Articles | Volume 22, issue 23
https://doi.org/10.5194/bg-22-7865-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-7865-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Wet and dry seasons modulate coastal coccolithophore dynamics off South-western Nigeria (Gulf of Guinea)
Falilu O. Adekunbi
Department of Marine Sciences, Faculty of Science, University of Lagos (UNILAG), Lagos, Nigeria
Nigerian Institute for Oceanography and Marine Research, (NIOMR) Lagos, Nigeria
Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autònoma de Barcelona, Barcelona, Spain
Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autònoma de Barcelona, Barcelona, Spain
Gerald Langer
Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autònoma de Barcelona, Barcelona, Spain
Marine Biogeosciences, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
Lucian O. Chukwu
Department of Marine Sciences, Faculty of Science, University of Lagos (UNILAG), Lagos, Nigeria
Marta Alvarez
Instituto Español de Oceanografía (IEO-CSIC), A Coruña, Spain
Shakirudeen Odunuga
Department of Geography, Faculty of Social Sciences, University of Lagos (UNILAG), Lagos, Nigeria
Kai G. Schulz
Centre for Coastal Biogeochemistry, School of Environment Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia
Patrizia Ziveri
Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autònoma de Barcelona, Barcelona, Spain
Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
Departamento de Biología Animal, Biología Vegetal y Ecología, Universitat Autònoma de Barcelona, Barcelona, (ICTA-UAB), Spain
Related authors
No articles found.
Athina Kekelou, Gerald Langer, and Patrizia Ziveri
EGUsphere, https://doi.org/10.5194/egusphere-2025-5251, https://doi.org/10.5194/egusphere-2025-5251, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Fish otoliths formation is key for understanding the incorporation of elements into biominerals. It is often assumed that the final step of biomineralization consists of inorganic precipitation as the fluid where biominerals form can hardly be sampled. Thanks to fish ear anatomy this can be overcome with otoliths. By comparing otolith formation and inorganic precipitation, we proved that this assumption is not always true. Our findings could refined models and shed light on biomineralization.
Fiz F. Pérez, Marta López-Mozos, Marcos Fontela, Maribel I. García-Ibáñez, Noelia Fajar, Antonio Padín, Mónica Castaño-Carrera, Mercedes de la Paz, Lidia I. Carracedo, Marta Álvarez, Pascale Lherminier, and Antón Velo
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-476, https://doi.org/10.5194/essd-2025-476, 2025
Preprint under review for ESSD
Short summary
Short summary
Ocean acidification threatens marine ecosystems and the climate, and is typically measured by ocean pH. This study provides a new, twenty-year dataset of pH measurements from the North Atlantic, resulting from the correction and reevaluation of historical and recent pH measurements that had methodological-derived bias. This revised dataset supports accurate reassessment of pH trends and carbon variables, under novel and updated methodological standards.
Malek Belgacem, Katrin Schroeder, Marta Álvarez, Siv K. Lauvset, Jacopo Chiggiato, Mireno Borghini, Carolina Cantoni, Tiziana Ciuffardi, and Stefania Sparnocchia
Earth Syst. Sci. Data, 17, 5315–5336, https://doi.org/10.5194/essd-17-5315-2025, https://doi.org/10.5194/essd-17-5315-2025, 2025
Short summary
Short summary
The Mediterranean Sea is changing rapidly, underscoring the urgent need for high-quality datasets to quantify trends and assess impacts on biogeochemical cycles. O2 is a key indicator of marine ecosystem health and plays a central role in CO2 and nutrient cycling. We compiled a regional-scale dataset of O2 in the western Mediterranean to provide a robust observational foundation for assessing O2 variability, associated with climate change, and anomalies related to deoxygenation processes.
Gerald Langer, Ian Probert, Jeremy R. Young, and Patrizia Ziveri
EGUsphere, https://doi.org/10.5194/egusphere-2025-1921, https://doi.org/10.5194/egusphere-2025-1921, 2025
Short summary
Short summary
Coccolithophores are important marine CaCO3 producers and their biominerals, the coccoliths, partly dissolve in the upper water column where dissolution is unexpected. Studying coccolith dissolution in field samples is hampered by a paucity of experimental studies describing dissolution morphologies. Here we fill this gap by experimentally dissolving different coccolithophores and applying our results to field samples.
Stefania Bianco, Manuela Bordiga, Gerald Langer, Patrizia Ziveri, Federica Cerino, Andrea Di Giulio, and Claudia Lupi
Biogeosciences, 22, 1821–1837, https://doi.org/10.5194/bg-22-1821-2025, https://doi.org/10.5194/bg-22-1821-2025, 2025
Short summary
Short summary
This work focuses on the response in culture experiments to increasing CO2 of the coccolithophore species Helicosphaera carteri, a unicellular marine calcifying microalgae. The absence of significant changes in coccolith malformations, along with stable size, shape, and calcification-to-photosynthesis ratio, is indicative of H. carteri low sensitivity to CO2 rise, together with its ability to maintain a stable contribution to the marine rain ratio under future climate changes.
Julieta Schneider, Ulf Riebesell, Charly André Moras, Laura Marín-Samper, Leila Kittu, Joaquín Ortíz-Cortes, and Kai George Schulz
EGUsphere, https://doi.org/10.5194/egusphere-2025-524, https://doi.org/10.5194/egusphere-2025-524, 2025
Short summary
Short summary
Ocean Alkalinity Enhancement (OAE) is an approach to sequester additional atmospheric CO2 in the ocean and may alleviate ocean acidification. A large-scale mesocosm experiment in Norway tested Ca- and Si-based OAE, increasing total alkalinity (TA) by 0–600 µmol kg-1 and measuring CO2 gas exchange. While TA remained stable, we found mineral-type and/or pCO2/pH effects on coccolithophorid calcification, net community production and zooplankton respiration, providing insights for future OAE trials.
