Articles | Volume 9, issue 1
https://doi.org/10.5194/bg-9-141-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-9-141-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A new concept for simulation of vegetated land surface dynamics – Part 1: The event driven phenology model
V. Kovalskyy
Geographic Information Science Center of Excellence, South Dakota State University, Brookings, SD 57007-3510 USA
G. M. Henebry
Geographic Information Science Center of Excellence, South Dakota State University, Brookings, SD 57007-3510 USA
Related subject area
Earth System Science/Response to Global Change: Models, Holocene/Anthropocene
Frost matters: incorporating late-spring frost into a dynamic vegetation model regulates regional productivity dynamics in European beech forests
Coupling numerical models of deltaic wetlands with AirSWOT, UAVSAR, and AVIRIS-NG remote sensing data
Meteorological history of low-forest-greenness events in Europe in 2002–2022
Modelling long-term alluvial-peatland dynamics in temperate river floodplains
Variable particle size distributions reduce the sensitivity of global export flux to climate change
Climate change will cause non-analog vegetation states in Africa and commit vegetation to long-term change
Uncertainties, sensitivities and robustness of simulated water erosion in an EPIC-based global gridded crop model
Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections
The capacity of northern peatlands for long-term carbon sequestration
Towards a more complete quantification of the global carbon cycle
Modeling seasonal and vertical habitats of planktonic foraminifera on a global scale
An enhanced forest classification scheme for modeling vegetation–climate interactions based on national forest inventory data
Sensitivity of woody carbon stocks to bark investment strategy in Neotropical savannas and forests
Modelling past, present and future peatland carbon accumulation across the pan-Arctic region
Biogenic sediments from coastal ecosystems to beach–dune systems: implications for the adaptation of mixed and carbonate beaches to future sea level rise
Modelling Holocene peatland dynamics with an individual-based dynamic vegetation model
Effects of climate change and land management on soil organic carbon dynamics and carbon leaching in northwestern Europe
Quantifying regional, time-varying effects of cropland and pasture on vegetation fire
HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers
Impact of human population density on fire frequency at the global scale
Evaluation of biospheric components in Earth system models using modern and palaeo-observations: the state-of-the-art
A high-resolution and harmonized model approach for reconstructing and analysing historic land changes in Europe
Analyzing precipitationsheds to understand the vulnerability of rainfall dependent regions
Alternative methods to predict actual evapotranspiration illustrate the importance of accounting for phenology – Part 2: The event driven phenology model
The influence of land cover change in the Asian monsoon region on present-day and mid-Holocene climate
Sensitivity of Holocene atmospheric CO2 and the modern carbon budget to early human land use: analyses with a process-based model
Side effects and accounting aspects of hypothetical large-scale Southern Ocean iron fertilization
Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI earth system model
Projected 21st century decrease in marine productivity: a multi-model analysis
Impact of atmospheric and terrestrial CO2 feedbacks on fertilization-induced marine carbon uptake
Benjamin F. Meyer, Allan Buras, Konstantin Gregor, Lucia S. Layritz, Adriana Principe, Jürgen Kreyling, Anja Rammig, and Christian S. Zang
Biogeosciences, 21, 1355–1370, https://doi.org/10.5194/bg-21-1355-2024, https://doi.org/10.5194/bg-21-1355-2024, 2024
Short summary
Short summary
Late-spring frost (LSF), critically low temperatures when trees have already flushed their leaves, results in freezing damage leaving trees with reduced ability to perform photosynthesis. Forests with a high proportion of susceptible species like European beech are particularly vulnerable. However, this process is rarely included in dynamic vegetation models (DVMs). We show that the effect on simulated productivity and biomass is substantial, warranting more widespread inclusion of LSF in DVMs.
Luca Cortese, Carmine Donatelli, Xiaohe Zhang, Justin A. Nghiem, Marc Simard, Cathleen E. Jones, Michael Denbina, Cédric G. Fichot, Joshua P. Harringmeyer, and Sergio Fagherazzi
Biogeosciences, 21, 241–260, https://doi.org/10.5194/bg-21-241-2024, https://doi.org/10.5194/bg-21-241-2024, 2024
Short summary
Short summary
This study shows that numerical models in coastal areas can greatly benefit from the spatial information provided by remote sensing. Three Delft3D numerical models in coastal Louisiana are calibrated using airborne SAR and hyperspectral remote sensing products from the recent NASA Delta-X mission. The comparison with the remote sensing allows areas where the models perform better to be spatially verified and yields more representative parameters for the entire area.
Mauro Hermann, Matthias Röthlisberger, Arthur Gessler, Andreas Rigling, Cornelius Senf, Thomas Wohlgemuth, and Heini Wernli
Biogeosciences, 20, 1155–1180, https://doi.org/10.5194/bg-20-1155-2023, https://doi.org/10.5194/bg-20-1155-2023, 2023
Short summary
Short summary
This study examines the multi-annual meteorological history of low-forest-greenness events in Europe's temperate and Mediterranean biome in 2002–2022. We systematically identify anomalies in temperature, precipitation, and weather systems as event precursors, with noteworthy differences between the two biomes. We also quantify the impact of the most extensive event in 2022 (37 % coverage), underlining the importance of understanding the forest–meteorology interaction in a changing climate.
Ward Swinnen, Nils Broothaerts, and Gert Verstraeten
Biogeosciences, 18, 6181–6212, https://doi.org/10.5194/bg-18-6181-2021, https://doi.org/10.5194/bg-18-6181-2021, 2021
Short summary
Short summary
Here we present a new modelling framework specifically designed to simulate alluvial peat growth, taking into account the river dynamics. The results indicate that alluvial peat growth is strongly determined by the number, spacing and movement of the river channels in the floodplain, rather than by environmental changes or peat properties. As such, the amount of peat that can develop in a floodplain is strongly determined by the characteristics and dynamics of the local river network.
