Articles | Volume 16, issue 7
https://doi.org/10.5194/bg-16-1629-2019
https://doi.org/10.5194/bg-16-1629-2019
Research article
 | 
16 Apr 2019
Research article |  | 16 Apr 2019

Estimation of emissions from biomass burning in China (2003–2017) based on MODIS fire radiative energy data

Lifei Yin, Pin Du, Minsi Zhang, Mingxu Liu, Tingting Xu, and Yu Song

Related authors

Why is the Indo-Gangetic Plain the region with the largest NH3 column in the globe during pre-monsoon and monsoon seasons?
Tiantian Wang, Yu Song, Zhenying Xu, Mingxu Liu, Tingting Xu, Wenling Liao, Lifei Yin, Xuhui Cai, Ling Kang, Hongsheng Zhang, and Tong Zhu
Atmos. Chem. Phys., 20, 8727–8736, https://doi.org/10.5194/acp-20-8727-2020,https://doi.org/10.5194/acp-20-8727-2020, 2020
Short summary
Estimation of biogenic volatile organic compound (BVOC) emissions in China using WRF–CLM–MEGAN coupled model
Lifei Yin, Zhenying Xu, Mingxu Liu, Tingting Xu, Tiantian Wang, Wenling Liao, Mengmeng Li, Xuhui Cai, Ling Kang, Hongsheng Zhang, and Yu Song
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-458,https://doi.org/10.5194/bg-2019-458, 2020
Manuscript not accepted for further review
Short summary

Related subject area

Biogeochemistry: Greenhouse Gases
Modelling CO2 and N2O emissions from soils in silvopastoral systems of the West African Sahelian band
Yélognissè Agbohessou, Claire Delon, Manuela Grippa, Eric Mougin, Daouda Ngom, Espoir Koudjo Gaglo, Ousmane Ndiaye, Paulo Salgado, and Olivier Roupsard
Biogeosciences, 21, 2811–2837, https://doi.org/10.5194/bg-21-2811-2024,https://doi.org/10.5194/bg-21-2811-2024, 2024
Short summary
A case study on topsoil removal and rewetting for paludiculture: effect on biogeochemistry and greenhouse gas emissions from Typha latifolia, Typha angustifolia, and Azolla filiculoides
Merit van den Berg, Thomas M. Gremmen, Renske J. E. Vroom, Jacobus van Huissteden, Jim Boonman, Corine J. A. van Huissteden, Ype van der Velde, Alfons J. P. Smolders, and Bas P. van de Riet
Biogeosciences, 21, 2669–2690, https://doi.org/10.5194/bg-21-2669-2024,https://doi.org/10.5194/bg-21-2669-2024, 2024
Short summary
Assessing improvements in global ocean pCO2 machine learning reconstructions with Southern Ocean autonomous sampling
Thea H. Heimdal, Galen A. McKinley, Adrienne J. Sutton, Amanda R. Fay, and Lucas Gloege
Biogeosciences, 21, 2159–2176, https://doi.org/10.5194/bg-21-2159-2024,https://doi.org/10.5194/bg-21-2159-2024, 2024
Short summary
Timescale dependence of airborne fraction and underlying climate–carbon-cycle feedbacks for weak perturbations in CMIP5 models
Guilherme L. Torres Mendonça, Julia Pongratz, and Christian H. Reick
Biogeosciences, 21, 1923–1960, https://doi.org/10.5194/bg-21-1923-2024,https://doi.org/10.5194/bg-21-1923-2024, 2024
Short summary
Technical note: Preventing CO2 overestimation from mercuric or copper(II) chloride preservation of dissolved greenhouse gases in freshwater samples
François Clayer, Jan Erik Thrane, Kuria Ndungu, Andrew King, Peter Dörsch, and Thomas Rohrlack
Biogeosciences, 21, 1903–1921, https://doi.org/10.5194/bg-21-1903-2024,https://doi.org/10.5194/bg-21-1903-2024, 2024
Short summary

Cited articles

Andreae, M. O., Fishman, J., Garstang, M., Goldammer, J. G., Justice, C. O., Levine, J. S., Scholes, R. J., Stocks, B. J., Thompson, A. M., and van Wilgen, B.: Biomass Burning in the Global Environment: First Results from the IGAC/BIBEX Field Campaign STARE/TRACE-A/SAFARI-92, in: Global Atmospheric-Biospheric Chemistry, edited by: Prinn, R. G., Springer US, Boston, MA, 83–101, 1994. 
Andreae, M. O.: Biomass burning: its history, use, and distribution and its impact, in: Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, edited by: Levine, J. S., Cambridge, MA, MIT Press, 1991. 
Bond, N. A., Cronin, M. F., Freeland, H., and Mantua, N.: Causes and impacts of the 2014 warm anomaly in the NE Pacific, Geophys. Res. Lett., 42, 3414–3420, 2015. 
Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J.-H., and Klimont, Z.: A technology-based global inventory of black and organic carbon emissions from combustion, J. Geophys. Res.-Atmos., 109, D14203, https://doi.org/10.1029/2003JD003697, 2004. 
Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M. S., Wang, S., Hao, J., Zhang, H., He, C., Guo, H., Fu, H., Miljevic, B., Morawska, L., Thai, P., Lam, Y. F., Pereira, G., Ding, A., Huang, X., and Dumka, U. C.: A review of biomass burning: Emissions and impacts on air quality, health and climate in China, Sci. Total Environ., 579, 1000–1034, https://doi.org/10.1016/j.scitotenv.2016.11.025, 2017a. 
Download
Short summary
Biomass burning is an important source of trace gases and aerosols in China, with a significant contribution from small-sized crop residue fires. Compared with conventional methods for emission estimation, the approach based on fire radiative energy (FRE) provides a more reasonable estimate for small-fire emissions. By using FRE data derived from satellites, we developed a long-term biomass burning emission inventory for China with a higher resolution (daily, 1 km) than previous studies.
Altmetrics
Final-revised paper
Preprint