org/10.5194/bg-18-3029-2021, 2021
Short summary
Short summary
Using 4 years of paired freshwater and marine water chemistry from the Central Coast of British Columbia (Canada), we show that coastal temperate rainforest streams are sources of organic nitrogen, iron, and carbon to the Pacific Ocean but not the inorganic nutrients easily used by marine phytoplankton. This distinction may have important implications for coastal food webs and highlights the need to sample all nutrients in fresh and marine waters year-round to fully understand coastal dynamics.
Thomas S. Bianchi, Madhur Anand, Chris T. Bauch, Donald E. Canfield, Luc De Meester, Katja Fennel, Peter M. Groffman, Michael L. Pace, Mak Saito, and Myrna J. Simpson
Biogeosciences, 18, 3005–3013, https://doi.org/10.5194/bg-18-3005-2021, https://doi.org/10.5194/bg-18-3005-2021, 2021
Short summary
Short summary
Better development of interdisciplinary ties between biology, geology, and chemistry advances biogeochemistry through (1) better integration of contemporary (or rapid) evolutionary adaptation to predict changing biogeochemical cycles and (2) universal integration of data from long-term monitoring sites in terrestrial, aquatic, and human systems that span broad geographical regions for use in modeling.
Marie-Sophie Maier, Cristian R. Teodoru, and Bernhard Wehrli
Biogeosciences, 18, 1417–1437, https://doi.org/10.5194/bg-18-1417-2021, https://doi.org/10.5194/bg-18-1417-2021, 2021
Short summary
Short summary
Based on a 2-year monitoring study, we found that the freshwater system of the Danube Delta, Romania, releases carbon dioxide and methane to the atmosphere. The amount of carbon released depends on the freshwater feature (river branches, channels and lakes), season and hydrologic condition, affecting the exchange with the wetland. Spatial upscaling should therefore consider these factors. Furthermore, the Danube Delta increases the amount of carbon reaching the Black Sea via the Danube River.
Anna Rose Canning, Peer Fietzek, Gregor Rehder, and Arne Körtzinger
Biogeosciences, 18, 1351–1373, https://doi.org/10.5194/bg-18-1351-2021, https://doi.org/10.5194/bg-18-1351-2021, 2021
Short summary
Short summary
The paper describes a novel, fully autonomous, multi-gas flow-through set-up for multiple gases that combines established, high-quality oceanographic sensors in a small and robust system designed for use across all salinities and all types of platforms. We describe the system and its performance in all relevant detail, including the corrections which improve the accuracy of these sensors, and illustrate how simultaneous multi-gas set-ups can provide an extremely high spatiotemporal resolution.
Joonas J. Virtasalo, Peter Österholm, Aarno T. Kotilainen, and Mats E. Åström
Biogeosciences, 17, 6097–6113, https://doi.org/10.5194/bg-17-6097-2020, https://doi.org/10.5194/bg-17-6097-2020, 2020
Short summary
Short summary
Rivers draining the acid sulphate soils of western Finland deliver large amounts of metals (e.g. Cd, Co, Cu, La, Mn, Ni, and Zn) to the coastal sea. To better understand metal enrichment in the sea floor, we analysed metal contents and grain size distribution in nine sediment cores, which increased in the 1960s and 1970s and stayed at high levels afterwards. The enrichment is visible more than 25 km out from the river mouths. Organic aggregates are suggested as the key seaward metal carriers.
Simon David Herzog, Per Persson, Kristina Kvashnina, and Emma Sofia Kritzberg
Biogeosciences, 17, 331–344, https://doi.org/10.5194/bg-17-331-2020, https://doi.org/10.5194/bg-17-331-2020, 2020
Short summary
Short summary
Fe concentrations in boreal rivers are increasing strongly in several regions in Northern Europe. This study focuses on how Fe speciation and interaction with organic matter affect stability of Fe across estuarine salinity gradients. The results confirm a positive relationship between the relative contribution of organically complexed Fe and stability. Moreover, organically complexed Fe was more prevalent at high flow conditions and more dominant further upstream in a catchment.
Ines Bartl, Dana Hellemann, Christophe Rabouille, Kirstin Schulz, Petra Tallberg, Susanna Hietanen, and Maren Voss
Biogeosciences, 16, 3543–3564, https://doi.org/10.5194/bg-16-3543-2019, https://doi.org/10.5194/bg-16-3543-2019, 2019
Short summary
Short summary
Irrespective of variable environmental settings in estuaries, the quality of organic particles is an important factor controlling microbial processes that facilitate a reduction of land-derived nitrogen loads to the open sea. Through the interplay of biogeochemical processing, geomorphology, and hydrodynamics, organic particles may function as a carrier and temporary reservoir of nitrogen, which has a major impact on the efficiency of nitrogen load reduction.
Moturi S. Krishna, Rongali Viswanadham, Mamidala H. K. Prasad, Vuravakonda R. Kumari, and Vedula V. S. S. Sarma
Biogeosciences, 16, 505–519, https://doi.org/10.5194/bg-16-505-2019, https://doi.org/10.5194/bg-16-505-2019, 2019
Short summary
Short summary
An order-of-magnitude variability in DIC was found within the Indian estuaries due to significant variability in size of rivers, precipitation pattern and lithology in the catchments. Indian monsoonal estuaries annually export ∼ 10.3 Tg of DIC to the northern Indian Ocean, of which 75 % enters into the Bay of Bengal. Our results indicated that chemical weathering of carbonate and silicate minerals by soil CO2 is the major source of DIC in the Indian monsoonal rivers.
Tim Rixen, Birgit Gaye, Kay-Christian Emeis, and Venkitasubramani Ramaswamy
Biogeosciences, 16, 485–503, https://doi.org/10.5194/bg-16-485-2019, https://doi.org/10.5194/bg-16-485-2019, 2019
Short summary
Short summary
Data obtained from sediment trap experiments in the Indian Ocean indicate that lithogenic matter ballast increases organic carbon flux rates on average by 45 % and by up to 62 % at trap locations in the river-influenced regions of the Indian Ocean. Such a strong lithogenic matter ballast effect implies that land use changes and the associated enhanced transport of lithogenic matter may significantly affect the CO2 uptake of the organic carbon pump in the receiving ocean areas.
Yongping Yuan, Ruoyu Wang, Ellen Cooter, Limei Ran, Prasad Daggupati, Dongmei Yang, Raghavan Srinivasan, and Anna Jalowska
Biogeosciences, 15, 7059–7076, https://doi.org/10.5194/bg-15-7059-2018, https://doi.org/10.5194/bg-15-7059-2018, 2018
Short summary
Short summary
Elevated levels of nutrients in surface water, which originate from deposition of atmospheric N, drainage from agricultural fields, and discharges from sewage treatment plants, cause explosive algal blooms that impair water quality. The complex cycling of nutrients through the land, air, and water requires an integrated multimedia modeling system linking air, land surface, and stream processes to assess their sources, transport, and transformation in large river basins for decision making.
Muhammed Ojoshogu Usman, Frédérique Marie Sophie Anne Kirkels, Huub Michel Zwart, Sayak Basu, Camilo Ponton, Thomas Michael Blattmann, Michael Ploetze, Negar Haghipour, Cameron McIntyre, Francien Peterse, Maarten Lupker, Liviu Giosan, and Timothy Ian Eglinton
Biogeosciences, 15, 3357–3375, https://doi.org/10.5194/bg-15-3357-2018, https://doi.org/10.5194/bg-15-3357-2018, 2018
Tom Jilbert, Eero Asmala, Christian Schröder, Rosa Tiihonen, Jukka-Pekka Myllykangas, Joonas J. Virtasalo, Aarno Kotilainen, Pasi Peltola, Päivi Ekholm, and Susanna Hietanen
Biogeosciences, 15, 1243–1271, https://doi.org/10.5194/bg-15-1243-2018, https://doi.org/10.5194/bg-15-1243-2018, 2018
Short summary
Short summary
Iron is a common dissolved element in river water, recognizable by its orange-brown colour. Here we show that when rivers reach the ocean much of this iron settles to the sediments by a process known as flocculation. The iron is then used by microbes in coastal sediments, which are important hotspots in the global carbon cycle.
Shin-Ah Lee and Guebuem Kim
Biogeosciences, 15, 1115–1122, https://doi.org/10.5194/bg-15-1115-2018, https://doi.org/10.5194/bg-15-1115-2018, 2018
Short summary
Short summary
The fluorescent dissolved organic matter (FDOM) delivered from riverine discharges significantly affects carbon and biogeochemical cycles in coastal waters. Our results show that the terrestrial concentrations of humic-like FDOM in river water were 60–80 % higher in the summer and fall, while the in situ production of protein-like FDOM was 70–80 % higher in the spring. Our results suggest that there are large seasonal changes in riverine fluxes of FDOM components to the ocean.
Yafei Zhu, Andrew McCowan, and Perran L. M. Cook
Biogeosciences, 14, 4423–4433, https://doi.org/10.5194/bg-14-4423-2017, https://doi.org/10.5194/bg-14-4423-2017, 2017
Short summary
Short summary
We used a 3-D coupled hydrodynamic–biogeochemical water quality model to investigate the effects of changes in catchment nutrient loading and composition on the phytoplankton dynamics, development of hypoxia and internal nutrient dynamics in a stratified coastal lagoon system. The results highlighted the need to reduce both total nitrogen and total phosphorus for water quality improvement in estuarine systems.
Kamilla S. Sjøgaard, Alexander H. Treusch, and Thomas B. Valdemarsen
Biogeosciences, 14, 4375–4389, https://doi.org/10.5194/bg-14-4375-2017, https://doi.org/10.5194/bg-14-4375-2017, 2017
Short summary
Short summary
Permanent flooding of low-lying coastal areas is a growing threat due to climate-change-related sea-level rise. To reduce coastal damage, buffer zones can be created by managed coastal realignment where existing dykes are breached and new dykes are built further inland. We studied the impacts on organic matter degradation in soils flooded with seawater by managed coastal realignment and suggest that most of the organic carbon present in coastal soils will be permanently preserved after flooding.
Allison A. Oliver, Suzanne E. Tank, Ian Giesbrecht, Maartje C. Korver, William C. Floyd, Paul Sanborn, Chuck Bulmer, and Ken P. Lertzman
Biogeosciences, 14, 3743–3762, https://doi.org/10.5194/bg-14-3743-2017, https://doi.org/10.5194/bg-14-3743-2017, 2017
Short summary
Short summary
Rivers draining small watersheds of the outer coastal Pacific temperate rainforest export some of the highest yields of dissolved organic carbon (DOC) in the world directly to the ocean. This DOC is largely derived from soils and terrestrial plants. Rainfall, temperature, and watershed characteristics such as wetlands and lakes are important controls on DOC export. This region may be significant for carbon export and linking terrestrial carbon to marine ecosystems.
Mathilde Couturier, Gwendoline Tommi-Morin, Maude Sirois, Alexandra Rao, Christian Nozais, and Gwénaëlle Chaillou
Biogeosciences, 14, 3321–3336, https://doi.org/10.5194/bg-14-3321-2017, https://doi.org/10.5194/bg-14-3321-2017, 2017
Short summary
Short summary
At the land–ocean interface, subterranean estuaries (STEs) are a critical transition pathway of nitrogen. Environmental conditions in the groundwater lead to nitrogen transformation, altering the nitrogen species and concentrations exported to the coastal ocean. This study highlights the role of a STE in processing groundwater-derived N in a shallow boreal STE, far from anthropogenic pressures. Biogeochemical transformations provide new N species from terrestrial origin to the coastal ocean.
Elin Almroth-Rosell, Moa Edman, Kari Eilola, H. E. Markus Meier, and Jörgen Sahlberg
Biogeosciences, 13, 5753–5769, https://doi.org/10.5194/bg-13-5753-2016, https://doi.org/10.5194/bg-13-5753-2016, 2016
Short summary
Short summary
Nutrients from land have been discussed to increase eutrophication in the open sea. This model study shows that the coastal zone works as an efficient filter. Water depth and residence time regulate the retention that occurs mostly in the sediment due to processes such as burial and denitrification. On shorter timescales the retention capacity might seem less effective when the land load of nutrients decreases, but with time the coastal zone can import nutrients from the open sea.
B. W. Abbott, J. B. Jones, S. E. Godsey, J. R. Larouche, and W. B. Bowden
Biogeosciences, 12, 3725–3740, https://doi.org/10.5194/bg-12-3725-2015, https://doi.org/10.5194/bg-12-3725-2015, 2015
Short summary
Short summary
As high latitudes warm, carbon and nitrogen stored in permafrost soil will be vulnerable to erosion and transport to Arctic streams and rivers. We sampled outflow from 83 permafrost collapse features in Alaska. Permafrost collapse caused substantial increases in dissolved organic carbon and inorganic nitrogen but decreased methane concentration by 90%. Upland thermokarst may be a dominant linkage transferring carbon and nutrients from terrestrial to aquatic ecosystems as the Arctic warms.
V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin
Biogeosciences, 12, 3385–3402, https://doi.org/10.5194/bg-12-3385-2015, https://doi.org/10.5194/bg-12-3385-2015, 2015
G. G. Laruelle, R. Lauerwald, J. Rotschi, P. A. Raymond, J. Hartmann, and P. Regnier
Biogeosciences, 12, 1447–1458, https://doi.org/10.5194/bg-12-1447-2015, https://doi.org/10.5194/bg-12-1447-2015, 2015
Short summary
Short summary
This study quantifies the exchange of carbon dioxide (CO2) between the atmosphere and the land-ocean aquatic continuum (LOAC) of the northeast North American coast, which consists of rivers, estuaries, and the coastal ocean. Our analysis reveals significant variations of the flux intensity both in time and space across the study area. Ice cover, snowmelt, and the intensity of the estuarine filter are identified as important control factors of the CO2 exchange along the LOAC.
O. Arnalds, H. Olafsson, and P. Dagsson-Waldhauserova
Biogeosciences, 11, 6623–6632, https://doi.org/10.5194/bg-11-6623-2014, https://doi.org/10.5194/bg-11-6623-2014, 2014
Short summary
Short summary
Iceland is one of the largest dust sources on Earth. Based on two separate methods, we estimate dust emissions to range between 30 and 40 million tons annually. Ocean deposition ranges between 5.5 and 13.8 million tons. Calculated iron deposition in oceans around Iceland ranges between 0.56 to 1.4 million tons, which are distributed over wide areas. Iron is a limiting nutrient for primary production in these waters, and dust is likely to affect oceanic Fe levels around Iceland.
N. I. W. Leblans, B. D. Sigurdsson, P. Roefs, R. Thuys, B. Magnússon, and I. A. Janssens
Biogeosciences, 11, 6237–6250, https://doi.org/10.5194/bg-11-6237-2014, https://doi.org/10.5194/bg-11-6237-2014, 2014
Short summary
Short summary
We studied the influence of allochthonous N inputs on primary succession and soil development of a 50-year-old volcanic island, Surtsey. Seabirds increased the ecosystem N accumulation rate inside their colony to ~47 kg ha-1 y-1, compared to 0.7 kg ha-1 y-1 outside it. A strong relationship was found between total ecosystem N stock and both total above- and belowground biomass and SOC stock, which shows how fast external N input can boost primary succession and soil formation.
J.-É. Tremblay, P. Raimbault, N. Garcia, B. Lansard, M. Babin, and J. Gagnon
Biogeosciences, 11, 4853–4868, https://doi.org/10.5194/bg-11-4853-2014, https://doi.org/10.5194/bg-11-4853-2014, 2014
H. E. Reader, C. A. Stedmon, and E. S. Kritzberg
Biogeosciences, 11, 3409–3419, https://doi.org/10.5194/bg-11-3409-2014, https://doi.org/10.5194/bg-11-3409-2014, 2014
R. Death, J. L. Wadham, F. Monteiro, A. M. Le Brocq, M. Tranter, A. Ridgwell, S. Dutkiewicz, and R. Raiswell
Biogeosciences, 11, 2635–2643, https://doi.org/10.5194/bg-11-2635-2014, https://doi.org/10.5194/bg-11-2635-2014, 2014
R. H. Li, S. M. Liu, Y. W. Li, G. L. Zhang, J. L. Ren, and J. Zhang
Biogeosciences, 11, 481–506, https://doi.org/10.5194/bg-11-481-2014, https://doi.org/10.5194/bg-11-481-2014, 2014
E. Asmala, R. Autio, H. Kaartokallio, L. Pitkänen, C. A. Stedmon, and D. N. Thomas
Biogeosciences, 10, 6969–6986, https://doi.org/10.5194/bg-10-6969-2013, https://doi.org/10.5194/bg-10-6969-2013, 2013
C. Buzzelli, Y. Wan, P. H. Doering, and J. N. Boyer
Biogeosciences, 10, 6721–6736, https://doi.org/10.5194/bg-10-6721-2013, https://doi.org/10.5194/bg-10-6721-2013, 2013
S. Nagao, M. Kanamori, S. Ochiai, S. Tomihara, K. Fukushi, and M. Yamamoto
Biogeosciences, 10, 6215–6223, https://doi.org/10.5194/bg-10-6215-2013, https://doi.org/10.5194/bg-10-6215-2013, 2013
V. Le Fouest, M. Babin, and J.-É. Tremblay
Biogeosciences, 10, 3661–3677, https://doi.org/10.5194/bg-10-3661-2013, https://doi.org/10.5194/bg-10-3661-2013, 2013
A. Rumín-Caparrós, A. Sanchez-Vidal, A. Calafat, M. Canals, J. Martín, P. Puig, and R. Pedrosa-Pàmies
Biogeosciences, 10, 3493–3505, https://doi.org/10.5194/bg-10-3493-2013, https://doi.org/10.5194/bg-10-3493-2013, 2013
M. A. Charette, C. F. Breier, P. B. Henderson, S. M. Pike, I. I. Rypina, S. R. Jayne, and K. O. Buesseler
Biogeosciences, 10, 2159–2167, https://doi.org/10.5194/bg-10-2159-2013, https://doi.org/10.5194/bg-10-2159-2013, 2013
B. Deutsch, V. Alling, C. Humborg, F. Korth, and C. M. Mörth
Biogeosciences, 9, 4465–4475, https://doi.org/10.5194/bg-9-4465-2012, https://doi.org/10.5194/bg-9-4465-2012, 2012
P. A. Faber, A. J. Kessler, J. K. Bull, I. D. McKelvie, F. J. R. Meysman, and P. L. M. Cook
Biogeosciences, 9, 4087–4097, https://doi.org/10.5194/bg-9-4087-2012, https://doi.org/10.5194/bg-9-4087-2012, 2012
M. E. Dueker, G. D. O'Mullan, K. C. Weathers, A. R. Juhl, and M. Uriarte
Biogeosciences, 9, 803–813, https://doi.org/10.5194/bg-9-803-2012, https://doi.org/10.5194/bg-9-803-2012, 2012
L. Lassaletta, E. Romero, G. Billen, J. Garnier, H. García-Gómez, and J. V. Rovira
Biogeosciences, 9, 57–70, https://doi.org/10.5194/bg-9-57-2012, https://doi.org/10.5194/bg-9-57-2012, 2012
J. Yu, Y. Fu, Y. Li, G. Han, Y. Wang, D. Zhou, W. Sun, Y. Gao, and F. X. Meixner
Biogeosciences, 8, 2427–2435, https://doi.org/10.5194/bg-8-2427-2011, https://doi.org/10.5194/bg-8-2427-2011, 2011
E. S. Karlsson, A. Charkin, O. Dudarev, I. Semiletov, J. E. Vonk, L. Sánchez-García, A. Andersson, and Ö. Gustafsson
Biogeosciences, 8, 1865–1879, https://doi.org/10.5194/bg-8-1865-2011, https://doi.org/10.5194/bg-8-1865-2011, 2011
Cited articles
Aguilera, D. R., Jourabchi, P., Spiteri, C., and Regnier, P.: A knowledge-based reactive transport approach for the simulation of biogeochemical dynamics in Earth systems, Geochem. Geophy. Geosy., 6, 1525–2027, https://doi.org/10.1029/2004GC000899, 2005.