Shirley W. Leung, Thomas Weber, Jacob A. Cram, and Curtis Deutsch
Biogeosciences, 18, 229–250, https://doi.org/10.5194/bg-18-229-2021, https://doi.org/10.5194/bg-18-229-2021, 2021
Short summary
Short summary
A global model is constrained with empirical relationships to quantify how shifts in sinking-particle sizes modulate particulate organic carbon export production changes in a warming ocean. Including the effect of dynamic particle sizes on remineralization reduces the magnitude of predicted 100-year changes in export production by ~14 %. Projections of future export could thus be improved by considering dynamic phytoplankton and particle-size-dependent remineralization depths.
Mirjam Pfeiffer, Dushyant Kumar, Carola Martens, and Simon Scheiter
Biogeosciences, 17, 5829–5847, https://doi.org/10.5194/bg-17-5829-2020, https://doi.org/10.5194/bg-17-5829-2020, 2020
Short summary
Short summary
Lags caused by delayed vegetation response to changing environmental conditions can lead to disequilibrium vegetation states. Awareness of this issue is relevant for ecosystem conservation. We used the aDGVM vegetation model to quantify the difference between transient and equilibrium vegetation states in Africa during the 21st century for two potential climate trajectories. Lag times increased over time and vegetation was non-analog to any equilibrium state due to multi-lag composite states.
Tony W. Carr, Juraj Balkovič, Paul E. Dodds, Christian Folberth, Emil Fulajtar, and Rastislav Skalsky
Biogeosciences, 17, 5263–5283, https://doi.org/10.5194/bg-17-5263-2020, https://doi.org/10.5194/bg-17-5263-2020, 2020
Short summary
Short summary
We generate 30-year mean water erosion estimates in global maize and wheat fields based on daily simulation outputs from an EPIC-based global gridded crop model. Evaluation against field data confirmed the robustness of the outputs for the majority of global cropland and overestimations at locations with steep slopes and strong rainfall. Additionally, we address sensitivities and uncertainties of model inputs to improve water erosion estimates in global agricultural impact studies.
Lester Kwiatkowski, Olivier Torres, Laurent Bopp, Olivier Aumont, Matthew Chamberlain, James R. Christian, John P. Dunne, Marion Gehlen, Tatiana Ilyina, Jasmin G. John, Andrew Lenton, Hongmei Li, Nicole S. Lovenduski, James C. Orr, Julien Palmieri, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Charles A. Stock, Alessandro Tagliabue, Yohei Takano, Jerry Tjiputra, Katsuya Toyama, Hiroyuki Tsujino, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, and Tilo Ziehn
Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, https://doi.org/10.5194/bg-17-3439-2020, 2020
Short summary
Short summary
We assess 21st century projections of marine biogeochemistry in the CMIP6 Earth system models. These models represent the most up-to-date understanding of climate change. The models generally project greater surface ocean warming, acidification, subsurface deoxygenation, and euphotic nitrate reductions but lesser primary production declines than the previous generation of models. This has major implications for the impact of anthropogenic climate change on marine ecosystems.
Georgii A. Alexandrov, Victor A. Brovkin, Thomas Kleinen, and Zicheng Yu
Biogeosciences, 17, 47–54, https://doi.org/10.5194/bg-17-47-2020, https://doi.org/10.5194/bg-17-47-2020, 2020
Miko U. F. Kirschbaum, Guang Zeng, Fabiano Ximenes, Donna L. Giltrap, and John R. Zeldis
Biogeosciences, 16, 831–846, https://doi.org/10.5194/bg-16-831-2019, https://doi.org/10.5194/bg-16-831-2019, 2019
Short summary
Short summary
Globally, C is added to the atmosphere from fossil fuels and deforestation, balanced by ocean uptake and atmospheric increase. The difference (residual sink) is equated to plant uptake. But this omits cement carbonation; transport to oceans by dust; riverine organic C and volatile organics; and increased C in plastic, bitumen, wood, landfills, and lakes. Their inclusion reduces the residual sink from 3.6 to 2.1 GtC yr-1 and thus the inferred ability of the biosphere to alter human C emissions.
Kerstin Kretschmer, Lukas Jonkers, Michal Kucera, and Michael Schulz
Biogeosciences, 15, 4405–4429, https://doi.org/10.5194/bg-15-4405-2018, https://doi.org/10.5194/bg-15-4405-2018, 2018
Short summary
Short summary
The fossil shells of planktonic foraminifera are widely used to reconstruct past climate conditions. To do so, information about their seasonal and vertical habitat is needed. Here we present an updated version of a planktonic foraminifera model to better understand species-specific habitat dynamics under climate change. This model produces spatially and temporally coherent distribution patterns, which agree well with available observations, and can thus aid the interpretation of proxy records.
Titta Majasalmi, Stephanie Eisner, Rasmus Astrup, Jonas Fridman, and Ryan M. Bright
Biogeosciences, 15, 399–412, https://doi.org/10.5194/bg-15-399-2018, https://doi.org/10.5194/bg-15-399-2018, 2018
Short summary
Short summary
Forest management shapes forest structure and in turn surface–atmosphere interactions. We used Fennoscandian forest maps and inventory data to develop a classification system for forest structure. The classification was integrated with the ESA Climate Change Initiative land cover map to achieve complete surface representation. The result is an improved product for modeling surface–atmosphere exchanges in regions with intensively managed forests.