Lennart Thomas Bach, Aaron James Ferderer, Julie LaRoche, and Kai Georg Schulz
Biogeosciences, 21, 3665–3676, https://doi.org/10.5194/bg-21-3665-2024, https://doi.org/10.5194/bg-21-3665-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is an emerging marine CO2 removal method, but its environmental effects are insufficiently understood. The OAE Pelagic Impact Intercomparison Project (OAEPIIP) provides funding for a standardized and globally replicated microcosm experiment to study the effects of OAE on plankton communities. Here, we provide a detailed manual for the OAEPIIP experiment. We expect OAEPIIP to help build scientific consensus on the effects of OAE on plankton.
Charly A. Moras, Tyler Cyronak, Lennart T. Bach, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 21, 3463–3475, https://doi.org/10.5194/bg-21-3463-2024, https://doi.org/10.5194/bg-21-3463-2024, 2024
Short summary
Short summary
We investigate the effects of mineral grain size and seawater salinity on magnesium hydroxide dissolution and calcium carbonate precipitation kinetics for ocean alkalinity enhancement. Salinity did not affect the dissolution, but calcium carbonate formed earlier at lower salinities due to the lower magnesium and dissolved organic carbon concentrations. Smaller grain sizes dissolved faster but calcium carbonate precipitated earlier, suggesting that medium grain sizes are optimal for kinetics.
Aaron Ferderer, Kai G. Schulz, Ulf Riebesell, Kirralee G. Baker, Zanna Chase, and Lennart T. Bach
Biogeosciences, 21, 2777–2794, https://doi.org/10.5194/bg-21-2777-2024, https://doi.org/10.5194/bg-21-2777-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a promising method of atmospheric carbon removal; however, its ecological impacts remain largely unknown. We assessed the effects of simulated silicate- and calcium-based mineral OAE on diatom silicification. We found that increased silicate concentrations from silicate-based OAE increased diatom silicification. In contrast, the enhancement of alkalinity had no effect on community silicification and minimal effects on the silicification of different genera.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 16, 2047–2072, https://doi.org/10.5194/essd-16-2047-2024, https://doi.org/10.5194/essd-16-2047-2024, 2024
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2023 is the fifth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1108 hydrographic cruises covering the world's oceans from 1972 to 2021.
Nico Lange, Björn Fiedler, Marta Álvarez, Alice Benoit-Cattin, Heather Benway, Pier Luigi Buttigieg, Laurent Coppola, Kim Currie, Susana Flecha, Dana S. Gerlach, Makio Honda, I. Emma Huertas, Siv K. Lauvset, Frank Muller-Karger, Arne Körtzinger, Kevin M. O'Brien, Sólveig R. Ólafsdóttir, Fernando C. Pacheco, Digna Rueda-Roa, Ingunn Skjelvan, Masahide Wakita, Angelicque White, and Toste Tanhua
Earth Syst. Sci. Data, 16, 1901–1931, https://doi.org/10.5194/essd-16-1901-2024, https://doi.org/10.5194/essd-16-1901-2024, 2024
Short summary
Short summary
The Synthesis Product for Ocean Time Series (SPOTS) is a novel achievement expanding and complementing the biogeochemical data landscape by providing consistent and high-quality biogeochemical time-series data from 12 ship-based fixed time-series programs. SPOTS covers multiple unique marine environments and time-series ranges, including data from 1983 to 2021. All in all, it facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations.
Kai G. Schulz, Lennart T. Bach, and Andrew G. Dickson
State Planet, 2-oae2023, 2, https://doi.org/10.5194/sp-2-oae2023-2-2023, https://doi.org/10.5194/sp-2-oae2023-2-2023, 2023
Short summary
Short summary
Ocean alkalinity enhancement is a promising approach for long-term anthropogenic carbon dioxide sequestration, required to avoid catastrophic climate change. In this chapter we describe its impacts on seawater carbonate chemistry speciation and highlight pitfalls that need to be avoided during sampling, storage, measurements, and calculations.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Simone Alin, Marta Álvarez, Kumiko Azetsu-Scott, Leticia Barbero, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Li-Qing Jiang, Steve D. Jones, Claire Lo Monaco, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, https://doi.org/10.5194/essd-14-5543-2022, 2022
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2022 is the fourth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1085 hydrographic cruises covering the world's oceans from 1972 to 2021.
Aaron Ferderer, Zanna Chase, Fraser Kennedy, Kai G. Schulz, and Lennart T. Bach
Biogeosciences, 19, 5375–5399, https://doi.org/10.5194/bg-19-5375-2022, https://doi.org/10.5194/bg-19-5375-2022, 2022
Short summary
Short summary
Ocean alkalinity enhancement has the capacity to remove vast quantities of carbon from the atmosphere, but its effect on marine ecosystems is largely unknown. We assessed the effect of increased alkalinity on a coastal phytoplankton community when seawater was equilibrated and not equilibrated with atmospheric CO2. We found that the phytoplankton community was moderately affected by increased alkalinity and equilibration with atmospheric CO2 had little influence on this effect.
Charly A. Moras, Lennart T. Bach, Tyler Cyronak, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 19, 3537–3557, https://doi.org/10.5194/bg-19-3537-2022, https://doi.org/10.5194/bg-19-3537-2022, 2022
Short summary
Short summary
This research presents the first laboratory results of quick and hydrated lime dissolution in natural seawater. These two minerals are of great interest for ocean alkalinity enhancement, a strategy aiming to decrease atmospheric CO2 concentrations. Following the dissolution of these minerals, we identified several hurdles and presented ways to avoid them or completely negate them. Finally, we proceeded to various simulations in today’s oceans to implement the strategy at its highest potential.
Shao-Min Chen, Ulf Riebesell, Kai G. Schulz, Elisabeth von der Esch, Eric P. Achterberg, and Lennart T. Bach
Biogeosciences, 19, 295–312, https://doi.org/10.5194/bg-19-295-2022, https://doi.org/10.5194/bg-19-295-2022, 2022
Short summary
Short summary
Oxygen minimum zones in the ocean are characterized by enhanced carbon dioxide (CO2) levels and are being further acidified by increasing anthropogenic atmospheric CO2. Here we report CO2 system measurements in a mesocosm study offshore Peru during a rare coastal El Niño event to investigate how CO2 dynamics may respond to ongoing ocean deoxygenation. Our observations show that nitrogen limitation, productivity, and plankton community shift play an important role in driving the CO2 dynamics.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Steve D. Jones, Maren K. Karlsen, Claire Lo Monaco, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 13, 5565–5589, https://doi.org/10.5194/essd-13-5565-2021, https://doi.org/10.5194/essd-13-5565-2021, 2021
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2021 is the third update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 989 hydrographic cruises covering the world's oceans from 1972 to 2020.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Michelle N. Simone, Kai G. Schulz, Joanne M. Oakes, and Bradley D. Eyre
Biogeosciences, 18, 1823–1838, https://doi.org/10.5194/bg-18-1823-2021, https://doi.org/10.5194/bg-18-1823-2021, 2021
Short summary
Short summary
Estuaries are responsible for a large contribution of dissolved organic carbon (DOC) to the global C cycle, but it is unknown how this will change in the future. DOC fluxes from unvegetated sediments were investigated ex situ subject to conditions of warming and ocean acidification. The future climate shifted sediment fluxes from a slight DOC source to a significant sink, with global coastal DOC export decreasing by 80 %. This has global implications for C cycling and long-term C storage.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Henry C. Bittig, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Camilla S. Landa, Siv K. Lauvset, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, and Ryan J. Woosley
Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, https://doi.org/10.5194/essd-12-3653-2020, 2020
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2020 is the second update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 946 hydrographic cruises covering the world's oceans from 1972 to 2019.
Cited articles
Addante, M., Grelaud, M., Langer, G., Maiorano, P., Bonomo, S., Álvarez, M., Johnson, R., and Ziveri, P.: Local hydrodynamic in coastal system affects the coccolithophore community at a short spatial scale, Mar. Micropaleontol., 185, https://doi.org/10.1016/j.marmicro.2023.102309, 2023.
Akanmu, R. T. and Onyema, I. C.: Phytoplankton composition and dynamics off the coast of Lagos south-west, Nigeria, Reg. Stud. Mar. Sci., 37, 101356, https://doi.org/10.1016/j.rsma.2020.101356, 2020.
Ali, K. E., Kouadio, K. Y., Zahiri, E.-P., Aman, A., Assamoi, A. P., and Bourles, B.: Influence of the Gulf of Guinea Coastal and Equatorial Upwellings on the Precipitations along its Northern Coasts during the Boreal Summer Period, Asian J. Appl. Sci., 4, 271–285, https://doi.org/10.3923/ajaps.2011.271.285, 2011.
Alory, G., Da-Allada, C. Y., Djakouré, S., Dadou, I., Jouanno, J., and Loemba, D. P.: Coastal Upwelling Limitation by Onshore Geostrophic Flow in the Gulf of Guinea Around the Niger River Plume, Front. Mar. Sci., 7, https://doi.org/10.3389/fmars.2020.607216, 2021.
Anang, E. R.: The seasonal cycle of the phytoplankton in the coastal waters of Ghana, Hydrobiologia, 62, 33–45, https://doi.org/10.1007/BF00012560, 1979.
Arar, E. J. and Collins, G. B.: Method 445.0: In vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence, Cincinnati: United States Environmental Protec-tion Agency, Office of Research and Development, National Exposure Research Laboratory, 1997.
Ausín, B., Zúñiga, D., Flores, J. A., Cavaleiro, C., Froján, M., Villacieros-Robineau, N., Alonso-Pérez, F., Arbones, B., Santos, C., de la Granda, F., G. Castro, C., Abrantes, F., Eglinton, T. I., and Salgueiro, E.: Spatial and temporal variability in coccolithophore abundance and distribution in the NW Iberian coastal upwelling system, Biogeosciences, 15, 245–262, https://doi.org/10.5194/bg-15-245-2018, 2018.
Awo, F. M., Alory, G., Da-Allada, C. Y., Delcroix, T., Jouanno, J., Kestenare, E., and Baloïtcha, E.: Sea Surface Salinity Signature of the Tropical Atlantic Interannual Climatic Modes, J. Geophys. Res.-Ocean., 123, 7420–7437, https://doi.org/10.1029/2018JC013837, 2018.