Ait Ballagh, F. E., Rabouille, C., Andrieux-Loyer, F., Soetaert, K., Lansard, B., Bombled, B., Monvoisin, G., Elkalay, K., and Khalil, K.: Spatial Variability of Organic Matter and Phosphorus Cycling in Rhône River Prodelta Sediments (NW Mediterranean Sea, France): a Model-Data Approach, Estuar. Coast., 44, 1765–1789, https://doi.org/10.1007/s12237-020-00889-9, 2021.
Aller, R. C.: Mobile deltaic and continental shelf muds as suboxic, fluidized bed reactors, Mar. Chem., 61, 143–155, https://doi.org/10.1016/S0304-4203(98)00024-3, 1998.
Aller, R. C., Blair, N. E., Xia, Q., and Rude, P. D.: Remineralization rates, recycling, and storage of carbon in Amazon shelf sediments, Cont. Shelf Res., 16, 753–786, https://doi.org/10.1016/0278-4343(95)00046-1, 1996.
Aller, R. C., Blair, N. E., and Brunskill, G. J.: Early diagenetic cycling, incineration, and burial of sedimentary organic carbon in the central Gulf of Papua (Papua New Guinea), J. Geophys. Res.-Earth, 113, 148–227, https://doi.org/10.1029/2006JF000689, 2008.
Andersson, A. J. and Mackenzie, F. T.: Revisiting four scientific debates in ocean acidification research, Biogeosciences, 9, 893–905, https://doi.org/10.5194/bg-9-893-2012, 2012.
Antonelli, C., Frédérique, E., Rolland, B., Provansal, M., and Sabatier, F.: Suspended sediment and 137Cs fluxes during the exceptional December 2003 flood in the Rhone River, southeast France, Geomorphology, 95, 350–360, https://doi.org/10.1016/j.geomorph.2007.06.007, 2008.
Bauer, J. E., Cai, W.-J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S., and Regnier, P. A. G.: The changing carbon cycle of the coastal ocean, Nature, 504, 61–70, https://doi.org/10.1038/nature12857, 2013.
Bentley, S. J. and Nittrouer, C. A.: Emplacement, modification, and preservation of event strata on a flood-dominated continental shelf: Eel shelf, Northern California, Cont. Shelf Res., 23, 1465–1493, https://doi.org/10.1016/j.csr.2003.08.005, 2003.
Berg, P.: Dynamic Modeling of Early Diagenesis and Nutrient Cycling. A Case Study in an Artic Marine Sediment, Am. J. Sci., 303, 905–955, https://doi.org/10.2475/ajs.303.10.905, 2003.
Berner, R. A.: Early Diagenesis: A Theoretical Approach, Princeton University Press, Princeton, 241 pp., ISBN 9780691082608, 1980.
Bianchi, T. S., Cui, X., Blair, N. E., Burdige, D. J., Eglinton, T. I., and Galy, V.: Centers of organic carbon burial and oxidation at the land-ocean interface, Org. Geochem., 115, 138–155, https://doi.org/10.1016/j.orggeochem.2017.09.008, 2018.
Blair, N. E. and Aller, R. C.: The Fate of Terrestrial Organic Carbon in the Marine Environment, Annu. Rev. Mar. Sci., 4, 401–423, https://doi.org/10.1146/annurev-marine-120709-142717, 2012.
Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U., and Pfannkuche, O.: A marine microbial consortium apparently mediating anaerobic oxidation of methane, Nature, 407, 623–626, https://doi.org/10.1038/35036572, 2000.
Borges, A. V. and Abril, G.: 5.04 – Carbon Dioxide and Methane Dynamics in Estuaries, in: Treatise on Estuarine and Coastal Science, edited by: Wolanski, E. and McLusky, D., Academic Press, Waltham, https://doi.org/10.1016/B978-0-12-374711-2.00504-0, 119–161, 2011.
Borowski, W. S., Paull, C. K., and Ussler, W.: Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates, Mar. Geol., 159, 131–154, https://doi.org/10.1016/S0025-3227(99)00004-3, 1999.
Bourgeois, S., Pruski, A. M., Sun, M.-Y., Buscail, R., Lantoine, F., Kerhervé, P., Vétion, G., Rivière, B., and Charles, F.: Distribution and lability of land-derived organic matter in the surface sediments of the Rhône prodelta and the adjacent shelf (Mediterranean Sea, France): a multi proxy study, Biogeosciences, 8, 3107–3125, https://doi.org/10.5194/bg-8-3107-2011, 2011.
Bourrin, F., Friend, P. L., Amos, C. L., Manca, E., Ulses, C., Palanques, A., Durrieu de Madron, X., and Thompson, C. E. L.: Sediment dispersal from a typical Mediterranean flood: The Têt River, Gulf of Lions, Cont. Shelf Res., 28, 1895–1910, https://doi.org/10.1016/j.csr.2008.06.005, 2008.
Burdige, D. J.: Burial of terrestrial organic matter in marine sediments: A re-assessment, Global Biogeochem. Cy., 19, 886–6236, https://doi.org/10.1029/2004GB002368, 2005.
Burdige, D. J. and Komada, T.: Anaerobic oxidation of methane and the stoichiometry of remineralization processes in continental margin sediments, Limnol. Oceanogr., 56, 1781–1796, https://doi.org/10.4319/lo.2011.56.5.1781, 2011.