Anna T. Trugman, David Medvigy, William A. Hoffmann, and Adam F. A. Pellegrini
Biogeosciences, 15, 233–243, https://doi.org/10.5194/bg-15-233-2018, https://doi.org/10.5194/bg-15-233-2018, 2018
Short summary
Short summary
Tree fire tolerance strategies may significantly impact woody carbon stability and the existence of tropical savannas under global climate change. We used a numerical ecosystem model to test the impacts of fire survival strategy under differing fire and rainfall regimes. We found that the high survival rate of large fire-tolerant trees reduced carbon losses with increasing fire frequency, and reduced the range of conditions leading to either complete tree loss or complete grass loss.
Nitin Chaudhary, Paul A. Miller, and Benjamin Smith
Biogeosciences, 14, 4023–4044, https://doi.org/10.5194/bg-14-4023-2017, https://doi.org/10.5194/bg-14-4023-2017, 2017
Short summary
Short summary
We employed an individual- and patch-based dynamic global ecosystem model to quantify long-term C accumulation rates and to assess the effects of historical and projected climate change on peatland C balances across the pan-Arctic. We found that peatlands in Scandinavia, Europe, Russia and central and eastern Canada will become C sources, while Siberia, far eastern Russia, Alaska and western and northern Canada will increase their sink capacity by the end of the 21st century.
Giovanni De Falco, Emanuela Molinaroli, Alessandro Conforti, Simone Simeone, and Renato Tonielli
Biogeosciences, 14, 3191–3205, https://doi.org/10.5194/bg-14-3191-2017, https://doi.org/10.5194/bg-14-3191-2017, 2017
Short summary
Short summary
This study quantifies the contribution of carbonate sediments, produced in seagrass meadows and in photophilic algal communities, to the sediment budget of a beach–dune system. The contribution to the beach sediment budget represents a further ecosystem service provided by seagrass. The dependence of the beach sediment budget on carbonate production associated with coastal ecosystems has implications for the adaptation of carbonate beaches to the seagrass decline and sea level rise.
Nitin Chaudhary, Paul A. Miller, and Benjamin Smith
Biogeosciences, 14, 2571–2596, https://doi.org/10.5194/bg-14-2571-2017, https://doi.org/10.5194/bg-14-2571-2017, 2017
Short summary
Short summary
We incorporated peatland dynamics into
Arcticversion of dynamic vegetation model LPJ-GUESS to understand the long-term evolution of northern peatlands and effects of climate change on peatland carbon balance. We found that the Stordalen mire may be expected to sequester more carbon before 2050 due to milder and wetter climate conditions, a longer growing season and CO2 fertilization effect, turning into a C source after 2050 because of higher decomposition rates in response to warming soils.
Maria Stergiadi, Marcel van der Perk, Ton C. M. de Nijs, and Marc F. P. Bierkens
Biogeosciences, 13, 1519–1536, https://doi.org/10.5194/bg-13-1519-2016, https://doi.org/10.5194/bg-13-1519-2016, 2016
Short summary
Short summary
We modelled the effects of changes in climate and land management on soil organic carbon (SOC) and dissolved organic carbon (DOC) levels in sandy and loamy soils under forest, grassland, and arable land. Climate change causes a decrease in both SOC and DOC for the agricultural systems, whereas for the forest systems, SOC slightly increases. A reduction in fertilizer application leads to a decrease in SOC and DOC levels under arable land but has a negligible effect under grassland.
S. S. Rabin, B. I. Magi, E. Shevliakova, and S. W. Pacala
Biogeosciences, 12, 6591–6604, https://doi.org/10.5194/bg-12-6591-2015, https://doi.org/10.5194/bg-12-6591-2015, 2015
Short summary
Short summary
People worldwide use fire to manage agriculture, but often also suppress fire in the landscape surrounding their fields. Here, we estimate the net result of these effects of cropland and pasture on fire at a regional, monthly level. Pasture is shown, for the first time, to contribute strongly to global patterns of burning. Our results could be used to improve representations of burning in global vegetation and climate models, improving our understanding of how people affect the Earth system.
