Articles | Volume 22, issue 23
https://doi.org/10.5194/bg-22-7687-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-7687-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Utilizing probability estimates from machine learning and pollen to understand the depositional influences on branched GDGT in wetlands, peatlands, and lakes
Amy Cromartie
CORRESPONDING AUTHOR
Université Côte d'Azur, CNRS, CEPAM, UMR 7264, 06300 Nice, France
Cindy De Jonge
Geological Institute, ETH Zürich, 8092 Zurich, Switzerland
Guillemette Ménot
ENS de Lyon, Université Lyon 1, CNRS, UMR 5276 LGL-TPE, 69364 Lyon, France
Mary Robles
Aix-Marseille Univ., CNRS, IRD, INRAE, Coll France, UMR 34 CEREGE, 13545 Aix-en-Provence, France
ISEM, Univ. Montpellier, CNRS, IRD, 34090 Montpellier, France
Lucas Dugerdil
ENS de Lyon, Université Lyon 1, CNRS, UMR 5276 LGL-TPE, 69364 Lyon, France
ISEM, Univ. Montpellier, CNRS, IRD, 34090 Montpellier, France
Odile Peyron
ISEM, Univ. Montpellier, CNRS, IRD, 34090 Montpellier, France
Marta Rodrigo-Gámiz
Department of Stratigraphy and Paleontology, University of Granada, 18071 Granada, Spain
Jon Camuera
Unit of Botany, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
Maria Jose Ramos-Roman
Instituto de Investigación en Cambio Global Universidad Rey Juan Carlos 28933, Madrid, Spain
Gonzalo Jiménez-Moreno
Department of Stratigraphy and Paleontology, University of Granada, 18071 Granada, Spain
Claude Colombié
Univ Lyon, UCBL, ENSL, UJM, CNRS, LGL-TPE, Villeurbanne, F-69622 France
Lilit Sahakyan
Institute of Geological Sciences, National Academy of Sciences of Republic of Armenia, Yerevan 0019, Armenia
Sébastien Joannin
ISEM, Univ. Montpellier, CNRS, IRD, 34090 Montpellier, France
Data sets
Datasets - ProbbrGDGT Amy Cromartie https://github.com/amycromartie/ProbbrGDGT/tree/main/Datasets
Model code and software
Code - ProbbrGDGT Amy Cromartie https://github.com/amycromartie/ProbbrGDGT/tree/main/Code
Short summary
BrGDGT (branched glycerol dialkyl glycerol tetraethers) are a molecular biomarker utilized for paleotemperature reconstructions. One issue, however, with utilizing brGDGTs is that the distribution differs in relation to sediment environments (i.e., peat, lake, soil). We utilize the probability estimate outputs from five machine learning algorithms and a new modern brGDGT database to track provenance change and apply these models to two downcore records utilizing pollen, non-pollen polymorphs, and XRF (X-ray fluorescence) to confirm the models’ accuracy.
BrGDGT (branched glycerol dialkyl glycerol tetraethers) are a molecular biomarker utilized for...
Altmetrics
Final-revised paper
Preprint