Cai, W.-J.: Estuarine and Coastal Ocean Carbon Paradox: CO2 Sinks or Sites of Terrestrial Carbon Incineration?, Annu. Rev. Mar. Sci., 3, 123–145, https://doi.org/10.1146/annurev-marine-120709-142723, 2011.
Canfield, D. E.: The evolution of the Earth surface sulfur reservoir, Am. J. Sci., 304, 839–861, https://doi.org/10.2475/ajs.304.10.839, 2004.
Canfield, D. E. and Thamdrup, B.: Towards a consistent classification scheme for geochemical environments, or, why we wish the term `suboxic' would go away, Geobiology, 7, 385–392, https://doi.org/10.1111/j.1472-4669.2009.00214.x, 2009.
Carlin, J. A., Schreiner, K. M., Dellapenna, T. M., McGuffin, A., and Smith, R. W.: Evidence of recent flood deposits within a distal shelf depocenter and implications for terrestrial carbon preservation in non-deltaic shelf settings, Mar. Geol., 431, 106376, https://doi.org/10.1016/j.margeo.2020.106376, 2021.
Cathalot, C., Rabouille, C., Pastor, L., Deflandre, B., Viollier, E., Buscail, R., Grémare, A., Treignier, C., and Pruski, A.: Temporal variability of carbon recycling in coastal sediments influenced by rivers: assessing the impact of flood inputs in the Rhône River prodelta, Biogeosciences, 7, 1187–1205, https://doi.org/10.5194/bg-7-1187-2010, 2010.
Charmasson, S., Radakovitch, O., Arnaud, M., Bouisset, P., and Pruchon, A.-S.: Long-core profiles of 137Cs, 134Cs, 60Co and 210Pb in sediment near the Rhône River (Northwestern Mediterranean Sea), Estuaries, 21, 367–378, https://doi.org/10.2307/1352836, 1998.
Crill, P. M. and Martens, C. S.: Spatial and temporal fluctuations of methane production in anoxic coastal marine sediments, Limnol. Oceanogr., 28, 1117–1130, https://doi.org/10.4319/lo.1983.28.6.1117, 1983.
Dai, Z.-j., Mei, X., Darby, S., Yaying, L., and Li, W.: Fluvial sediment transfer in the Changjiang (Yangtze) river-estuary depositional system, J. Hydrol., 566, 22–1694, https://doi.org/10.1016/j.jhydrol.2018.09.019, 2018.
Dale, A. W., Regnier, P., and Cappellen, P. V.: Bioenergetic Controls on Anaerobic Oxidation of Methane (AOM) in Coastal Marine Sediments: A Theoretical Analysis, Am. J. Sci., 306, 246–294, https://doi.org/10.2475/ajs.306.4.246, 2006.
Dale, A. W., Van Cappellen, P., Aguilera, D. R., and Regnier, P.: Methane efflux from marine sediments in passive and active margins: Estimations from bioenergetic reaction–transport simulations, Earth Planet. Sc. Lett., 265, 329–344, https://doi.org/10.1016/j.epsl.2007.09.026, 2008.
Dale, A. W., Flury, S., Fossing, H., Regnier, P., Røy, H., Scholze, C., and Jørgensen, B. B.: Kinetics of organic carbon mineralization and methane formation in marine sediments (Aarhus Bay, Denmark), Geochim. Cosmochim. Ac., 252, 159–178, https://doi.org/10.1016/j.gca.2019.02.033, 2019.
Day, J., Ibáñez, C., Pont, D., and Scarton, F.: Status and Sustainability of Mediterranean Deltas: The Case of the Ebro, Rhône, and Po Deltas and Venice Lagoon, Coasts and Estuaries, 237–249, https://doi.org/10.1016/B978-0-12-814003-1.00014-9, 2019.
De Borger, E., Tiano, J., Braeckman, U., Rijnsdorp, A. D., and Soetaert, K.: Impact of bottom trawling on sediment biogeochemistry: a modelling approach, Biogeosciences, 18, 2539–2557, https://doi.org/10.5194/bg-18-2539-2021, 2021.
Durrieu De Madron, X., Abassi, A., Heussner, S., Monaco, A., Aloisi, J. C., Radakovitch, O., Giresse, P., Buscail, R., and Kerherve, P.: Particulate matter and organic carbon budgets for the Gulf of Lions (NW Mediterranean), Oceanol. Acta, 23, 717–730, https://doi.org/10.1016/S0399-1784(00)00119-5, 2000.
Egger, M., Lenstra, W., Jong, D., Meysman, F. J. R., Sapart, C. J., van der Veen, C., Röckmann, T., Gonzalez, S., and Slomp, C. P.: Rapid Sediment Accumulation Results in High Methane Effluxes from Coastal Sediments, PLOS ONE, 11, e0161609, https://doi.org/10.1371/journal.pone.0161609, 2016.
Egger, M., Riedinger, N., Mogollón, J. M., and Jørgensen, B. B.: Global diffusive fluxes of methane in marine sediments, Nat. Geosci., 11, 421–425, https://doi.org/10.1038/s41561-018-0122-8, 2018.
Eglinton, T. I.: Tempestuous transport, Nat. Geosci., 1, 727–728, https://doi.org/10.1038/ngeo349, 2008.
Estournel, C., Mikolajczak, G., Ulses, C., Bourrin, F., Canals, M., Charmasson, S., Doxaran, D., Duhaut, T., de Madron, X. D., Marsaleix, P., Palanques, A., Puig, P., Radakovitch, O., Sanchez-Vidal, A., and Verney, R.: Sediment dynamics in the Gulf of Lion (NW Mediterranean Sea) during two autumn–winter periods with contrasting meteorological conditions, Prog. Oceanogr., 210, 102942, https://doi.org/10.1016/j.pocean.2022.102942, 2023.
Eyrolle, F., Radakovitch, O., Raimbault, P., Charmasson, S., Antonelli, C., Ferrand, E., Aubert, D., Raccasi, G., Jacquet, S., and Gurriaran, R.: Consequences of hydrological events on the delivery of suspended sediment and associated radionuclides from the Rhône River to the Mediterranean Sea, J. Soil. Sediment., 12, 1479–1495, https://doi.org/10.1007/s11368-012-0575-0, 2012.