Y. Le Page, D. Morton, B. Bond-Lamberty, J. M. C. Pereira, and G. Hurtt
Biogeosciences, 12, 887–903, https://doi.org/10.5194/bg-12-887-2015, https://doi.org/10.5194/bg-12-887-2015, 2015
W. Knorr, T. Kaminski, A. Arneth, and U. Weber
Biogeosciences, 11, 1085–1102, https://doi.org/10.5194/bg-11-1085-2014, https://doi.org/10.5194/bg-11-1085-2014, 2014
A. M. Foley, D. Dalmonech, A. D. Friend, F. Aires, A. T. Archibald, P. Bartlein, L. Bopp, J. Chappellaz, P. Cox, N. R. Edwards, G. Feulner, P. Friedlingstein, S. P. Harrison, P. O. Hopcroft, C. D. Jones, J. Kolassa, J. G. Levine, I. C. Prentice, J. Pyle, N. Vázquez Riveiros, E. W. Wolff, and S. Zaehle
Biogeosciences, 10, 8305–8328, https://doi.org/10.5194/bg-10-8305-2013, https://doi.org/10.5194/bg-10-8305-2013, 2013
R. Fuchs, M. Herold, P. H. Verburg, and J. G. P. W. Clevers
Biogeosciences, 10, 1543–1559, https://doi.org/10.5194/bg-10-1543-2013, https://doi.org/10.5194/bg-10-1543-2013, 2013
P. W. Keys, R. J. van der Ent, L. J. Gordon, H. Hoff, R. Nikoli, and H. H. G. Savenije
Biogeosciences, 9, 733–746, https://doi.org/10.5194/bg-9-733-2012, https://doi.org/10.5194/bg-9-733-2012, 2012
V. Kovalskyy and G. M. Henebry
Biogeosciences, 9, 161–177, https://doi.org/10.5194/bg-9-161-2012, https://doi.org/10.5194/bg-9-161-2012, 2012
A. Dallmeyer and M. Claussen
Biogeosciences, 8, 1499–1519, https://doi.org/10.5194/bg-8-1499-2011, https://doi.org/10.5194/bg-8-1499-2011, 2011
B. D. Stocker, K. Strassmann, and F. Joos
Biogeosciences, 8, 69–88, https://doi.org/10.5194/bg-8-69-2011, https://doi.org/10.5194/bg-8-69-2011, 2011
A. Oschlies, W. Koeve, W. Rickels, and K. Rehdanz
Biogeosciences, 7, 4017–4035, https://doi.org/10.5194/bg-7-4017-2010, https://doi.org/10.5194/bg-7-4017-2010, 2010
S. Bathiany, M. Claussen, V. Brovkin, T. Raddatz, and V. Gayler
Biogeosciences, 7, 1383–1399, https://doi.org/10.5194/bg-7-1383-2010, https://doi.org/10.5194/bg-7-1383-2010, 2010
M. Steinacher, F. Joos, T. L. Frölicher, L. Bopp, P. Cadule, V. Cocco, S. C. Doney, M. Gehlen, K. Lindsay, J. K. Moore, B. Schneider, and J. Segschneider
Biogeosciences, 7, 979–1005, https://doi.org/10.5194/bg-7-979-2010, https://doi.org/10.5194/bg-7-979-2010, 2010
A. Oschlies
Biogeosciences, 6, 1603–1613, https://doi.org/10.5194/bg-6-1603-2009, https://doi.org/10.5194/bg-6-1603-2009, 2009
Cited articles
Ahrends, H. E., Brügger, R., Stöckli, R., Schenk, J., Michna, P., Jeanneret, F., Wanner, H., and Eugster, W.: Quantitative phenological observations of a mixed beech forest in northern Switzerland with digital photography, J. Geophys. Res., 113, G04004, https://doi.org/10.1029/2007jg000650, 2008.
Badeck, F.-W., Bondeau, A., Böttcher, K., Doktor, D., Lucht, W., Schaber, J., and Sitch, S.: Responses of spring phenology to climate change, New Phytol., 162, 295–309, https://doi.org/10.1111/j.1469-8137.2004.01059.x, 2004.
Bastiaanssen, W. G. M. and Ali, S.: A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan, Agric. Ecosyst. Environ., 94, 321–340, 2003.
Blackmon, M., Boville, B., Bryan, F., Dickinson, R., Gent, P., Kiehl, J., Moritz, R., Randall, D., Shukla, J., Solomon, S., Bonan, G., Doney, S., Fung, I., Hack, J., Hunke, E., Hurrell, J., Kutzbach, J., Meehl, J., Otto-Bliesner, B., Saravanan, R., Schneider, E. K., Sloan, L., Spall, M., Taylor, K., Tribbia, J., and Washington, W.: The Community Climate System Model, Bull. Am. Meteorol. Soc., 82, 2357–2376, https://doi.org/10.1175/1520-0477(2001)082<2357:TCCSM>2.3.CO;2, 2001.
Bonan, G. B., Levis, S., Sitch, S., Vertenstein, M., and Oleson, K. W.: A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics, Global Change Biol., 9, 1543–1566, https://doi.org/10.1046/j.1365-2486.2003.00681.x, 2003.
Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-Campen, H., MÜLler, C., Reichstein, M., and Smith, B.: Modelling the role of agriculture for the 20th century global terrestrial carbon balance, Global Change Biol., 13, 679–706, https://doi.org/10.1111/j.1365-2486.2006.01305.x, 2007.
Brown, M. E. and de Beurs, K. M.: Evaluation of multi-sensor semi-arid crop season parameters based on NDVI and rainfall, Remote Sens. Environ., 112, 2261–2271, 2008.
Campbell, G. S. and Norman, J. M.: An introduction to Environmental Biophysics, Springer, New York; Berlin, 1998.
de Beurs, K. M. and Henebry, G. M.: Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan, Remote Sens. Environ., 89, 497–509, 2004.
de Beurs, K. M. and Henebry, G. M.: A statistical framework for the analysis of long image time series, Int. J. Remote Sens., 26, 1551–1573, 2005a.
de Beurs, K. M. and Henebry, G. M.: Land surface phenology and temperature variation in the International Geosphere–Biosphere Program high-latitude transects, Global Change Biol., 11, 779–790, https://doi.org/10.1111/j.1365-2486.2005.00949.x, 2005b.
de Beurs, K. M. and Henebry, G. M.: War, drought, and phenology: changes in the land surface phenology of Afghanistan since 1982, J. Land Use Sci., 3, 95–111, 2008a.
de Beurs, K. M. and Henebry, G. M.: Northern annular mode effects on the land surface phenologies of Northern Eurasia, J. Clim., 21, 4257–4279, https://doi.org/10.1175/2008JCLI2074.1, 2008b.
de Beurs, K. M., Wright, C. K., and Henebry, G. M.: Dual scale trend analysis for evaluating climatic and anthropogenic effects on the vegetated land surface in Russia and Kazakhstan, Environ. Res. Lett., 4, 045012, https://doi.org/10.1088/1748-9326/4/4/045012, 2009.
de Beurs, K. M. and Henebry, G. M.: Spatio-temporal statistical methods for modelling land surface phenology, in: Phenological Research, edited by: Hudson, I. L. and Keatley, M. R., Springer Netherlands, 177–208, 2010.