Ayissi, F. F. B. K., Da-Allada, C. Y., Baloïtcha, E., Worou, L. O., and Tilmes, S.: Changes in coastal upwelling in the northern Gulf of Guinea under Stratospheric Aerosol Injection, Reg. Stud. Mar. Sci., 76, 103607, https://doi.org/10.1016/j.rsma.2024.103607, 2024.
Balch, W. M., Bowler, B. C., Drapeau, D. T., Lubelczyk, L. C., Lyczkowski, E., Mitchell, C., and Wyeth, A.: Coccolithophore distributions of the North and South Atlantic Ocean, Deep-Sea Res. Pt. I, 151, 103066, https://doi.org/10.1016/j.dsr.2019.06.012, 2019.
Balestra, B., Marino, M., Monechi, S., Marano, C., and Locaiono, F.: Coccolithophore commu-nities in the Gulf of Manfredonia (Southern Adriatic Sea): Data from water and surface sediments, Micropaleontology, 54, 377–396, https://doi.org/10.47894/mpal.54.5.01, 2008.
Balestra, B., Grunert, P., Ausin, B., Hodell, D., Flores, J.-A., Alvarez-Zarikian, C. A., Hernandez-Molina, F. J., Stow, D., Piller, W. E., and Paytan, A.: Coccolithophore and benthic foraminifera distribution patterns in the Gulf of Cadiz and Western Iberian Margin during Integrated Ocean Drilling Program (IODP) Expedition 339, J. Mar. Syst., 170, 50–67, https://doi.org/10.1016/j.jmarsys.2017.01.005, 2017.
Binet, D.: Climate and pelagic fisheries in the Canary and Guinea currents 1964–1993: The role of trade winds and the southern oscillation, Oceanol. Acta, 20, 177–190, 1997.
Bonomo, S., Cascella, A., Alberico, I., Ferraro, L., Giordano, L., Lirer, F., Vallefuoco, M., and Marsella, E.: Coccolithophores from near the Volturno estuary (central Tyrrhenian Sea), Mar. Micropaleontol., 111, 26–37, https://doi.org/10.1016/j.marmicro.2014.06.001, 2014.
Bonomo, S., Cascella, A., Alberico, I., Lirer, F., Vallefuoco, M., Marsella, E., and Ferraro, L.: Living and thanatocoenosis coccolithophore communities in a neritic area of the central Tyrrhenian Sea, Mar. Micropaleontol., 142, 67–91, https://doi.org/10.1016/j.marmicro.2018.06.003, 2018a.
Bonomo, Sergio, Placenti, F., Zgozi, S., Torri, M., Quinci, E. M., Cuttitta, A., Genovese, S., Mazzola, S., Aronica, S., Barra, M., El Turki, A., Hamza, M., Uheshi, O., Bara, M., Assughayer, M., and Bonanno, A.: Relationship between coccolithophores and the physical and chemical oceanography of eastern Libyan coastal waters, Hydrobiologia, 821, 215–234, https://doi.org/10.1007/s10750-017-3227-y, 2018b.
Brzezinski, M. A., Baines, S. B., Balch, W. M., Beucher, C. P., Chai, F., Dugdale, R. C., Krause, J. W., Landry, M. R., Marchi, A., Measures, C. I., Nelson, D. M., Parker, A. E., Poulton, A. J., Selph, K. E., Strutton, P. G., Taylor, A. G., and Twining, B. S.: Colimitation of diatoms by iron and silicic acid in the equatorial Pacific, Deep-Sea Res. Pt. II, 58, 493–511, https://doi.org/10.1016/j.dsr2.2010.08.005, 2011.
Carstensen, J. and Duarte, C. M.: Drivers of pH Variability in Coastal Ecosystems, Environ. Sci. Technol., 53, 4020–4029, https://doi.org/10.1021/acs.est.8b03655, 2019.
Cermeño, P., Lee, J., Wyman, K., Schofield, O., and Falkowski, P.: Competitive dynamics in two species of marine phytoplankton under non-equilibrium conditions, Mar. Ecol. Prog. Ser., 429, 19–28, https://doi.org/10.3354/meps09088, 2011.
CMEMS: Global Ocean Ensemble Physics reanalysis, E.U. Copernicus Marine Service Information (CMEMS), Marine Data Store (MDS), https://doi.org/10.48670/moi-00024, 2023.
Da-Allada, C. Y., Agada, J., Baloïtcha, E., Hounkonnou, M. N., Jouanno, J., and Alory, G.: Causes of the Northern Gulf of Guinea Cold Event in 2012, J. Geophys. Res.-Ocean., 126, https://doi.org/10.1029/2021JC017627, 2021.
de Vries, J. C., Monteiro, F., Andruleit, H., Böckel, B., Baumann, K.-H., Cerino, F., Charalampopoulou, A., Cepek, M., Cros, L., D'Amario, B., Daniels, C. J., Dimiza, M. D., Estrada, M., Eynaud, F., Giraudeau, J., Godrijan Jelena, Guerreiro, C. V., Guptha, M. V. S., Thierstein, H. R., Haidar, A. T., Karatsolis, B. T., Kinkel, H., Luan, Q., Malinverno, E., Patil, S. M., Mohan, R., Poulton, A. J., Saavedra-Pellitero, M., Schiebel, R., Smith, H. E. K., Šupraha, L., Takahashi, K., Okada, H., Triantaphyllou, M., and Silver, M. W.: Global SEM coccolithophore abundance compilation, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.922933, 2020.
Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to Best Practices for Ocean CO2 Measurements, edited by: Dickson, A. G., Sabine, C. L., and Christian, J. R., Sydney: North Pacific Marine Science Organization Sidney, British Columbia, ISBN 1-897176-07-4, 2007.
Dimiza, M., Triantaphyllou, M., and Malinverno, E.: New evidence for the ecology of Helicosphaera carteri in polluted coastal environments (Elefsis Bay, Saronikos Gulf, Greece), J. Nannopl. Res., 34, 37–43, https://doi.org/10.58998/jnr2081, 2014.
Dimiza, M. D., Triantaphyllou, M. V, Malinvemo, E., Psarra, S., Karatsolis, B.-T., Mara, P., Lagaria, A., and Gogou, A.: The composition and distribution of living coccolithophores in the Aegean Sea (NE Mediterranean), Micropaleontology, 61, 521–540, https://doi.org/10.47894/mpal.61.6.09, 2015.
Diop, S., Fabres, J., Pravettoni, R., Barusseau, J.-P., Descamps, C., and Ducrotoy, J.-P.: The Western and Central Africa Land–Sea Interface: A Vulnerable, Threatened, and Important Coastal Zone Within a Changing Environment, in: The Land/Ocean Interactions in the Coastal Zone of West and Central Africa, edited by: Diop, S., Barusseau, J. P., and Descamps, C., Estuaries of the World, Springer, Cham., 1–8, https://doi.org/10.1007/978-3-319-06388-1_1, 2014.
Djakouré, S. Penven, P., Bourlès, B., Veitch, J., and Koné, V.: Coastally trapped eddies in the north of the Gulf of Guinea, J. Geophys. Res.-Ocean., 119, 6805–6819, https://doi.org/10.1002/2014JC010243, 2014.
Djakouré, S., Penven, P., Bourlès, B., Koné, V., and Veitch, J.: Respective Roles of the Guinea Cur-rent and Local Winds on the Coastal Upwelling in the Northern Gulf of Guinea, J. Phys. Oceanogr., 47, 1367–1387, https://doi.org/10.1175/JPO-D-16-0126.1, 2017.
Elegbeleye, O. W. and Onyema, I. C.: Phytoplankton diversity and Stoichiometric nutrient limitation in the Lagos Harbour and adjacent sea, Southwestern Nigeria, Ife Journal of Science, 21, 139, https://doi.org/10.4314/ijs.v21i3.12, 2020.
Fasona, M. J., Muyiolu, S. K., Soneye, A. S., Ogundipe, O. T., Otusanya, O. O., Adekanmbi, O. H., Ade-onipekun, P. A., and Onuminya, T.: Temporal Analysis of the present and future climate of the Lagos coastal environment, Unilag Journal of Medicine, Science and Technology, 7, 113–128, 2019.
Fiúza, A. F. G.: Hydrology and dynamics of the Portuguese coastal waters, PhD. thesis, Universidade de Lisboa, Portugal, 1984.
Frada, M., Young, J., Cachão, M., Lino, S., Martins, A., Narciso, Á., Probert, I., and de Vargas, C.: A guide to extant coccolithophores (Calcihaptophycidae, Haptophyta) using light microscopy, J. Nannoplankton Res., 31, 58–112, https://doi.org/10.58998/jnr2094, 2010.
Gafar, N. A. and Schulz, K. G.: A three-dimensional niche comparison of Emiliania huxleyi and Gephyrocapsa oceanica: reconciling observations with projections, Biogeosciences, 15, 3541–3560, https://doi.org/10.5194/bg-15-3541-2018, 2018.
Giraudeau, J., Monteiro, P. M. S., and Nikodemus, K.: Distribution and malformation of living cocco-lithophores in the northern Benguela upwelling system off Namibia, Mar. Micropaleontol., 22, 93–110, https://doi.org/10.1016/0377-8398(93)90005-I, 1993.
Godrijan, J., Young, J. R., Marić Pfannkuchen, D., Precali, R., and Pfannkuchen, M.: Coastal zones as important habitats of coccolithophores: A study of species diversity, succession, and life-cycle phases, Limnol. Oceanogr., 63, 1692–1710, https://doi.org/10.1002/lno.10801, 2018.
Guerreiro, C. V., Baumann, K.-H., Brummer, G.-J. A., Korte, L. F., Sá, C., and Stuut, J.-B. W.: Transatlantic gradients in calcifying phytoplankton (coccolithophore) fluxes, Prog. Oceanogr., 176, 102140, https://doi.org/10.1016/j.pocean.2019.102140, 2019.
Guerreiro, C. V., Ferreira, A., Cros, L., Stuut, J. B., Baker, A., Tracana, A., Pinto, C., Veloso, V., Rees, A. P., Cachão, M. A. P., Nunes, T., and Brotas, V.: Response of coccolithophore communities to oceanographic and atmospheric processes across the North and Equatorial Atlantic, Front. Mar. Sci., 10, 1119488, https://doi.org/10.3389/fmars.2023.1119488, 2023.
Hagino, K., Okada, H., and Matsuoka, H.: Spatial dynamics of coccolithophore assemblages in the Equatorial Western-Central Pacific Ocean, Mar. Micropaleontol., 39, 53–72, https://doi.org/10.1016/S0377-8398(00)00014-1, 2000.
He, Q. and Silliman, B. R.: Climate Change, Human Impacts, and Coastal Ecosystems in the Anthropocene, Curr. Biol., 29, R1021–R1035, https://doi.org/10.1016/j.cub.2019.08.042, 2019.