Feng, H., Cochran, J. K., and Hirschberg, D. J.: 234Th and 7Be as tracers for transport and sources of particle-associated contaminants in the Hudson River estuary, Sci. Total Environ., 237–238, 401–418, https://doi.org/10.1016/S0048-9697(99)00153-9, 1999.
Ferreira E., Nmor S., Viollier E., Lansard B., Bombled B., Regnier E., Monvoisin G., Grenz C., Van Beek P., and Rabouille C.: Characterization of the benthic biogeochemical dynamics after flood events in the Rhône River prodelta: the data-set, SEANOE [data set], https://doi.org/10.17882/96514, 2023.
Ferrón, S., Alonso-Pérez, F., Ortega, T., and Forja, J.: Benthic respiration on the northeastern shelf of the Gulf of Cádiz (SW Iberian Peninsula), Mar. Ecol.-Progr. Ser., 392, 69–80, https://doi.org/10.3354/meps08240, 2009.
García-García, A., Orange, D., Lorenson, T., Radakovitch, O., Tesi, T., Miserocchi, S., Berné, S., Friend, P. L., Nittrouer, C., and Normand, A.: Shallow gas off the Rhône prodelta, Gulf of Lions, Mar. Geol., 234, 215–231, https://doi.org/10.1016/j.margeo.2006.09.005, 2006.
Hedges, J. I. and Keil, R. G.: Sedimentary organic matter preservation: an assessment and speculative synthesis, Mar. Chem., 49, 81–115, https://doi.org/10.1016/0304-4203(95)00008-F, 1995.
Hu, X. and Cai, W.-J.: The impact of denitrification on the atmospheric CO2 uptake potential of seawater, Mar. Chem., 127, 192–198, https://doi.org/10.1016/j.marchem.2011.09.008, 2011.
Jahnke, R. A., Reimers, C. E., and Craven, D. B.: Intensification of recycling of organic matter at the sea floor near ocean margins, Nature, 348, 50–54, https://doi.org/10.1038/348050a0, 1990.
Jørgensen, B. B.: Mineralization of organic matter in the sea bed—the role of sulphate reduction, Nature, 296, 643–645, https://doi.org/10.1038/296643a0, 1982.
Jørgensen, B. B. and Kasten, S.: Sulfur Cycling and Methane Oxidation, in: Marine Geochemistry, edited by: Schulz, H. D. and Zabel, M., Springer, Berlin, Heidelberg., https://doi.org/10.1007/3-540-32144-6_8, 271–309, 2006.
Jørgensen, B. B., Findlay, A. J., and Pellerin, A.: The Biogeochemical Sulfur Cycle of Marine Sediments, Front. Microbiol., 10, 1664–302X, https://doi.org/10.3389/fmicb.2019.00849, 2019.
Knab, N. J., Cragg, B. A., Borowski, C., Parkes, R. J., Pancost, R., and Jørgensen, B. B.: Anaerobic oxidation of methane (AOM) in marine sediments from the Skagerrak (Denmark): I. Geochemical and microbiological analyses, Geochim. Cosmochim. Ac., 72, 2868–2879, https://doi.org/10.1016/j.gca.2008.03.016, 2008.
Lansard, B., Rabouille, C., Denis, L., and Grenz, C.: Benthic remineralization at the land–ocean interface: A case study of the Rhône River (NW Mediterranean Sea), Estuar. Coast. Shelf S., 81, 544–554, https://doi.org/10.1016/j.ecss.2008.11.025, 2009.
Lee, T.-Y., Huang, J.-C., Lee, J.-Y., Jien, S.-H., Zehetner, F., and Kao, S.-J.: Magnified Sediment Export of Small Mountainous Rivers in Taiwan: Chain Reactions from Increased Rainfall Intensity under Global Warming, PLOS ONE, 10, e0138283, https://doi.org/10.1371/journal.pone.0138283, 2015.
Lepage, H., Gruat, A., Thollet, F., Le Coz, J., Coquery, M., Masson, M., Dabrin, A., Radakovitch, O., Labille, J., Ambrosi, J.-P., Delanghe, D., and Raimbault, P.: Concentrations and fluxes of suspended particulate matter and associated contaminants in the Rhône River from Lake Geneva to the Mediterranean Sea, Earth Syst. Sci. Data, 14, 2369–2384, https://doi.org/10.5194/essd-14-2369-2022, 2022.
Li, Y.-H. and Gregory, S.: Diffusion of ions in sea water and in deep-sea sediments, Geochim. Cosmochim. Ac., 38, 703–714, https://doi.org/10.1016/0016-7037(74)90145-8, 1974.
Lionello, P., Sannino, G., and Vilibić, I.: Surface wave and sea surface dynamics in the Mediterranean, in: Oceanography of the Mediterranean sea: An Introductory Guide, edited by: Schroeder, K., and Chiggiato, J., Elsevier, https://doi.org/10.1016/B978-0-12-823692-5.00007-8, 161–207, 2023.
Liu, J. T., Kao, S.-J., Huh, C.-A., and Hung, C.-C.: Gravity Flows Associated with Flood Events and Carbon Burial: Taiwan as Instructional Source Area, Annu. Rev. Mar. Sci., 5, 47–68, https://doi.org/10.1146/annurev-marine-121211-172307, 2013.
Maillet, G. M., Vella, C., Berné, S., Friend, P. L., Amos, C. L., Fleury, T. J., and Normand, A.: Morphological changes and sedimentary processes induced by the December 2003 flood event at the present mouth of the Grand Rhône River (southern France), Mar. Geol., 234, 159–177, https://doi.org/10.1016/j.margeo.2006.09.025, 2006.
Magen, C., Lapham, L., Pohlman, J. W., Marshall, K., Bosman, S., Casso, M., Chanton, J. P.: A simple headspace equilibration method for measuring dissolved methane, Limnol. Oceanogr.-Meth., 12, 1541–5856, https://doi.org/10.4319/lom.2014.12.637, 2014.
Manh, N. V., Dung, N. V., Hung, N. N., Merz, B., and Apel, H.: Large-scale suspended sediment transport and sediment deposition in the Mekong Delta, Hydrol. Earth Syst. Sci., 18, 3033–3053, https://doi.org/10.5194/hess-18-3033-2014, 2014.
Many, G., Bourrin, F., Durrieu de Madron, X., Ody, A., Doxaran, D., and Cauchy, P.: Glider and satellite monitoring of the variability of the suspended particle distribution and size in the Rhône ROFI, Prog. Oceanogr., 163, 123–135, https://doi.org/10.1016/j.pocean.2017.05.006, 2018.