Delbart, N., Le Toan, T., Kergoat, L., and Fedotova, V.: Remote sensing of spring phenology in boreal regions: A free of snow-effect method using NOAA-AVHRR and SPOT-VGT data (1982–2004), Remote Sens. Environ., 101, 52–62, 2006.
Delbart, N., Picard, G., Le Toan, T., Kergoat, L., Quegan, S., Woodward, I. A. N., Dye, D., and Fedotova, V.: Spring phenology in boreal Eurasia over a nearly century time scale, Global Change Biol., 14, 603–614, https://doi.org/10.1111/j.1365-2486.2007.01505.x, 2008.
Dente, L., Satalino, G., Mattia, F., and Rinaldi, M.: Assimilation of leaf area index derived from ASAR and MERIS data into CERES-Wheat model to map wheat yield, Remote Sens. Environ., 112, 1395–1407, 2008.
Doraiswamy, P. C., Hatfield, J. L., Jackson, T. J., Akhmedov, B., Prueger, J., and Stern, A.: Crop condition and yield simulations using Landsat and MODIS, Remote Sens. Environ., 92, 548–559, 2004.
Dufour, B. and Morin, H.: Tracheid production phenology of Picea mariana and its relationship with climatic fluctuations and bud development using multivariate analysis, Tree Physiol., 30, 853–865, https://doi.org/10.1093/treephys/tpq046, 2010.
Duru, M., Adam, M., Cruz, P., Martin, G., Ansquer, P., Ducourtieux, C., Jouany, C., Theau, J. P., and Viegas, J.: Modelling above-ground herbage mass for a wide range of grassland community types, Ecol. Modell., 220, 209–225, 2009.
Egli, D. B.: Variation in leaf starch and sink limitations during seed filling in soybean, Crop Sci., 39, 1361–1368, 1999.
El Hajj, M., Bégué, A., Guillaume, S., and Martiné, J.-F.: Integrating SPOT-5 time series, crop growth modeling and expert knowledge for monitoring agricultural practices – The case of sugarcane harvest on Reunion Island, Remote Sens. Environ., 113, 2052–2061, 2009.
Fisher, J. I. and Mustard, J. F.: Cross-scalar satellite phenology from ground, Landsat, and MODIS data, Remote Sens. Environ., 109, 261–273, 2007.
Fisher, J. I., Richardson, A. D., and Mustard, J. F.: Phenology model from surface meteorology does not capture satellite-based greenup estimations, Global Change Biol., 13, 707–-721, https://doi.org/10.1111/j.1365-2486.2006.01311.x, 2007.
Foley, J. A., Prentice, I. C., Ramankutty, N., Levis, S., Pollard, D., Sitch, S., and Haxeltine, A.: An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics, Global Biogeochem. Cycles, 10, 603–628, https://doi.org/10.1029/96gb02692, 1996.
Ganguly, S., Friedl, M. A., Tan, B., Zhang, X., and Verma, M.: Land surface phenology from MODIS: Characterization of the Collection 5 global land cover dynamics product, Remote Sens. Environ., 114, 1805–1816, 2010.
Goldenstein, S.: A gentle introduction to predictive filters: http://seer.ufrgs.br/rita/article/download/rita_v11_n1_p63-92/3554, last access: 05/15/2011, 2004.
Gordo, O. and Sanz, J. J.: Long-term temporal changes of plant phenology in the Western Mediterranean, Global Change Biol., 15, 1930–1948, https://doi.org/10.1111/j.1365-2486.2009.01851.x, 2009.
Gurung, R. B., Breidt, F. J., Dutin, A., and Ogle, S. M.: Predicting Enhanced Vegetation Index (EVI) curves for ecosystem modeling applications, Remote Sens. Environ., 113, 2186–2193, 2009.
Hasumi, H. and Emori, S.: K-1 coupled GCM (MIROC) description: http://www.ccsr.u-tokyo.ac.jp/kyosei/hasumi/MIROC/tech-repo.pdf, last access: 05/15/2011, 2004.
Hay, R. K. M. and Walker, A. J.: An Introduction to the Physiology of Crop Yield, Longman Group, London, UK, 1989.
Huemmrich, K. F., Black, T. A., Jarvis, P. G., McCaughey, J. H., and Hall, F. G.: High temporal resolution NDVI phenology from micrometeorological radiation sensors, J. Geophys. Res., 104, 27935–27944, https://doi.org/10.1029/1999jd900164, 1999.
Hughes, J. K., Valdes, P. J., and Betts, R. A.: Dynamical properties of the TRIFFID dynamic global vegetation model: http://www.metoffice.gov.uk/publications/HCTN/HCTN_56.pdf, last access: 05/15/2011, 2004.
IPCC: Climate change 2007 : the physical science basis : contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., and Intergovernmental Panel on Climate Change. Working Group, I., Cambridge University Press, Cambridge; New York, 2007.
Jolly, W. M., Nemani, R., and Running, S. W.: A generalized, bioclimatic index to predict foliar phenology in response to climate, Global Change Biol., 11, 619–632, 2005.
Kaduk, J. and Heimann, M.: A prognostic phenology scheme for global terrestrial carbon cycle models, Clim. Res., 06, 1–19, https://doi.org/10.3354/cr0006001, 1996.