Hisard, P. and Merle, J.: Onset of summer surface cooling in the Gulf of Guinea during GATE, Oceanography and Surface Layer Meteorology in the B/C Scale, Global Atmospheric Research Program Atlantic Tropical Experiment (Gata), GATE-2, 325–341, https://doi.org/10.1016/B978-1-4832-8366-1.50035-2, 1980.
Huffman, G. J., Stocker, E. F. , Bolvin, D. T., Nelkin, E. J., and Tan, J.: GPM IMERG Final Precipitation L3 Half Hourly 0.1° × 0.1° V06, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/GPM/IMERG/3B-HH/06, 2019.
Issifou, L., Atanle, K., Radji, R., Lawson, H. L., Adjonou, K., Edorh, M. T., Kokutse, A. D., Mensah, A. A., and Kokou, K.: Checklist of tropical algae of Togo in the Guinean Gulf of West-Africa, Sci. Res. Essays, 9, 932–958, https://doi.org/10.5897/SRE2014.6113, 2014.
Jin, X., Liu, C., Xu, J., and Guo, X.: Coccolithophore Abundance, Degree of Calcification, and Their Contribution to Particulate Inorganic Carbon in the South China Sea, J. Geophys. Res.-Biogeo., 127, e2021JG006657, https://doi.org/10.1029/2021JG006657, 2022.
Jin, X. B., Zhao, Y. L., Zhang, Y. W., Wen, K., Lin, S., Li, J. R., and Liu, Z. F.: Two Production Stages of Coccolithophores in Winter as Revealed by Sediment Traps in the Northern South China Sea, JGR Biogeosciences, 124, 2335–2350, https://doi.org/10.1029/2019JG005070, 2019.
Kang, S. M.: Extratropical Influence on the Tropical Rainfall Distribution, Curr. Clim. Change Rep., 6, 24–36, https://doi.org/10.1007/s40641-020-00154-y, 2020.
Keuter, S., Silverman, J., Krom, M. D., Sisma-Ventura, G., Yu, J., Tsemel, A., Ben-Ezra, T., Sher, D., Reich, T., Koplovitz, G., and Frada, M. J.: Seasonal patterns of coccolithophores in the ultra-oligotrophic South-East Levantine Basin, Eastern Mediterranean Sea, Mar. Micropaleontol., 175, https://doi.org/10.1016/j.marmicro.2022.102153, 2022.
Keuter, S., Koplovitz, G., Torfstein, A., and Frada, M. J.: Two-year seasonality (2017, 2018), export and long-term changes in coccolithophore communities in the subtropical ecosystem of the Gulf of Aqaba, Red Sea, Deep-Sea Res. PT. I, 191, 103919, https://doi.org/10.1016/j.dsr.2022.103919, 2023.
Kleypas, J. A.: Climate change and tropical marine ecosystems: A review with an emphasis on coral reefs, Cuad. Inv. UNED, 11, 24–35, 2019.
Koffi, K. U., Konan, E. S., Hassoun, A. E. R., and Kouadio, Y.: Relationship between the carbonate system and phytoplankton community in the Gulf of Guinea-Africa, Front. Mar. Sci., 11, https://doi.org/10.3389/fmars.2024.1286338, 2024.
Koffi, U., Kouadio, G., and Kouadio, Y. K.: Estimates and Variability of the Air-Sea CO2 Fluxes in the Gulf of Guinea during the 2005–2007 Period, Open J. Mar. Sci., 06, 11–22, https://doi.org/10.4236/ojms.2016.61002, 2016.
Langer, G., Taylor, A. R., Walker, C. E., Meyer, E. M., Ben Joseph, O., Gal, A., Harper, G. M., Probert, I., Brownlee, C., and Wheeler, G. L.: Role of silicon in the development of complex crystal shapes in coccolithophores, New Phytol., 231, 1845–1857, https://doi.org/10.1111/nph.17230, 2021.
Li, S., Zhu, J., Jin, X., Feng, Y., Jiao, N., and Zhang, W.: Multifaceted contribution of coccolithophores to ocean carbon export, Ocean-Land-Atmos. Res., 3, 0049, https://doi.org/10.34133/olar.0049, 2024.
Li, X., Xie, S.-P., Gille, S. T., and Yoo, C.: Atlantic-induced pan-tropical climate change over the past three decades, Nat. Clim. Chang., 6, 275–279, https://doi.org/10.1038/nclimate2840, 2016.
Luan, Q., Liu, S., Zhou, F., and Wang, J.: Living coccolithophore assemblages in the Yellow and East China Seas in response to physical processes during fall 2013, Mar. Micropaleontol., 123, 29–40, https://doi.org/10.1016/j.marmicro.2015.12.004, 2016.
Mamalakis, A., Randerson, J. T., Yu, J.-Y., Pritchard, M. S., Magnusdottir, G., Smyth, P., Levine, P. A., Yu, S., and Foufoula-Georgiou, E.: Zonally contrasting shifts of the tropical rain belt in response to climate change, Nat. Clim. Chang., 11, 143–151, https://doi.org/10.1038/s41558-020-00963-x, 2021.
Moita, M. T., Oliveira, P. B., Mendes, J. C., and Palma, A. S.: Distribution of chlorophyll a and Gymnodinium catenatum associated with coastal upwelling plumes off central Portugal, Acta Oecol., 24, S125–S132, https://doi.org/10.1016/S1146-609X(03)00011-0, 2003.