Marvin-DiPasquale, M. C. and Capone, D. G.: Benthic sulfate reduction along the Chesapeake Bay central channel, I. Spatial trends and controls, Mar. Ecol. Prog. Ser., 168, 213–228, https://doi.org/10.3354/meps168213, 1998.
McKee, B. A., Aller, R. C., Allison, M. A., Bianchi, T. S., and Kineke, G. C.: Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: benthic boundary layer and seabed processes, Cont. Shelf Res., 24, 899–926, https://doi.org/10.1016/j.csr.2004.02.009, 2004.
Miralles, J., Radakovitch, O., and jean-claude, A.: 210Pb sedimentation rates from the Northwestern Mediterranean margin, Mar. Geol., 216, 155–167, https://doi.org/10.1016/j.margeo.2005.02.020, 2005.
Moriarty, J. M., Harris, C. K., Fennel, K., Friedrichs, M. A. M., Xu, K., and Rabouille, C.: The roles of resuspension, diffusion and biogeochemical processes on oxygen dynamics offshore of the Rhône River, France: a numerical modeling study, Biogeosciences, 14, 1919–1946, https://doi.org/10.5194/bg-14-1919-2017, 2017.
Mucci, A., Sundby, B., Gehlen, M., Arakaki, T., Zhong, S., and Silverberg, N.: The fate of carbon in continental shelf sediments of eastern Canada: a case study, Deep-Sea Res. Pt. II, 47, 733–760, https://doi.org/10.1016/S0967-0645(99)00124-1, 2000.
Myllykangas, J.-P., Hietanen, S., and Jilbert, T.: Legacy Effects of Eutrophication on Modern Methane Dynamics in a Boreal Estuary, Estuar. Coast., 43, 189–206, https://doi.org/10.1007/s12237-019-00677-0, 2020.
Nmor, S.: Modélisation numérique des événements lors de la diagenèse précoce dans les écosystèmes côtiers: application aux dépôts de crue dans le prodelta du Rhône, PhD thesis, Laboratoire des Sciences du climat et de l'envrionnement, University Paris-Saclay, France, 2023.
Nmor S. and Soetaert K.: FESDIA: An early diagenesis model including Iron (Fe), Sulfur (S) and Methane (CH4) dynamics, Zenodo [code], https://doi.org/10.5281/zenodo.6369288, 2022.
Nmor, S. I., Viollier, E., Pastor, L., Lansard, B., Rabouille, C., and Soetaert, K.: FESDIA (v1.0): exploring temporal variations of sediment biogeochemistry under the influence of flood events using numerical modelling, Geosci. Model Dev., 15, 7325–7351, https://doi.org/10.5194/gmd-15-7325-2022, 2022.
Palinkas, C. M., Nittrouer, C., Wheatcroft, R., and Langone, L.: The use of 7Be to identify event and seasonal sedimentation near the Po River delta, Adriatic Sea, Mar. Geol., 222, 95–112, https://doi.org/10.1016/j.margeo.2005.06.011, 2005.
Pastor, L., Cathalot, C., Deflandre, B., Viollier, E., Soetaert, K., Meysman, F. J. R., Ulses, C., Metzger, E., and Rabouille, C.: Modeling biogeochemical processes in sediments from the Rhône River prodelta area (NW Mediterranean Sea), Biogeosciences, 8, 1351–1366, https://doi.org/10.5194/bg-8-1351-2011, 2011a.
Pastor, L., Deflandre, B., Viollier, E., Cathalot, C., Metzger, E., Rabouille, C., Escoubeyrou, K., Lloret, E., Pruski, A. M., Vétion, G., Desmalades, M., Buscail, R., and Grémare, A.: Influence of the organic matter composition on benthic oxygen demand in the Rhône River prodelta (NW Mediterranean Sea), Cont. Shelf Res., 31, 1008–1019, https://doi.org/10.1016/j.csr.2011.03.007, 2011b.
Pastor, L., Rabouille, C., Metzger, E., Thibault de Chanvalon, A., Viollier, E., and Deflandre, B.: Transient early diagenetic processes in Rhône prodelta sediments revealed in contrasting flood events, Cont. Shelf Res., 166, 65–76, https://doi.org/10.1016/j.csr.2018.07.005, 2018.
Pont, D., Simonnet, J. P., and Walter-Simonnet, A. V.: Medium-term Changes in Suspended Sediment Delivery to the Ocean: Consequences of Catchment Heterogeneity and River Management (Rhône River, France), Estuar. Coast. Shelf S., 54, 1–18, https://doi.org/10.1006/ecss.2001.0829, 2002.
Pozzato, L., Rassmann, J., Lansard, B., Dumoulin, J.-P., Breugel, P., and Rabouille, C.: Origin of remineralized organic matter in sediments from the Rhone River prodelta (NW Mediterranean) traced by Δ14C and δ13C signatures of pore water DIC, Prog. Oceanogr., 163, 112–122, https://doi.org/10.1016/j.pocean.2017.05.008, 2018.
Pruski, A. M., Buscail, R., Bourgeois, S., Vétion, G., Coston-Guarini, J., and Rabouille, C.: Biogeochemistry of fatty acids in a river-dominated Mediterranean ecosystem (Rhône River prodelta, Gulf of Lions, France): Origins and diagenesis, Org. Geochem., 83–84, 227–240, https://doi.org/10.1016/j.orggeochem.2015.04.002, 2015.
Rabouille, C. and Gaillard, J.-F.: Towards the EDGE: Early Diagenetic Global Explanation. A model depicting the early diagenesis of organic matter, O2, NO3, Mn, and PO4, Geochim. Cosmochim. Ac., 55, 2511–2525, https://doi.org/10.1016/0016-7037(91)90369-G , 1991.
Rassmann, J., Lansard, B., Pozzato, L., and Rabouille, C.: Carbonate chemistry in sediment porewaters of the Rhône River delta driven by early diagenesis (northwestern Mediterranean), Biogeosciences, 13, 5379–5394, https://doi.org/10.5194/bg-13-5379-2016, 2016.
Rassmann, J., Eitel, E. M., Lansard, B., Cathalot, C., Brandily, C., Taillefert, M., and Rabouille, C.: Benthic alkalinity and dissolved inorganic carbon fluxes in the Rhône River prodelta generated by decoupled aerobic and anaerobic processes, Biogeosciences, 17, 13–33, https://doi.org/10.5194/bg-17-13-2020, 2020.