Kathuroju, N., White, M. A., Symanzik, J., Schwartz, M. D., Powell, J. A., and Nemani, R. R.: On the use of the advanced very high resolution radiometer for development of prognostic land surface phenology models, Ecol. Modell., 201, 144–156, 2007.
Knapp, A. K. and Smith, M. D.: Variation among biomes in temporal dynamics of aboveground primary production, Sci., 291, 481–484, https://doi.org/10.1126/science.291.5503.481, 2001.
Knorr, W., Kaminski, T., Scholze, M., Gobron, N., Pinty, B., Giering, R., and Mathieu, P. P.: Carbon cycle data assimilation with a generic phenology model, J. Geophys. Res., 115, G04017, https://doi.org/10.1029/2009jg001119, 2010.
Kovalskyy, V. and Henebry, G. M.: Recent trends in land surface phenologies within the Don and Dnieper River basins from the perspective of MODIS collection 4 products, in: Regional Aspects of Climate-Terrestrial-Hydrologic Interactions in Non-boreal Eastern Europe, NATO Science for Peace and Security Series, Springer Netherlands, 183–189, 2009a.
Kovalskyy, V. and Henebry, G. M.: Change and persistence in land surface phenologies of the Don and Dnieper river basins, Environ. Res. Lett., 4, 045018, https://doi.org/10.1088/1748-9326/4/4/045018, 2009b.
Kovalskyy, V. and Henebry, G. M.: Alternative methods to predict actual evapotranspiration illustrate the importance of accounting for phenology – Part 2: The event driven phenology model, Biogeosciences, 9, 161–177, https://doi.org/10.5194/bg-9-161-2012, 2012.
Kovalskyy, V., Henebry, G. M., Roy, D. P., Adusei, B., Hansen, M., Mocko, D.: Spatially explicit comparison and performance assessment of an event driven phenology model coupled with VegET evapotranspiration model, J. Geophys. Res., in prep., 2011a.
Kovalskyy, V., Roy, D. P,. Zhang, X. Y., and Ju, J.: The suitability of multi-temporal Web-Enabled Landsat Data (WELD) NDVI for phenological monitoring – a comparison with flux tower and MODIS NDVI, Remote Sens. Lett., 3:4, 325–334, 2011b.
Kramer, K., Leinonen, I., and Loustau, D.: The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview, Int. J. Biometeorol., 44, 67–75, https://doi.org/10.1007/s004840000066, 2000.
Levis, S., Bonan, G. B., Vertenstein, M., and Oleson, K. W.: The Community Land Model's Dynamic Global Vegetation Model (CLM-DGVM): Technical description and user's guide: http://www.cgd.ucar.edu/tss/clm/distribution/clm3.0/DGVMDoc/TN-459+IA.pdf, last access: 05/15/2011, 2004.
Maignan, F., Bréon, F. M., Bacour, C., Demarty, J., and Poirson, A.: Interannual vegetation phenology estimates from global AVHRR measurements: Comparison with in situ data and applications, Remote Sens. Environ., 112, 496–505, 2008.
Mangiarotti, S., Mazzega, P., Jarlan, L., Mougin, E., Baup, F., and Demarty, J.: Evolutionary bi-objective optimization of a semi-arid vegetation dynamics model with NDVI and [sigma]0 satellite data, Remote Sens. Environ., 112, 1365–1380, 2008.
Menzel, A., Sparks, T. H., Estrella, N., and Roy, D. B.: Altered geographic and temporal variability in phenology in response to climate change, Global Ecol. Biogeogr., 15, 498–504, 2006.
Morisette, J. T., Richardson, A. D., Knapp, A. K., Fisher, J. I., Graham, E. A., Abatzoglou, J., Wilson, B. E., Breshears, D. D., Henebry, G. M., Hanes, J. M., and Liang, L.: Tracking the rhythm of the seasons in the face of global change: phenological research in the 21st century, Front. Ecol. Environ., 7, 253–260, https://doi.org/10.1890/070217, 2009.
Myneni, R. B., Yang, W., Nemani, R. R., Huete, A. R., Dickinson, R. E., Knyazikhin, Y., Didan, K., Fu, R., Negrón Juárez, R. I., Saatchi, S. S., Hashimoto, H., Ichii, K., Shabanov, N. V., Tan, B., Ratana, P., Privette, J. L., Morisette, J. T., Vermote, E. F., Roy, D. P., Wolfe, R. E., Friedl, M. A., Running, S. W., Votava, P., El-Saleous, N., Devadiga, S., Su, Y., and Salomonson, V. V.: Large seasonal swings in leaf area of Amazon rainforests, PNAS, 104, 4820–4823, https://doi.org/10.1073/pnas.0611338104, 2007.
Nagler, T., Rott, H., Malcher, P., and Müller, F.: Assimilation of meteorological and remote sensing data for snowmelt runoff forecasting, Remote Sens. Environ., 112, 1408–1420, 2008.
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Srinivanas, R., and Williams, J. R.: Soil and Water Assessment Tool user's manual.: http://swatmodel.tamu.edu/media/1294/swatuserman.pdf, last access: 05/15/2011, 2002.
Nielsen, R. L.: Corn growth and development: What goes on from planting to harvest: http://www.agry.purdue.edu/ext/pubs/AGRY-97-07_v1-1.pdf, last access: 05/15/2011, 2002.
ORNLDAAC: MODIS subsetted land products, Collection 5: http://www.daac.ornl.gov/MODIS/modis.html, last access: 05/15/2011, 2009.
Parmesan, C. and Yohe, G.: A globally coherent fingerprint of climate change impacts across natural systems, Nature, 421, 37–42, https://doi.org/10.1038/nature01286, 2003.
Pitman, A. J., de Noblet-Ducoudré, N., Cruz, F. T., Davin, E. L., Bonan, G. B., Brovkin, V., Claussen, M., Delire, C., Ganzeveld, L., Gayler, V., van den Hurk, B. J. J. M., Lawrence, P. J., van der Molen, M. K., Müller, C., Reick, C. H., Seneviratne, S. I., Strengers, B. J., and Voldoire, A.: Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study, Geophys. Res. Lett., 36, L14814, https://doi.org/10.1029/2009gl039076, 2009.
Prasad, A. K., Chai, L., Singh, R. P., and Kafatos, M.: Crop yield estimation model for Iowa using remote sensing and surface parameters, Int. J. Appl. Earth Obs. Geoinf., 8, 26–33, 2006.
Reed, B. C., Schwartz, M. D., and Xiao, X.: Remote sensing phenology, in: Phenology: an integrative environmental science, edited by: Schwartz, M. D., Kluwer, Netherlands, 365-383, 2003.
Reed, B.: Trend Analysis of Time-Series Phenology of North America Derived from Satellite Data, GISci. Remote Sens., 43, 24–38, 2006.
Reed, B., Budde, M., Spencer, P., and Miller, A. E.: Integration of MODIS-derived metrics to assess interannual variability in snowpack, lake ice, and NDVI in southwest Alaska, Remote Sens. Environ., 113, 1443–1452, 2009.
Richardson, A. D., Anderson, R. S., Arain, M. A., Barr, A. G., Bohrer, G., Chen, G., Chen, J. M., Ciais, P., Davis, K. J., Desai, A. R., Dietze, M. C., Dragoni, D., Maayar, M. E., Garrity, S., Gough, C. M., Grant, R., Hollinger, D. Y., Margolis, H. A., McCaughey, H., Migliavacca, M., Monson, R. K., Munger, J. W., Poulter, B., Raczka, B. M., Ricciuto, D. M., Sahoo, A. K., Schaefer, K., Tian, H., Vargas, R., Verbeeck, H., Xiao, J., and Xue, Y.: Terrestrial biosphere models need better representation of vegetation phenology: Results from the North American Carbon ProgramSite Synthesis, Global Change Biol., accepted, https://doi.org/10.1111/j.1365-2486.2011.02562.x, 2011.
Richardson, A. D., Hollinger, D. Y., Dail, D. B., Lee, J. T., Munger, J. W., and O'Keefe, J.: Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests, Tree Physiol., 29, 321–331, https://doi.org/10.1093/treephys/tpn040, 2009.
Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C., and Pounds, J. A.: Fingerprints of global warming on wild animals and plants, Nat., 421, 57–60, 2003.
Roy, D. P., Jin, Y., Lewis, P. E., and Justice, C. O.: Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data, Remote Sens. Environ., 97, 137–162, 2005.
Roy, D. P., Lewis, P., Schaaf, C. B., Devadiga, S., and Boschetti, L.: The global impact of clouds on the production of MODIS bidirectional reflectance model-based composites for terrestrial monitoring, IEEE Geosci. Remote Sens. Lett., 3, 452–456, 2006.
Sadok, W. and Sinclair, T., R.: Genetic variability of transpiration response to vapor pressure deficit among soybean cultivars, Crop Sci., 49, 955–960, 2009.
Schwalm, C. R., Williams, C. A., Schaefer, K., Arneth, A., Bonal, D., Buchmann, N., Chen, J., Law, B. E., Lindroth, A., Luyssaert, S., Reichstein, M., and Richardson, A. D.: Assimilation exceeds respiration sensitivity to drought: A FLUXNET synthesis, Global Change Biol., 16, 657–670, https://doi.org/10.1111/j.1365-2486.2009.01991.x, 2010.
Schwartz, M. D., Ahas, R., and Aasa, A.: Onset of spring starting earlier across the Northern Hemisphere, Global Change Biol., 12, 343–351, https://doi.org/10.1111/j.1365-2486.2005.01097.x, 2006.
Seastedt, T. R. and Knapp, A. K.: Consequences of nonequilibrium resource availability across multiple time scales: The transient maxima hypothesis, Am. Nat., 141, 621–633, 1993.
Senay, G.: Modeling landscape evapotranspiration by integrating land surface phenology and a water balance algorithm, Algorithms, 1, 52–68, 2008.
Setiyono, T. D., Weiss, A., Specht, J., Bastidas, A. M., Cassman, K. G., and Dobermann, A.: Understanding and modeling the effect of temperature and daylength on soybean phenology under high-yield conditions, Field Crops Res., 100, 257–271, 2007.
Stöckli, R., Lawrence, D. M., Niu, G. Y., Oleson, K. W., Thornton, P. E., Yang, Z. L., Bonan, G. B., Denning, A. S., and Running, S. W.: Use of FLUXNET in the Community Land Model development, J. Geophys. Res., 113, G01025, https://doi.org/10.1029/2007jg000562, 2008a.
Stöckli, R., Rutishauser, T., Dragoni, D., O'Keefe, J., Thornton, P. E., Jolly, M., Lu, L., and Denning, A. S.: Remote sensing data assimilation for a prognostic phenology model, J. Geophys. Res., 113, G04021, https://doi.org/10.1029/2008jg000781, 2008b.
Stöckli, R., Rutishauser, T., Baker, I., Liniger, M., and Denning, S.: A Global Reanalysis of Vegetation Phenology, J. Geophys. Res., in press, https://doi.org/10.1029/2010JG001545, 2011.
Studer, S., Appenzeller, C., and Defila, C.: Inter-annual variability and decadal trends in alpine spring phenology: A multivariate analysis approach, Clim. Change, 73, 395–414, https://doi.org/10.1007/s10584-005-6886-z, 2005.
Tan, B., Morisette, J., Wolfe, R., Gao, F., Nightingale, J. M., Pedelty, J., and Ederer, G.: User guide for MOD09PHN and MOD15PHN products: http://accweb.nascom.nasa.gov/project/docs/User_guide_PHN.pdf, last access: 05/15/2011, 2007.
Thornley, J. H. M. and Johnson, I. R.: Plant and Crop Modelling : a Mathematical Approach to Plant and Crop Physiology, Blackburn Press, Caldwell, N.J, 2000.
Thornton, P. E., Law, B. E., Gholz, H. L., Clark, K. L., Falge, E., Ellsworth, D. S., Goldstein, A. H., Monson, R. K., Hollinger, D., Falk, M., Chen, J., and Sparks, J. P.: Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests, Agric. For. Meteorol., 113, 185–222, 2002.
Tojo Soler, C. M., Sentelhas, P. C., and Hoogenboom, G.: Thermal time for phenological development of four maize hybrids grown off-season in a subtropical environment, J. Agric. Sci., 143, 169–182, https://doi.org/10.1017/S0021859605005198, 2005.
Tucker, C. J., Slayback, D. A., Pinzon, J. E., Los, S. O., Myneni, R. B., and Taylor, M. G.: Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999, Int. J. Biometeorol., 45, 184–190, https://doi.org/10.1007/s00484-001-0109-8, 2001.
Turner, M. R. J., Walker, J. P., and Oke, P. R.: Ensemble member generation for sequential data assimilation, Remote Sens. Environ., 112, 1421–1433, 2008.
Viña, A., Henebry, G. M., and Gitelson, A. A.: Satellite monitoring of vegetation dynamics: Sensitivity enhancement by the wide dynamic range vegetation index, Geophys. Res. Lett., 31, L04503, https://doi.org/10.1029/2003gl019034, 2004.
Walker, J. P., Willgoose, G. R., and Kalma, J. D.: One-dimensional soil moisture profile retrieval by assimilation of near-surface observations: a comparison of retrieval algorithms, Adv. Water Resour., 24, 631–650, 2001.
Wang, W., Ichii, K., Hashimoto, H., Michaelis, A. R., Thornton, P. E., Law, B. E., and Nemani, R. R.: A hierarchical analysis of terrestrial ecosystem model Biome-BGC: Equilibrium analysis and model calibration, Ecol. Modell., 220, 2009–2023, 2009.
White, M. A., Thornton, P. E., and Running, S. W.: A continental phenology model for monitoring vegetation responses to interannual climatic variability, Global Biogeochem. Cycles, 11, 217–234, https://doi.org/10.1029/97gb00330, 1997.
White, M. A., De Beurs, K. M., Didan, K., Inouye, D. W., Richardson, A. D., Jensen, O. P., O'Keefe, J., Zhang, G., Nemani, R. R., Van Leeuwen, W. J. D., Brown, J. F., De Wit, A., Schaepman, M., Lin, X., Dettinger, M., Bailey, A. S., Kimball, J., Schwartz, M. D., Baldocchi, D. D., Lee, J. T., and Lauenroth, W. K.: Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006, Global Change Biol., 15, 2335–2359, https://doi.org/10.1111/j.1365-2486.2009.01910.x, 2009.
Wisiol, K. and Hesketh, J. D.: Plant Growth Modeling for Resource Management: Volume I Current Models and Methods, CRC Press, Boca Raton, FL, 170 pp., 1987.
Wittich, K.-P. and Kraft, M.: The normalised difference vegetation index obtained from agrometeorological standard radiation sensors: a comparison with ground-based multiband spectroradiometer measurements during the phenological development of an oat canopy, Int. J. Biometeorol., 52, 167–177, https://doi.org/10.1007/s00484-007-0108-5, 2008.
Wu, X.: Adaptive split-and-merge segmentation based on piecewise least-square approximation, IEEE Trans. Pattern Anal. Mach. Intell., 15, 808–815, 1993.
Yazar, A., Howell, T. A., Dusek, D. A., and Copeland, K. S.: Evaluation of crop water stress index for LEPA irrigated corn, Irrig. Sci., 18, 171–180, https://doi.org/10.1007/s002710050059, 1999.
Zhang, X., Friedl, M. A., and Schaaf, C. B.: Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): Evaluation of global patterns and comparison with in situ measurements, J. Geophys. Res., 111, G04017, https://doi.org/10.1029/2006jg000217, 2006.
Zhang, X., Tarpley, D., and Sullivan, J. T.: Diverse responses of vegetation phenology to a warming climate, Geophys. Res. Lett., 34, L19405, https://doi.org/10.1029/2007gl031447, 2007.
Zhang, X., Friedl, M. A., and Schaaf, C. B.: Sensitivity of vegetation phenology detection to the temporal resolution of satellite data, Int. J. Remote Sens., 30, 2061–2074, 2009.
Zhang, L., Wylie, B. K., Ji, L., Gilmanov, T. G., and Tieszen, L. L.: Climate-Driven Interannual Variability in Net Ecosystem Exchange in the Northern Great Plains Grasslands, Rangeland Ecol. Manage., 63, 40–50, https://doi.org/10.2111/08-232.1, 2010.
Altmetrics
Final-revised paper
Preprint