Articles | Volume 16, issue 13
https://doi.org/10.5194/bg-16-2683-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-2683-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Collection of large benthic invertebrates in sediment traps in the Amundsen Sea, Antarctica
Minkyoung Kim
School of Earth and Environmental Sciences/Research Institute of
Oceanography, Seoul National University, Seoul, 08826, South Korea
Eun Jin Yang
Korea Polar Research Institute, Incheon, 21990, South Korea
Hyung Jeek Kim
Korea Institute of Ocean Science and Technology, Busan, 49111, South
Korea
Dongseon Kim
Korea Institute of Ocean Science and Technology, Busan, 49111, South
Korea
Tae-Wan Kim
Korea Polar Research Institute, Incheon, 21990, South Korea
Hyoung Sul La
Korea Polar Research Institute, Incheon, 21990, South Korea
SangHoon Lee
Korea Polar Research Institute, Incheon, 21990, South Korea
Jeomshik Hwang
CORRESPONDING AUTHOR
School of Earth and Environmental Sciences/Research Institute of
Oceanography, Seoul National University, Seoul, 08826, South Korea
Related authors
No articles found.
Igor V. Polyakov, Andrey V. Pnyushkov, Eddy C. Carmack, Matthew Charette, Kyoung-Ho Cho, Steven Dykstra, Jari Haapala, Jinyoung Jung, Lauren Kipp, Eun Jin Yang, and Sergey Molodtsov
Ocean Sci., 21, 3105–3122, https://doi.org/10.5194/os-21-3105-2025, https://doi.org/10.5194/os-21-3105-2025, 2025
Short summary
Short summary
The Siberian Arctic Ocean greatly influences the Arctic climate system. Moreover, the region is experiencing some of the most notable Arctic climate change. In the summer, strong near-inertial currents in the upper (<30m) ocean account for more than half of the current speed and shear. In the winter, upper ocean ventilation due to atlantification distributes wind energy to far deeper (>100m) layers. Understanding the implications for mixing and halocline weakening depends on these findings.
Shenjie Zhou, Pierre Dutrieux, Claudia F. Giulivi, Adrian Jenkins, Alessandro Silvano, Christopher Auckland, E. Povl Abrahamsen, Michael Meredith, Irena Vaňková, Keith Nicholls, Peter E. D. Davis, Svein Østerhus, Arnold L. Gordon, Christopher J. Zappa, Tiago S. Dotto, Ted Scambos, Kathryn L. Gunn, Stephen R. Rintoul, Shigeru Aoki, Craig Stevens, Chengyan Liu, Sukyoung Yun, Tae-Wan Kim, Won Sang Lee, Markus Janout, Tore Hattermann, Julius Lauber, Elin Darelius, Anna Wåhlin, Leo Middleton, Pasquale Castagno, Giorgio Budillon, Karen J. Heywood, Jennifer Graham, Stephen Dye, Daisuke Hirano, and Una Kim Miller
Earth Syst. Sci. Data, 17, 5693–5706, https://doi.org/10.5194/essd-17-5693-2025, https://doi.org/10.5194/essd-17-5693-2025, 2025
Short summary
Short summary
We created the first standardised dataset of in-situ ocean measurements time series from around Antarctica collected since 1970s. This includes temperature, salinity, pressure, and currents recorded by instruments deployed in icy, challenging conditions. Our analysis highlights the dominance of tidal currents and separates these from other patterns to study regional energy distribution. This unique dataset offers a foundation for future research on Antarctic ocean dynamics and ice interactions.
Yange Deng, Hiroshi Tanimoto, Kohei Ikeda, Sohiko Kameyama, Sachiko Okamoto, Jinyoung Jung, Young Jun Yoon, Eun Jin Yang, and Sung-Ho Kang
Atmos. Chem. Phys., 24, 6339–6357, https://doi.org/10.5194/acp-24-6339-2024, https://doi.org/10.5194/acp-24-6339-2024, 2024
Short summary
Short summary
Black carbon (BC) aerosols play important roles in Arctic climate change, yet they are not well understood because of limited observational data. We observed BC mass concentrations (mBC) in the western Arctic Ocean during summer and early autumn 2016–2020. The mean mBC in 2019 was much higher than in other years. Biomass burning was likely the dominant BC source. Boreal fire BC transport occurring near the surface and/or in the mid-troposphere contributed to high-BC events in the Arctic Ocean.
Jinyoung Jung, Yuzo Miyazaki, Jin Hur, Yun Kyung Lee, Mi Hae Jeon, Youngju Lee, Kyoung-Ho Cho, Hyun Young Chung, Kitae Kim, Jung-Ok Choi, Catherine Lalande, Joo-Hong Kim, Taejin Choi, Young Jun Yoon, Eun Jin Yang, and Sung-Ho Kang
Atmos. Chem. Phys., 23, 4663–4684, https://doi.org/10.5194/acp-23-4663-2023, https://doi.org/10.5194/acp-23-4663-2023, 2023
Short summary
Short summary
This study examined the summertime fluorescence properties of water-soluble organic carbon (WSOC) in aerosols over the western Arctic Ocean. We found that the WSOC in fine-mode aerosols in coastal areas showed a higher polycondensation degree and aromaticity than in sea-ice-covered areas. The fluorescence properties of atmospheric WSOC in the summertime marine Arctic boundary can improve our understanding of the WSOC chemical and biological linkages at the ocean–sea-ice–atmosphere interface.
Vår Dundas, Elin Darelius, Kjersti Daae, Nadine Steiger, Yoshihiro Nakayama, and Tae-Wan Kim
Ocean Sci., 18, 1339–1359, https://doi.org/10.5194/os-18-1339-2022, https://doi.org/10.5194/os-18-1339-2022, 2022
Short summary
Short summary
Ice shelves in the Amundsen Sea are thinning rapidly as ocean currents bring warm water into cavities beneath the floating ice. We use 2-year-long mooring records and 16-year-long model simulations to describe the hydrography and circulation near the ice front between Siple and Carney Islands. We find that temperatures here are lower than at neighboring ice fronts and that the transport of heat toward the cavity is governed by wind stress over the Amundsen Sea continental shelf.
Heejun Han, Jeomshik Hwang, and Guebuem Kim
Biogeosciences, 18, 1793–1801, https://doi.org/10.5194/bg-18-1793-2021, https://doi.org/10.5194/bg-18-1793-2021, 2021
Short summary
Short summary
The main source of excess DOC occurring in coastal seawater off an artificial lake, which is enclosed by a dike along the western coast of South Korea, was determined using a combination of various biogeochemical tools including DOC and nutrient concentrations, stable carbon isotope, and optical properties (absorbance and fluorescence) of dissolved organic matter in two different seasons (March 2017 and September 2018).
Cited articles
Arrigo, K. R. van Dijken, G. L.: Phytoplankton dynamics within 37 Antarctic
coastal polynya systems, J. Geophys. Res., 108, 27–21, https://doi.org/10.1029/2002JC001739, 2003.
Arrigo, K. R. and Alderkamp, A. -C.: Shedding dynamic light on Fe limitation
(DynaLiFe), Deep-Sea Res. Pt. II, 71, 1–4, https://doi.org/10.1016/j.dsr2.2012.03.004, 2012.
Assmann, K. M., Hellmer, H. H., and Jacobs S. S.: Amundsen Sea ice
production and transport, J. