Articles | Volume 22, issue 18
https://doi.org/10.5194/bg-22-4969-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-4969-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Grassland yield estimations – potentials and limitations of remote sensing in comparison to process-based modeling and field measurements
Sophie Reinermann
CORRESPONDING AUTHOR
Institute of Geography and Geology, Department of Remote Sensing, University of Würzburg, Würzburg, Germany
German Remote Sensing Data Center (DFD), German Aerospace Center (DLR), Oberpfaffenhofen, Weßling, Germany
Carolin Boos
Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
Andrea Kaim
Professorship of Ecological Services, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
Anne Schucknecht
EO Applications Team, OHB System AG, Weßling, Germany
Sarah Asam
German Remote Sensing Data Center (DFD), German Aerospace Center (DLR), Oberpfaffenhofen, Weßling, Germany
Ursula Gessner
German Remote Sensing Data Center (DFD), German Aerospace Center (DLR), Oberpfaffenhofen, Weßling, Germany
Sylvia H. Annuth
Professorship of Ecological Services, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
Thomas M. Schmitt
Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
Professorship of Ecological Services, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
Thomas Koellner
Professorship of Ecological Services, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
Ralf Kiese
Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
Related authors
Carolin Boos, Sophie Reinermann, Raul Wood, Ralf Ludwig, Anne Schucknecht, David Kraus, and Ralf Kiese
EGUsphere, https://doi.org/10.5194/egusphere-2024-2864, https://doi.org/10.5194/egusphere-2024-2864, 2024
Preprint archived
Short summary
Short summary
We applied a biogeochemical model on grasslands in the pre-Alpine Ammer region in Germany and analyzed the influence of soil and climate on annual yields. In drought affected years, total yields were decreased by 4 %. Overall, yields decrease with rising elevation, but less so in drier and hotter years, whereas soil organic carbon has a positive impact on yields, especially in drier years. Our findings imply, that adapted management in the region allows to mitigate yield losses from drought.
Fawad Khan, Samuel Franco Luesma, Frederik Hartmann, Michael Dannenmann, Rainer Gasche, Clemens Scheer, Andreas Gattinger, Wiebke Niether, Elizabeth Gachibu Wangari, Ricky Mwangada Mwanake, Ralf Kiese, and Benjamin Wolf
Biogeosciences, 22, 5081–5102, https://doi.org/10.5194/bg-22-5081-2025, https://doi.org/10.5194/bg-22-5081-2025, 2025
Short summary
Short summary
Crop rotations with legumes and use of organic and mineral fertilizers show potential to reduce agricultural N losses. This study examined N losses, including direct N2 flux, on two adjacent sites with different management histories: organic farming (OF) with legume cultivation and integrated farming (IF) using synthetic and organic N inputs. IF increased soil organic carbon and nitrogen content and 15N recovery and showed a balanced N budget (i.e. more efficient N cycling compared to OF).
Yongchao Zeng, Calum Brown, Mohamed Byari, Joanna Raymond, Thomas Schmitt, and Mark Rounsevell
Geosci. Model Dev., 18, 4983–5013, https://doi.org/10.5194/gmd-18-4983-2025, https://doi.org/10.5194/gmd-18-4983-2025, 2025
Short summary
Short summary
Understanding environmental policy interventions is challenging due to complex institutional actor interactions. Large language models (LLMs) offer new solutions by mimicking the actors. We present InsNet-CRAFTY v1.0, a multi-LLM-agent model coupled with a land system model, simulating competing policy priorities. The model shows how LLM agents can simulate decision-making in institutional networks, highlighting both their potential and limitations in advancing land system modelling.
Roxanne Daelman, Marijn Bauters, Matti Barthel, Emmanuel Bulonza, Lodewijk Lefevre, José Mbifo, Johan Six, Klaus Butterbach-Bahl, Benjamin Wolf, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 22, 1529–1542, https://doi.org/10.5194/bg-22-1529-2025, https://doi.org/10.5194/bg-22-1529-2025, 2025
Short summary
Short summary
The increase in atmospheric concentrations of several greenhouse gases (GHGs) since 1750 is attributed to human activity. However, natural ecosystems, such as tropical forests, also contribute to GHG budgets. The Congo Basin hosts the second largest tropical forest and is understudied. In this study, measurements of soil GHG exchange were carried out during 16 months in a tropical forest in the Congo Basin. Overall, the soil acted as a major source of CO2 and N2O and a minor sink of CH4.
Carolin Boos, Sophie Reinermann, Raul Wood, Ralf Ludwig, Anne Schucknecht, David Kraus, and Ralf Kiese
EGUsphere, https://doi.org/10.5194/egusphere-2024-2864, https://doi.org/10.5194/egusphere-2024-2864, 2024
Preprint archived
Short summary
Short summary
We applied a biogeochemical model on grasslands in the pre-Alpine Ammer region in Germany and analyzed the influence of soil and climate on annual yields. In drought affected years, total yields were decreased by 4 %. Overall, yields decrease with rising elevation, but less so in drier and hotter years, whereas soil organic carbon has a positive impact on yields, especially in drier years. Our findings imply, that adapted management in the region allows to mitigate yield losses from drought.
Elizabeth Gachibu Wangari, Ricky Mwangada Mwanake, Tobias Houska, David Kraus, Gretchen Maria Gettel, Ralf Kiese, Lutz Breuer, and Klaus Butterbach-Bahl
Biogeosciences, 20, 5029–5067, https://doi.org/10.5194/bg-20-5029-2023, https://doi.org/10.5194/bg-20-5029-2023, 2023
Short summary
Short summary
Agricultural landscapes act as sinks or sources of the greenhouse gases (GHGs) CO2, CH4, or N2O. Various physicochemical and biological processes control the fluxes of these GHGs between ecosystems and the atmosphere. Therefore, fluxes depend on environmental conditions such as soil moisture, soil temperature, or soil parameters, which result in large spatial and temporal variations of GHG fluxes. Here, we describe an example of how this variation may be studied and analyzed.
Ricky Mwangada Mwanake, Gretchen Maria Gettel, Elizabeth Gachibu Wangari, Clarissa Glaser, Tobias Houska, Lutz Breuer, Klaus Butterbach-Bahl, and Ralf Kiese
Biogeosciences, 20, 3395–3422, https://doi.org/10.5194/bg-20-3395-2023, https://doi.org/10.5194/bg-20-3395-2023, 2023
Short summary
Short summary
Despite occupying <1 %; of the globe, streams are significant sources of greenhouse gas (GHG) emissions. In this study, we determined anthropogenic effects on GHG emissions from streams. We found that anthropogenic-influenced streams had up to 20 times more annual GHG emissions than natural ones and were also responsible for seasonal peaks. Anthropogenic influences also altered declining GHG flux trends with stream size, with potential impacts on stream-size-based spatial upscaling techniques.
Joseph Okello, Marijn Bauters, Hans Verbeeck, Samuel Bodé, John Kasenene, Astrid Françoys, Till Engelhardt, Klaus Butterbach-Bahl, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 20, 719–735, https://doi.org/10.5194/bg-20-719-2023, https://doi.org/10.5194/bg-20-719-2023, 2023
Short summary
Short summary
The increase in global and regional temperatures has the potential to drive accelerated soil organic carbon losses in tropical forests. We simulated climate warming by translocating intact soil cores from higher to lower elevations. The results revealed increasing temperature sensitivity and decreasing losses of soil organic carbon with increasing elevation. Our results suggest that climate warming may trigger enhanced losses of soil organic carbon from tropical montane forests.
Friedrich Boeing, Oldrich Rakovec, Rohini Kumar, Luis Samaniego, Martin Schrön, Anke Hildebrandt, Corinna Rebmann, Stephan Thober, Sebastian Müller, Steffen Zacharias, Heye Bogena, Katrin Schneider, Ralf Kiese, Sabine Attinger, and Andreas Marx
Hydrol. Earth Syst. Sci., 26, 5137–5161, https://doi.org/10.5194/hess-26-5137-2022, https://doi.org/10.5194/hess-26-5137-2022, 2022
Short summary
Short summary
In this paper, we deliver an evaluation of the second generation operational German drought monitor (https://www.ufz.de/duerremonitor) with a state-of-the-art compilation of observed soil moisture data from 40 locations and four different measurement methods in Germany. We show that the expressed stakeholder needs for higher resolution drought information at the one-kilometer scale can be met and that the agreement of simulated and observed soil moisture dynamics can be moderately improved.
Anne Schucknecht, Bumsuk Seo, Alexander Krämer, Sarah Asam, Clement Atzberger, and Ralf Kiese
Biogeosciences, 19, 2699–2727, https://doi.org/10.5194/bg-19-2699-2022, https://doi.org/10.5194/bg-19-2699-2022, 2022
Short summary
Short summary
Actual maps of grassland traits could improve local farm management and support environmental assessments. We developed, assessed, and applied models to estimate dry biomass and plant nitrogen (N) concentration in pre-Alpine grasslands with drone-based multispectral data and canopy height information. Our results indicate that machine learning algorithms are able to estimate both parameters but reach a better level of performance for biomass.
Matthias Mauder, Andreas Ibrom, Luise Wanner, Frederik De Roo, Peter Brugger, Ralf Kiese, and Kim Pilegaard
Atmos. Meas. Tech., 14, 7835–7850, https://doi.org/10.5194/amt-14-7835-2021, https://doi.org/10.5194/amt-14-7835-2021, 2021
Short summary
Short summary
Turbulent flux measurements suffer from a general systematic underestimation. One reason for this bias is non-local transport by large-scale circulations. A recently developed model for this additional transport of sensible and latent energy is evaluated for three different test sites. Different options on how to apply this correction are presented, and the results are evaluated against independent measurements.
Cited articles
NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team: ASTER GDEM Global Digital Elevation Model V003, NASA Land Processes Distributed Active Archive Center [data set], https://doi.org/10.5067/ASTER/ASTGTM.003, 2018.
Ali, I., Barrett, B., Cawkwell, F., Green, S., Dwyer, E., and Neumann, M.: Application of Repeat-Pass TerraSAR-X Staring Spotlight Interferometric Coherence to Monitor Pasture Biophysical Parameters: Limitations and Sensitivity Analysis, IEEE J. Sel. Top. Appl., 10, 3225–3231, https://doi.org/10.1109/JSTARS.2017.2679761, 2017a.
Ali, I., Cawkwell, F., Dwyer, E., and Green, S.: Modeling Managed Grassland Biomass Estimation by Using Multitemporal Remote Sensing Data – A Machine Learning Approach, IEEE J. Sel. Top. Appl., 10, 3254–3264, https://doi.org/10.1109/JSTARS.2016.2561618, 2017b.
Auer, I., Böhm, R., Jurkovic, A., Lipa, W., Orlik, A., Potzmann, R., Schöner, W., Ungersböck, M., Matulla, C., Briffa, K., Jones, P., Efthymiadis, D., Brunetti, M., Nanni, T., Maugeri, M., Mercalli, L., Mestre, O., Moisselin, J., Begert, M., Müller–Westermeier, G., Kveton, V., Bochnicek, O., Stastny, P., Lapin, M., Szalai, S., Szentimrey, T., Cegnar, T., Dolinar, M., Gajic-Capka, M., Zaninovic, K., Majstorovic, Z., and Nieplova, E.: HISTALP – historical instrumental climatological surface time series of the Greater Alpine Region, Int. J. Climatol., 27, 17–46, https://doi.org/10.1002/joc.1377, 2007.
Ball, J. T., Woodrow, I. E., and Berry, J. A.: A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions, in: Progress in Photosynthesis Research, edited by: Biggins, J., Springer Netherlands, Dordrecht, 221–224, https://doi.org/10.1007/978-94-017-0519-6_48, 1987.
Barrachina, M., Cristóbal, J., and Tulla, A. F.: Estimating above-ground biomass on mountain meadows and pastures through remote sensing, Int. J. Appl. Earth Obs., 38, 184–192, https://doi.org/10.1016/j.jag.2014.12.002, 2015.
Bengtsson, J., Bullock, J. M., Egoh, B., Everson, C., Everson, T., O'Connor, T., O'Farrell, P. J., Smith, H. G., and Lindborg, R.: Grasslands-more important for ecosystem services than you might think, Ecosphere, 10, e02582, https://doi.org/10.1002/ecs2.2582, 2019.
Beniston, M.: Climatic Change in Mountain Regions: A Review of Possible Impacts, Climatic Change, 59, 5–31, https://doi.org/10.1023/A:1024458411589, 2003.
Berauer, B. J., Wilfahrt, P. A., Arfin-Khan, M. A. S., Eibes, P., Heßberg, A. von, Ingrisch, J., Schloter, M., Schuchardt, M. A., and Jentsch, A.: Low resistance of montane and alpine grasslands to abrupt changes in temperature and precipitation regimes, Arct. Antarct. Alp. Res., 51, 215–231, https://doi.org/10.1080/15230430.2019.1618116, 2019.
Bernhardt-Römermann, M., Römermann, C., Sperlich, S., and Schmidt, W.: Explaining grassland biomass – the contribution of climate, species and functional diversity depends on fertilization and mowing frequency, J. Appl. Ecol., 48, 1088–1097, https://doi.org/10.1111/j.1365-2664.2011.01968.x, 2011.
Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-Campen, H., Müller, C., Reichstein, M., and Smith, B.: Modelling the role of agriculture for the 20th century global terrestrial carbon balance, Glob. Change Biol., 13, 679–706, https://doi.org/10.1111/j.1365-2486.2006.01305.x, 2007.
Boos, C., Reinermann, S., Wood, R., Ludwig, R., Schucknecht, A., Kraus, D., and Kiese, R.: Drought impact on productivity: Data informed process-based field-scale modeling of a pre-Alpine grassland region, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-2864, 2024.
Chang, J., Viovy, N., Vuichard, N., Ciais, P., Campioli, M., Klumpp, K., Martin, R., Leip, A., and Soussana, J.-F.: Modeled Changes in Potential Grassland Productivity and in Grass-Fed Ruminant Livestock Density in Europe over 1961–2010, PLOS One, 10, e0127554, https://doi.org/10.1371/journal.pone.0127554, 2015.
Chang, J. F., Viovy, N., Vuichard, N., Ciais, P., Wang, T., Cozic, A., Lardy, R., Graux, A.-I., Klumpp, K., Martin, R., and Soussana, J.-F.: Incorporating grassland management in ORCHIDEE: model description and evaluation at 11 eddy-covariance sites in Europe, Geosci. Model Dev., 6, 2165–2181, https://doi.org/10.5194/gmd-6-2165-2013, 2013.
CLMS: High Resolution Vegetation Phenology and Productivity (HR-VPP) Start-of-Season Date (SOSD), European Environment Agency (EEA) [data set], https://doi.org/10.2909/c1c46cb2-b02b-4013-aae5-a54a8c018b1e, 2019.
Le Clec'h, S., Finger, R., Buchmann, N., Gosal, A. S., Hörtnagl, L., Huguenin-Elie, O., Jeanneret, P., Lüscher, A., Schneider, M. K., and Huber, R.: Assessment of spatial variability of multiple ecosystem services in grasslands of different intensities, J. Environ. Manage., 251, 109372, https://doi.org/10.1016/j.jenvman.2019.109372, 2019.
Dengler, J., Janišová, M., Török, P., and Wellstein, C.: Biodiversity of Palaearctic grasslands: a synthesis, Agr. Ecosyst. Environ., 182, 1–14, https://doi.org/10.1016/j.agee.2013.12.015, 2014.
Diepolder, M., Heinz, S., Kuhn, G., and Raschbacher, S.: Ertrags- und Nährstoffmonitoring Grünland Bayern: Zusammengefasste Ergebnisse des Forschungsprojektes, https://www.lfl.bayern.de/mam/cms07/iab/dateien/ertrags_naehrstoffmonitoring_gruenland_bayern_diepolder_sub.pdf (last access: 19 August 2025), 2016.
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., and Bargellini, P.: Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services, Remote Sens. Environ., 120, 25–36, https://doi.org/10.1016/j.rse.2011.11.026, 2012.
Dusseux, P., Guyet, T., Pattier, P., Barbier, V., and Nicolas, H.: Monitoring of grassland productivity using Sentinel-2 remote sensing data, Int. J. Appl. Earth Obs., 111, 102843, https://doi.org/10.1016/j.jag.2022.102843, 2022.
Eder, E., Riegler-Nurscher, P., Prankl, J., and Prankl, H.: Grassland Yield Estimation Using Transfer Learning from Remote Sensing Data, KI – Künstliche Intelligenz, 37, 187–194, https://doi.org/10.1007/s13218-023-00814-9, 2023.
Emadodin, I., Corral, D. E. F., Reinsch, T., Kluß, C., and Taube, F.: Climate Change Effects on Temperate Grassland and Its Implication for Forage Production: A Case Study from Northern Germany, Agriculture, 11, 232, https://doi.org/10.3390/agriculture11030232, 2021.
Farquhar, G. D., Caemmerer, S. von, and Berry, J. A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149, 78–90, https://doi.org/10.1007/BF00386231, 1980.
Friedman, J. H.: Greedy Function Approximation: A Gradient Boosting Machine, Ann. Stat., 29, 1189–1232, 2001.
Gerowitt, B., Schroeder, S., Dempfle, L., Engels, E.-M., Engels, J., Feindt, H. Peter, Graner, A., Hamm, U., Heißenhuber, A., Schulte-Coerne, H., and Wolters, V.: Biodiversität im Grünland – unverzichtbar für Landwirtschaft und Gesellschaft: Stellungnahme des Wissenschaftlichen Beirats für Biodiversität und Genetische Ressourcen beim Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, https://www.bmleh.de/SharedDocs/Downloads/DE/_Ministerium/Beiraete/biodiversitaet/StellungnahmeBiodivGruenland.pdf?__blob=publicationFile&v=2 (last access: 19 August 2025), 2013.
Gibon, A.: Managing grassland for production, the environment and the landscape. Challenges at the farm and the landscape level, Livest. Prod. Sci., 96, 11–31, https://doi.org/10.1016/j.livprodsci.2005.05.009, 2005.
Gibson, D. J.: Grasses and grassland ecology, Oxford University Press, Oxford, UK, ISBN 978-0-19-852918-7, 2009.
Gilhaus, K., Boch, S., Fischer, M., Hölzel, N., Kleinebecker, T., Prati, D., Rupprecht, D., Schmitt, B., and Klaus, V. H.: Grassland management in Germany: effects on plant diversity and vegetation composition, 37, 379–397, https://doi.org/10.14471/2017.37.010, 2017.
Goliski, P., Czerwiski, M., Jørgensen, M., Mølmann, J. A. B., Goliska, B., and Taff, G.: Relationship Between Climate Trends and Grassland Yield Across Contrasting European Locations, Open Life Sci., 13, 589–598, https://doi.org/10.1515/biol-2018-0070, 2018.
Gossner, M. M., Lewinsohn, T. M., Kahl, T., Grassein, F., Boch, S., Prati, D., Birkhofer, K., Renner, S. C., Sikorski, J., Wubet, T., Arndt, H., Baumgartner, V., Blaser, S., Blüthgen, N., Börschig, C., Buscot, F., Diekötter, T., Jorge, L. R., Jung, K., Keyel, A. C., Klein, A.-M., Klemmer, S., Krauss, J., Lange, M., Müller, J., Overmann, J., Pašali, E., Penone, C., Perovi, D. J., Purschke, O., Schall, P., Socher, S. A., Sonnemann, I., Tschapka, M., Tscharntke, T., Türke, M., Venter, P. C., Weiner, C. N., Werner, M., Wolters, V., Wurst, S., Westphal, C., Fischer, M., Weisser, W. W., and Allan, E.: Land-use intensification causes multitrophic homogenization of grassland communities, Nature, 540, 266–269, https://doi.org/10.1038/nature20575, 2016.
Del Grosso, S. J. and Parton, W. J.: History of Ecosystem Model Development at Colorado State University and Current Efforts to Address Contemporary Ecological Issues, in: Bridging Among Disciplines by Synthesizing Soil and Plant Processes, edited by: Wendroth, O., Lascano, R. J., and Ma, L., American Society of Agronomy and Soil Science Society of America, Madison, WI, USA, 53–69, https://doi.org/10.2134/advagricsystmodel8.2017.0012, 2019.
Grote, R., Lavoir, A.-V., Rambal, S., Staudt, M., Zimmer, I., and Schnitzler, J.-P.: Modelling the drought impact on monoterpene fluxes from an evergreen Mediterranean forest canopy, Oecologia, 160, 213–223, https://doi.org/10.1007/s00442-009-1298-9, 2009.
Haas, E., Klatt, S., Fröhlich, A., Kraft, P., Werner, C., Kiese, R., Grote, R., Breuer, L., and Butterbach-Bahl, K.: LandscapeDNDC: a process model for simulation of biosphere–atmosphere–hydrosphere exchange processes at site and regional scale, Landscape Ecol., 28, 615–636, https://doi.org/10.1007/s10980-012-9772-x, 2013.
Hagolle, O., Huc, M., Desjardins, C., Auer, S., and Richter, R.: Maja Algorithm Theoretical Basis Document, Zenodo, https://doi.org/10.5281/zenodo.1209633, 2017.
Holtgrave, A.-K., Röder, N., Ackermann, A., Erasmi, S., and Kleinschmit, B.: Comparing Sentinel-1 and -2 Data and Indices for Agricultural Land Use Monitoring, Remote Sens., 12, 2919, https://doi.org/10.3390/rs12182919, 2020.
Holzworth, D. P., Huth, N. I., deVoil, P. G., Zurcher, E. J., Herrmann, N. I., McLean, G., Chenu, K., Oosterom, E. J. van, Snow, V., Murphy, C., Moore, A. D., Brown, H., Whish, J. P. M., Verrall, S., Fainges, J., Bell, L. W., Peake, A. S., Poulton, P. L., Hochman, Z., Thorburn, P. J., Gaydon, D. S., Dalgliesh, N. P., Rodriguez, D., Cox, H., Chapman, S., Doherty, A., Teixeira, E., Sharp, J., Cichota, R., Vogeler, I., Li, F. Y., Wang, E., Hammer, G. L., Robertson, M. J., Dimes, J. P., Whitbread, A. M., Hunt, J., Rees, H. van, McClelland, T., Carberry, P. S., Hargreaves, J. N. G., MacLeod, N., McDonald, C., Harsdorf, J., Wedgwood, S., and Keating, B. A.: APSIM – Evolution towards a new generation of agricultural systems simulation, Environ. Modell. Softw., 62, 327–350, https://doi.org/10.1016/j.envsoft.2014.07.009, 2014.
Hong, M., Zhang, Y., Braun, R. C., and Bremer, D. J.: Simulations of nitrous oxide emissions and global warming potential in a C4 turfgrass system using process-based models, Eur. J. Agron., 142, 126668, https://doi.org/10.1016/j.eja.2022.126668, 2023.
Houska, T., Kraus, D., Kiese, R., and Breuer, L.: Constraining a complex biogeochemical model for CO2 and N2O emission simulations from various land uses by model–data fusion, Biogeosciences, 14, 3487–3508, https://doi.org/10.5194/bg-14-3487-2017, 2017.
Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., and Ferreira, L.: Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sens. Environ., 83, 195–213, https://doi.org/10.1016/S0034-4257(02)00096-2, 2002.
Indexdatabase: https://www.indexdatabase.de/, last access: 19.12.2024.
Isbell, F., Tilman, D., Polasky, S., Binder, S., and Hawthorne, P.: Low biodiversity state persists two decades after cessation of nutrient enrichment, Ecol. Lett., 16, 454–460, https://doi.org/10.1111/ele.12066, 2013.
Jägermeyr, J., Müller, C., Ruane, A. C., Elliott, J., Balkovic, J., Castillo, O., Faye, B., Foster, I., Folberth, C., Franke, J. A., Fuchs, K., Guarin, J. R., Heinke, J., Hoogenboom, G., Iizumi, T., Jain, A. K., Kelly, D., Khabarov, N., Lange, S., Lin, T.-S., Liu, W., Mialyk, O., Minoli, S., Moyer, E. J., Okada, M., Phillips, M., Porter, C., Rabin, S. S., Scheer, C., Schneider, J. M., Schyns, J. F., Skalsky, R., Smerald, A., Stella, T., Stephens, H., Webber, H., Zabel, F., and Rosenzweig, C.: Climate impacts on global agriculture emerge earlier in new generation of climate and crop models, Nature food, 2, 873–885, https://doi.org/10.1038/s43016-021-00400-y, 2021.
Kaim, A., Schmitt, T. M., Annuth, S. H., Haensel, M., and Koellner, T.: An agent-based model to simulate field-specific nitrogen fertilizer applications in grasslands, Eur. J. Agron., 165, 127539, https://doi.org/10.1016/j.eja.2025.127539, 2025.
Kiese, R., Heinzeller, C., Werner, C., Wochele, S., Grote, R., and Butterbach-Bahl, K.: Quantification of nitrate leaching from German forest ecosystems by use of a process oriented biogeochemical model, Environ. Pollut., 159, 3204–3214, https://doi.org/10.1016/j.envpol.2011.05.004, 2011.
Kiese, R., Fersch, B., Baessler, C., Brosy, C., Butterbach-Bahl, K., Chwala, C., Dannenmann, M., Fu, J., Gasche, R., Grote, R., Jahn, C., Klatt, J., Kunstmann, H., Mauder, M., Rödiger, T., Smiatek, G., Soltani, M., Steinbrecher, R., Völksch, I., Werhahn, J., Wolf, B., Zeeman, M., and Schmid, H. P.: The TERENO Pre-Alpine Observatory: Integrating Meteorological, Hydrological, and Biogeochemical Measurements and Modeling, Vadose Zone J., 17, 180060, https://doi.org/10.2136/vzj2018.03.0060, 2018.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World Map of the Köppen-Geiger climate classification updated, Meteorol. Z., 15, 259–263, https://doi.org/10.1127/0941-2948/2006/0130, 2006.
Kraus, D., Weller, S., Klatt, S., Haas, E., Wassmann, R., Kiese, R., and Butterbach-Bahl, K.: A new LandscapeDNDC biogeochemical module to predict CH4 and N2O emissions from lowland rice and upland cropping systems, Plant Soil, 386, 125–149, https://doi.org/10.1007/s11104-014-2255-x, 2015.
Kraus, D., Weller, S., Klatt, S., Santabárbara, I., Haas, E., Wassmann, R., Werner, C., Kiese, R., and Butterbach-Bahl, K.: How well can we assess impacts of agricultural land management changes on the total greenhouse gas balance (CO2, CH4 and N2O) of tropical rice-cropping systems with a biogeochemical model?, Agr. Ecosyst. Environ., 224, 104–115, https://doi.org/10.1016/j.agee.2016.03.037, 2016.
Krauth, J. R. and Thomas, S. G.: The tasseled Cap – A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by LANDSAT, Proceedings of the Symposium on Machine Processing of Remotely Sensed Data, West Lafayette, USA, 29 June–1 July 1976, 4B, 41–51, 1976.
LDBV (Landesamt für Digitalisierung, Breitband und Vermessung): Bodenschätzung (BOSCH) [data set], https://www.ldbv.bayern.de/produkte/liegenschaftsinformationen/boden.html (last access: 23 September 2025), 2018.
LfL (Landesamt für Landwirtschaft): Leitfaden für die Düngung von Acker- und Grünland: Gelbes Heft, Bayerische Landesanstalt für Landwirtschaft (LfL), https://www.lfl.bayern.de/mam/cms07/publikationen/daten/informationen/2022_08_iab_info_gelbes_heft.pdf (last access: 19 August 2025), 2018.
Liebermann, R., Breuer, L., Houska, T., Kraus, D., Moser, G., and Kraft, P.: Simulating Long-Term Development of Greenhouse Gas Emissions, Plant Biomass, and Soil Moisture of a Temperate Grassland Ecosystem under Elevated Atmospheric CO2, Agronomy, 10, 50, https://doi.org/10.3390/agronomy10010050, 2020.
Mayel, S., Jarrah, M., and Kuka, K.: How does grassland management affect physical and biochemical properties of temperate grassland soils? A review study, Grass Forage Sci., 76, 215–244, https://doi.org/10.1111/gfs.12512, 2021.
Molina-Herrera, S., Haas, E., Klatt, S., Kraus, D., Augustin, J., Magliulo, V., Tallec, T., Ceschia, E., Ammann, C., Loubet, B., Skiba, U., Jones, S., Brümmer, C., Butterbach-Bahl, K., and Kiese, R.: A modeling study on mitigation of N2O emissions and NO3 leaching at different agricultural sites across Europe using LandscapeDNDC, Sci. Total Environ., 553, 128–140, https://doi.org/10.1016/j.scitotenv.2015.12.099, 2016.
Muro, J., Linstädter, A., Magdon, P., Wöllauer, S., Männer, F. A., Schwarz, L.-M., Ghazaryan, G., Schultz, J., Malenovský, Z., and Dubovyk, O.: Predicting plant biomass and species richness in temperate grasslands across regions, time, and land management with remote sensing and deep learning, Remote Sens. Environ., 282, 113262, https://doi.org/10.1016/j.rse.2022.113262, 2022.
Murphy, D. J., Murphy, M. D., O'Brien, B., and O'Donovan, M.: A Review of Precision Technologies for Optimising Pasture Measurement on Irish Grassland, Agriculture, 11, 600, https://doi.org/10.3390/agriculture11070600, 2021.
Neyret, M., Fischer, M., Allan, E., Hölzel, N., Klaus, V. H., Kleinebecker, T., Krauss, J., Le Provost, G., Peter, S., Schenk, N., Simons, N. K., Plas, F. van der, Binkenstein, J., Börschig, C., Jung, K., Prati, D., Schäfer, D., Schäfer, M., Schöning, I., Schrumpf, M., Tschapka, M., Westphal, C., and Manning, P.: Assessing the impact of grassland management on landscape multifunctionality, Ecosyst. Serv., 52, 101366, https://doi.org/10.1016/j.ecoser.2021.101366, 2021.
Parton, W. J., Hartman, M., Ojima, D., and Schimel, D.: DAYCENT and its land surface submodel: description and testing, Global Planet. Change, 19, 35–48, https://doi.org/10.1016/S0921-8181(98)00040-X, 1998.
Petersen, K., Kraus, D., Calanca, P., Semenov, M. A., Butterbach-Bahl, K., and Kiese, R.: Dynamic simulation of management events for assessing impacts of climate change on pre-alpine grassland productivity, Eur. J. Agron., 128, 126306, https://doi.org/10.1016/j.eja.2021.126306, 2021.