Narciso, Á., Javidpour, J., Chi, X., Cachão, M., and Kaufmann, M.: Characterization of the coccolitho-phore community off Cabo Verde archipelago, including the Senghor Seamount (Eastern North At-lantic), Estuar. Coast. Shelf Sci., 250, 107146, https://doi.org/10.1016/j.ecss.2020.107146, 2021.
Nwankwo, D. I.: Phytoplankton diversity and succession in Lagos Lagoon, Nigeria, Arch. Hydrobiol., 135, 529–542, https://doi.org/10.1127/archiv-hydrobiol/135/1996/529, 1996.
Nwankwo, D. I. and Onyema, I. C.: A checklist of planktonic algae off Lagos coast, J. Scientif. Res. Dev., 9, 75–85, 2003.
O'Brien, C. J.: Global distributions of coccolithophores abundance and biomass – Gridded data product (NetCDF) – Contribution to the MAREDAT World Ocean Atlas of Plankton Functional Types, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.785092, 2012.
O'Brien, C. J., Peloquin, J. A., Vogt, M., Heinle, M., Gruber, N., Ajani, P., Andruleit, H., Arístegui, J., Beaufort, L., Estrada, M., Karentz, D., Kopczyńska, E., Lee, R., Poulton, A. J., Pritchard, T., and Widdicombe, C: Global marine plankton functional type biomass distributions: coccolithophores, Earth Syst. Sci. Data, 5, 259–276, https://doi.org/10.5194/essd-5-259-2013, 2013.
Odekunle, T. O. and Eludoyin, A. O.: Sea surface temperature patterns in the Gulf of Guinea: their implications for the spatio-temporal variability of precipitation in West Africa, Int. J. Climatol., 28, 1507–1517, https://doi.org/10.1002/joc.1656, 2008.
Onyema, I. C. and Akanmu, R. T.: Environmental variables, algal pigments and phytoplankton in the Atlantic Ocean off the coast of Badagry, Lagos, J. Aquat. Sci., 32, 171, https://doi.org/10.4314/jas.v32i1A.19, 2018.
Onyema, I. C. and Popoola, R. T.: The physico-chemical characteristics, chlorophyll a levels and phytoplankton dynamics of the east mole area of the Lagos Harbour, Lagos, J. Asian Sci. Res., 3, 995–1010, 2013.
Oviedo, A. M., Langer, G., and Ziveri, P.: Effect of phosphorus limitation on coccolith morphology and element ratios in Mediterranean strains of the coccolithophore Emiliania huxleyi, J. Exp. Mar. Biol. Ecol., 459, 105–113, https://doi.org/10.1016/j.jembe.2014.04.021, 2014.
Oyewo, E. O., Ajao, E. A., and Orekoya, T.: Seasonal variation in surface temperature and salinity around Lagos harbour, Nigeria, Nigerian Institute for Oceanography & Marine Research, Lagos, Technical Paper no. 10, http://hdl.handle.net/1834/1270 (last access: 2 July 2025), 1982.
Panagiotopoulos, C. and Wurl, O.: Spectrophotometric and Chromatographic Analysis of Carbohydrates in Marine Samples, in: Practical Guidelines for the Analysis of Seawater, Olivier Wurl Eds., CRC Press, https://doi.org/10.1201/9781420073072, 2009.
Penales, P. J. F., Skampa, E., Dimiza, M. D., Parinos, C., Velaoras, D., Pavlidou, A., Oikonomou, V. A., and Triantaphyllou, M. V.: Coccolithophore Assemblage Dynamics and Emiliania huxleyi Morphological Patterns During Three Sampling Campaigns Between 2017 and 2019 in the South Aegean Sea (Greece, NE Mediterrane-an), Geosciences, 15, 268, https://doi.org/10.3390/geosciences15070268, 2025.
Poulton, A. J., Holligan, P. M., Charalampopoulou, A., and Adey, T. R.: Coccolithophore ecology in the tropical and subtropical Atlantic Ocean: New perspectives from the Atlantic meridional transect (AMT) programme, Prog. Oceanogr., 158, 150–170, https://doi.org/10.1016/j.pocean.2017.01.003, 2017.
Priyadarshani, W. N. C., Ran, L., Wiesner, M. G., Chen, J., Ling, Z., Yu, S., and Ye, Y.: Seasonal and interannual variability of coccolithophore flux in the northern South China Sea, Deep-Sea Res. Pt. I, 145, 13–30, https://doi.org/10.1016/j.dsr.2019.01.004, 2019.
R Studio Team: RStudio: Integrated Development for R. RStudio, PBC, https://www.rstudio.com/ (last access: 20 March 2023), 2020.
Rice, E. W., Baird, R. B., Eaton, A. D., Clesceri, L. S., and Bridgewater, L.: Standard Methods for the Examination of Water and Waste Water, in: Journal of the North American Benthological Society (Vol. 12, Issue 3), edited by: Rice, E. W., Baird, R. B., Eaton, A. D., Clesceri, L. S., and Bridgewater, L., Washington: DC American Public Health Association American Water Works Association Water Environment Federation, https://doi.org/10.2105/smww.2882 2012.
Schiebel, R., Zeltner, A., Treppke, U. F., Waniek, J. J., Bollmann, J., Rixen, T., and Hemleben, C.: Distribution of diatoms, coccolithophores and planktic foraminifers along a trophic gradient during SW monsoon in the Arabian Sea, Mar. Micropaleontol., 51, 345–371, https://doi.org/10.1016/j.marmicro.2004.02.001, 2004.
Schlitzer, R.: Ocean Data View, Verion 5.6.6, https://odv.awi.de (last access: 2 July 2025), 2023.
Schlosser, C., Klar, J. K., Wake, B. D., Snow, J. T., Honey, D. J., Woodward, E. M. S., Lohan, M. C., Achter-berg, E. P., and Moore, C. M.: Seasonal ITCZ migration dynamically controls the location of the (sub)tropical Atlantic biogeochemical divide, P. Natl. Acad. Sci. USA, 111, 1438–1442, https://doi.org/10.1073/pnas.1318670111, 2014.
Seu-Anoï, N. M., Ouattara, A., Koné, Y. J.-M., and Gourène, G.: Seasonal distribution of phytoplank-ton in the Aby lagoon system, Ivory Coast, West Africa, Afr. J. Aquat. Sci., 36, 321–330, https://doi.org/10.2989/16085914.2011.643561, 2011.
Silva, A., Palma, S., and Moita, M. T.: Coccolithophores in the upwelling waters of Portugal: Four years of weekly distribution in Lisbon bay, Cont. Shelf Res., 28, 2601–2613, https://doi.org/10.1016/j.csr.2008.07.009, 2008.
Silva, A., Brotas, V., Valente, A., Sá, C., Diniz, T., Patarra, R. F., Álvaro, N. V., and Neto, A. I.: Coccolithophore species as indicators of surface oceanographic conditions in the vicinity of Azores islands, Estuar. Coast. Shelf Sci., 118, 50–59, https://doi.org/10.1016/j.ecss.2012.12.010, 2013.
Sohou, Z., Koné, V., Da-Allada, Y. C., Djakouré, S., Bourlès, B., Racape, V., Degbe, G., and Adje, C.: Seasonal and inter-annual ONSET Sea Surface Temperature variability along the northern coast of the Gulf of Guinea, Reg. Stud. Mar. Sci., 35, 101129, https://doi.org/10.1016/j.rsma.2020.101129, 2020.
Šupraha, L., Ljubešić, Z., Mihanović, H., and Henderiks, J.: Coccolithophore life-cycle dynamics in a coastal Mediterranean ecosystem: seasonality and species-specific patterns, J. Plankton Res., 38, 1178–1193, https://doi.org/10.1093/plankt/fbw061, 2016.
van Bentum, K. M.: The Lagos coast – Investigation of the long-term morphological impact of the Eko Atlantic City project, NCK-Days 2012: Crossing Borders in Coastal Research: Jubilee Conference Proceedings, https://doi.org/10.3990/2.199, 2012.
Xu, H., Chen, F., Luo, M., Zhang, X., Pan, K., and Liu, H.: Silicon limitation affects diatom's resistance to copepod grazing, J. Oceanol. Limnol., 43, 1201–1212, https://doi.org/10.1007/s00343-024-4142-5, 2025.
Young, J. R., Geisen, M., Cros, L., Kleijne, A., Sprengel, C., Probert, I., and Østergaard, J.: A guide to extant coccolithophore taxonomy, J. Nannoplankton Res., Special Issue, 1–132, 2003.
Zeller, D., Hood, L., Palomares, M. L. D., Sumaila, U. R., Khalfallah, M., Belhabib, D., Woroniak, J., and Pauly, D.: Comparative fishery yields of African Large Marine Ecosystems, Env. Dev., 36, 100543, https://doi.org/10.1016/j.envdev.2020.100543, 2020.
Ziveri, P., Thunell, R. C., and Rio, D.: Seasonal changes in coccolithophore densities in the Southern California Bight during 1991–1992, Deep-Sea Res. Pt. I, 42, 1881–1903, https://doi.org/10.1016/0967-0637(95)00089-5, 1995.
Ziveri, P., Passaro, M., Incarbona, A., Milazzo, M., Rodolfo-Metalpa, R., and Hall-Spencer, J. M.: Decline in Coccolithophore Diversity and Impact on Coccolith Morphogenesis Along a Natural CO2 Gradient, Biol. Bull., 226, 282–290, https://doi.org/10.1086/BBLv226n3p282, 2014.
Ziveri, P., Gray, W. R., Anglada-Ortiz, G., Manno, C., Grelaud, M., Incarbona, A., Rae, J. W. B., Subhas, A. V., Pallacks, S., White, A., Adkins, J. F., and Berelson, W.: Pelagic calcium carbonate production and shallow dissolution in the North Pacific Ocean, Nat. Commun., 14, 805, https://doi.org/10.1038/s41467-023-36177-w, 2023.
Ziveri, P., Langer, G., Chaabane, S., de Vries, J., Gray, W. R., Keul, N., Hatton, I. A., Manno, C., Norris, R., Pallacks, S., Young, J. Y., Anglada-Ortiz, G., Bianco, S., de Garidel-Thoron, T., Grelaud, M., Lucas A., Probert, I., and Mortyn, G.: Calcifying plankton: From biomineralization to glogal change, Science, 390, https://doi.org/10.1126/science.adq8520, 2025.
Short summary
This study is the first to explore seasonal changes in coccolithophores, microscopic algae important for ocean life and the carbon cycle, off the coast of Nigeria. Their abundance and diversity increased during the rainy season, driven by shifts in the Intertropical Convergence Zone. Despite regional differences, these coastal communities show patterns similar to other parts of the world, revealing possible shared environmental pressures.
This study is the first to explore seasonal changes in coccolithophores, microscopic algae...
Altmetrics
Final-revised paper
Preprint