Regnier, P., Dale, A. W., Arndt, S., LaRowe, D. E., Mogollón, J., and Van Cappellen, P.: Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective, Earth-Sci. Rev., 106, 105–130, https://doi.org/10.1016/j.earscirev.2011.01.002, 2011.
Rowe, G. T., Kaegi, M. E. C., Morse, J. W., Boland, G. S., and Escobar Briones, E. G.: Sediment community metabolism associated with continental shelf hypoxia, Northern Gulf of Mexico, Estuaries, 25, 1097–1106, https://doi.org/10.1007/BF02692207, 2002.
Seeberg-Elverfeldt, J., Schlüter, M., Feseker, T., and Koelling, M.: Rhizon sampling of pore waters near the sediment/water interface of aquatic systems, Limnol. Oceanogr.-Meth., 3, 361–371, https://doi.org/10.4319/lom.2005.3.361, 2005.
Smeaton, C. and Austin, W.: Quality Not Quantity: Prioritizing the Management of Sedimentary Organic Matter Across Continental Shelf Seas, Geophys. Res. Lett., 49, 94–8276, https://doi.org/10.1029/2021GL097481, 2022.
Soetaert, K., Herman, P. M. J., and Middelburg, J. J.: A model of early diagenetic processes from the shelf to abyssal depths, Geochim. Cosmochim. Ac., 60, 1019–1040, https://doi.org/10.1016/0016-7037(96)00013-0, 1996.
Tesi, T., Langone, L., Goñi, M. A., Wheatcroft, R. A., Miserocchi, S., and Bertotti, L.: Early diagenesis of recently deposited organic matter: A 9-yr time-series study of a flood deposit, Geochim. Cosmochim. Ac., 83, 19–36, https://doi.org/10.1016/j.gca.2011.12.026, 2012.
Thill, A., Moustier, S., Garnier, J. M., Estournel, C., Naudin, J., and Bottero, J.-Y.: Evolution of particle size and concentration in the Rhone river mixing zone: Influence of salt flocculation, Cont. Shelf Res., 21, 2127–2140, https://doi.org/10.1016/S0278-4343(01)00047-4, 2001.
Treude, T., Boetius, A., Knittel, K., Wallmann, K., and Jørgensen, B. B.: Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean, Mar. Ecol.-Prog. Ser., 264, 1–14, https://doi.org/10.3354/meps264001, 2003.
Treude, T., Krüger, M., Boetius, A., and Jørgensen, B.: Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernförde Bay (German Baltic), Limnol. Oceanogr., 50, 1771–1786, https://doi.org/10.4319/lo.2005.50.6.1771, 2005.
Ulses, C., Estournel, C., Durrieu de Madron, X., and Palanques, A.: Suspended sediment transport in the Gulf of Lions (NW Mediterranean): Impact of extreme storms and floods, Cont. Shelf Res., 28, 2048–2070, https://doi.org/10.1016/j.csr.2008.01.015, 2008.
Van Beek, P., Souhaut, M., Lansard, B., Bourquin, M., Reyss, J. L., von Ballmoos, P., and Jean, P.: LAFARA: a new underground laboratory in the French Pyrénées for ultra low-level gamma-ray spectrometry, J. Environ. Radioactiv., 116, 152–158, https://doi.org/10.1016/j.jenvrad.2012.10.002, 2013.
Van Cappellen, P. and Gaillard, J.-F.: Chapter 8. Biogeochemical dynamics in aquatic sediments, in: Reactive Transport in Porous Media, edited by: Peter, C. L., Carl, I. S., and Eric, H. O., DeGruyter, Berlin, Boston, 335–376, https://doi.org/10.1515/9781501509797-011, 2018.
Wang, Y. and Van Cappellen, P.: A multicomponent reactive transport model of early diagenesis: Application to redox cycling in coastal marine sediments, Geochim. Cosmochim. Ac., 60, 2993–3014, https://doi.org/10.1016/0016-7037(96)00140-8, 1996.
Wheatcroft, R. A.: Preservation potential of sedimentary event layers, Geology, 18, 843–845, https://doi.org/10.1130/0091-7613(1990)018{%}3C0843:PPOSEL{%}3E2.3.CO;2, 1990.
Wheatcroft, R. and Sommerfield, C. K.: River Sediment Flux and Shelf Sediment Accumulation Rates on the Pacific Northwest Margin, Cont. Shelf Res., 25, 311–332, https://doi.org/10.1016/j.csr.2004.10.001, 2005.
Wheatcroft, R., Stevens, A., Hunt, L., and Milligan, T.: The large-scale distribution and internal geometry of the fall 2000 Po River flood deposit: Evidence from digital X-radiography, Cont. Shelf Res., 26, 499–516, https://doi.org/10.1016/j.csr.2006.01.002, 2006.
Wu, J., Rabouille, C., Charmasson, S., Reyss, J. L., and Cagnat, X.: Constraining the origin of recently deposited particles using natural radionuclides 7Be and 234Thex in deltaic sediments, Cont. Shelf Res., 165, 106–119, https://doi.org/10.1016/j.csr.2018.06.010, 2018.
Zebracki, M., Eyrolle-Boyer, F., Evrard, O., Claval, D., Mourier, B., Gairoard, S., Cagnat, X., and Antonelli, C.: Tracing the origin of suspended sediment in a large Mediterranean river by combining continuous river monitoring and measurement of artificial and natural radionuclides, Sci. Total Environ., 502, 122–132, https://doi.org/10.1016/j.scitotenv.2014.08.082, 2015.
Zhuang, G.-C., Heuer, V. B., Lazar, C. S., Goldhammer, T., Wendt, J., Samarkin, V. A., Elvert, M., Teske, A. P., Joye, S. B., and Hinrichs, K.-U.: Relative importance of methylotrophic methanogenesis in sediments of the Western Mediterranean Sea, Geochim. Cosmochim. Ac., 224, 171–186, https://doi.org/10.1016/j.gca.2017.12.024, 2018.
Short summary
The study provides new insights by examining the short-term impact of winter floods on biogeochemical sediment processes near the Rhône River (NW Mediterranean Sea). This is the first winter monitoring of sediment and porewater in deltaic areas. The coupling of these data with a new model enables us to quantify the evolution of biogeochemical processes. It also provides new perspectives on the benthic carbon cycle in river deltas considering climate change, whereby flooding should intensify.
The study provides new insights by examining the short-term impact of winter floods on...
Altmetrics
Final-revised paper
Preprint