Poschlod, B., Willkofer, F., and Ludwig, R.: Impact of Climate Change on the Hydrological Regimes in Bavaria, Water, 12, 1599, https://doi.org/10.3390/w12061599, 2020.
Reinermann, S., Asam, S., and Kuenzer, C.: Remote Sensing of Grassland Production and Management – A Review, Remote Sens., 12, 1949, https://doi.org/10.3390/rs12121949, 2020.
Reinermann, S., Gessner, U., Asam, S., Ullmann, T., Schucknecht, A., and Kuenzer, C.: Detection of Grassland Mowing Events for Germany by Combining Sentinel-1 and Sentinel-2 Time Series, Remote Sens., 14, 1647, https://doi.org/10.3390/rs14071647, 2022.
Reinermann, S., Asam, S., Gessner, U., Ullmann, T., and Kuenzer, C.: Multi-annual grassland mowing dynamics in Germany: Spatio-temporal patterns and the influence of climate, topographic and socio-political conditions, Frontiers in Environmental Science, 11, [1040551], https://doi.org/10.3389/fenvs.2023.1040551, 2023.
Reis Martins, M. dos, Ammann, C., Boos, C., Calanca, P., Kiese, R., Wolf, B., and Keel, S. G.: Reducing N fertilization in the framework of the European Farm to Fork strategy under global change: Impacts on yields, N2O emissions and N leaching of temperate grasslands in the Alpine region, Agr. Syst., 219, 104036, https://doi.org/10.1016/j.agsy.2024.104036, 2024.
Richter, F., Jan, P., El Benni, N., Lüscher, A., Buchmann, N., and Klaus, V. H.: A guide to assess and value ecosystem services of grasslands, Ecosyst. Serv., 52, 101376, https://doi.org/10.1016/j.ecoser.2021.101376, 2021.
Riedo, M., Grub, A., Rosset, M., and Fuhrer, J.: A pasture simulation model for dry matter production, and fluxes of carbon, nitrogen, water and energy, Ecol. Model., 105, 141–183, https://doi.org/10.1016/S0304-3800(97)00110-5, 1998.
Riedo, M., Gyalistras, D., and Fuhrer, J.: Net primary production and carbon stocks in differently managed grasslands: simulation of site-specific sensitivity to an increase in atmospheric CO2 and to climate change, Ecol. Model., 134, 207–227, https://doi.org/10.1016/S0304-3800(00)00356-2, 2000.
Rolinski, S., Müller, C., Heinke, J., Weindl, I., Biewald, A., Bodirsky, B. L., Bondeau, A., Boons-Prins, E. R., Bouwman, A. F., Leffelaar, P. A., te Roller, J. A., Schaphoff, S., and Thonicke, K.: Modeling vegetation and carbon dynamics of managed grasslands at the global scale with LPJmL 3.6, Geosci. Model Dev., 11, 429–451, https://doi.org/10.5194/gmd-11-429-2018, 2018.
Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., and Iverson, G.: Bayesian t tests for accepting and rejecting the null hypothesis, Psychon. B. Rev., 16, 225–237, https://doi.org/10.3758/PBR.16.2.225, 2009.
Savage, J., Woodcock, B. A., Bullock, J. M., Nowakowski, M., Tallowin, J. R. B., and Pywell, R. F.: Management to Support Multiple Ecosystem Services from Productive Grasslands, Sustainability, 13, 6263, https://doi.org/10.3390/su13116263, 2021.
Schaphoff, S., von Bloh, W., Rammig, A., Thonicke, K., Biemans, H., Forkel, M., Gerten, D., Heinke, J., Jägermeyr, J., Knauer, J., Langerwisch, F., Lucht, W., Müller, C., Rolinski, S., and Waha, K.: LPJmL4 – a dynamic global vegetation model with managed land – Part 1: Model description, Geosci. Model Dev., 11, 1343–1375, https://doi.org/10.5194/gmd-11-1343-2018, 2018.
Schmitt, T., Haensel, M., Kaim, A., Lee, H., Reinermann, S., and Koellner, T.: Recreation and its synergies and trade-offs with other ecosystem services of Alpine and pre-Alpine grasslands, Reg. Environ. Change, 24, 57, https://doi.org/10.1007/s10113-024-02213-8, 2024.
Schoof, N., Luick, R., Ackermann, A., Baum, S., Böhner, H., Röder, N., Rudolph, S., Schmidt, T. G., Hötker, H., and Jeromin, H. (eds.): Auswirkungen der neuen Rahmenbedingungen der Gemeinsamen Agrarpolitik auf die Grünland-bezogene Biodiversität, 2nd edn., Bundesamt für Naturschutz, Bonn, Bad Godesberg, Germany, https://doi.org/10.19217/skr540, 2020a.
Schoof, N., Luick, R., Jürgens, K., and Jones, G.: Dairies in Germany: Key Factors for Grassland Conservation?, Sustainability, 12, 4139, https://doi.org/10.3390/su12104139, 2020b.
Schoof, N., Luick, R., Beaufoy, G., Jones, G., Einarsson, P., Ruiz, J., Stefanova, V., Fuchs, D., Windmaißer, T., Hötker, H., Jeromin, H., Nickel, H., Schumacher, J., and Ukhanova, M. (Eds.): Grünlandschutz in Deutschland: Treiber der Biodiversität, Einfluss von Agrarumwelt- und Klimamaßnahmen, Ordnungsrecht, Molkereiwirtschaft und Auswirkungen der Klima- und Energiepolitik, 2nd edn., Bundesamt für Naturschutz, Bonn, Bad Godesberg, Germany, https://doi.org/10.19217/skr539, 2020c.
Schucknecht, A., Krämer, A., Asam, S., Mejia-Aguilar, A., Garcia-Franco, N., Schuchardt, M. A., Jentsch, A., and Kiese, R.: Vegetation traits of pre-Alpine grasslands in southern Germany, Scientific data, 7, 316, https://doi.org/10.1038/s41597-020-00651-7, 2020.
Schucknecht, A., Reinermann, S., Kiese, R., and Bayer, A.: Towards The Retrieval of Plant Traits in Grasslands with Hyperspectral Enmap Data, 13th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), 1–5, https://doi.org/10.1109/WHISPERS61460.2023.10431190, 2023.
Schwieder, M., Buddeberg, M., Kowalski, K., Pfoch, K., Bartsch, J., Bach, H., Pickert, J., and Hostert, P.: Estimating Grassland Parameters from Sentinel-2: A Model Comparison Study, PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 88, 379–390, https://doi.org/10.1007/s41064-020-00120-1, 2020.
Smit, H. J., Metzger, M. J., and Ewert, F.: Spatial distribution of grassland productivity and land use in Europe, Agr. Syst., 98, 208–219, https://doi.org/10.1016/j.agsy.2008.07.004, 2008.
Socher, S. A., Prati, D., Boch, S., Müller, J., Klaus, V. H., Hölzel, N., and Fischer, M.: Direct and productivity-mediated indirect effects of fertilization, mowing and grazing on grassland species richness, J. Ecol., 100, 1391–1399, https://doi.org/10.1111/j.1365-2745.2012.02020.x, 2012.
Soussana, J. and Lüscher, A.: Temperate grasslands and global atmospheric change: a review, Grass Forage Sci., 62, 127–134, https://doi.org/10.1111/j.1365-2494.2007.00577.x, 2007.
Statistisches Bundesamt: Land- und Forstwirtschaft, Fischerei – Bodennutzung der Betriebe: Fachserie 3 [data set], https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Publikationen/Bodennutzung/bodennutzung-2030212227004.html (last access: 23 September 2025), 2023.
Ullah, S., Si, Y., Schlerf, M., Skidmore, A. K., Shafique, M., and Iqbal, I. A.: Estimation of grassland biomass and nitrogen using MERIS data, Int. J. Appl. Earth Obs., 19, 196–204, https://doi.org/10.1016/j.jag.2012.05.008, 2012.
LfU (Landesamt für Umwelt): private communication, 2020.
Vuichard, N., Soussana, J., Ciais, P., Viovy, N., Ammann, C., Calanca, P., Clifton-Brown, J., Fuhrer, J., Jones, M., and Martin, C.: Estimating the greenhouse gas fluxes of European grasslands with a process–based model: 1. Model evaluation from in situ measurements, Global Biogeochem. Cy., 21, GB1004, https://doi.org/10.1029/2005GB002611, 2007.
White, R. P., Murray, S., and Rohweder, M.: Pilot analysis of global ecosystems – Grassland ecosystems, World Resources Institute, Washington DC, USA, ISBN 1-56973-461-5, 2000.
Willkofer, F., Wood, R. R., Trentini, F. von, Weismüller, J., Poschlod, B., and Ludwig, R.: A Holistic Modelling Approach for the Estimation of Return Levels of Peak Flows in Bavaria, Water, 12, 2349, https://doi.org/10.3390/w12092349, 2020.
Wu, H., An, S., Meng, B., Chen, X., Li, F., and Ren, S.: Retrieval of grassland aboveground biomass across three ecoregions in China during the past two decades using satellite remote sensing technology and machine learning algorithms, Int. J. Appl. Earth Obs., 130, 103925, https://doi.org/10.1016/j.jag.2024.103925, 2024.
Yao, Y. and Ren, H.: Estimation of grassland aboveground biomass in northern China based on topography-climate-remote sensing data, Ecol. Indic., 165, 112230, https://doi.org/10.1016/j.ecolind.2024.112230, 2024.
Zhang, H., Fan, J., Wang, J., Cao, W., and Harris, W.: Spatial and temporal variability of grassland yield and its response to climate change and anthropogenic activities on the Tibetan Plateau from 1988 to 2013, Ecol. Indic., 95, 141–151, https://doi.org/10.1016/j.ecolind.2018.05.088, 2018.
Short summary
Grasslands shape the landscape in many parts of the world and serve as the main source of fodder for livestock. There is a lack of comprehensive data on grassland yield, although these data are highly valuable for authorities and research. By applying three approaches to estimate grassland yields, namely, a satellite data model, a biogeochemical model and a field measurements approach, we provide annual grassland yield maps for the Ammer region in 2019 and highlight the potentials and limitations of the approaches.
Grasslands shape the landscape in many parts of the world and serve as the main source of fodder...
Altmetrics
Final-revised paper
Preprint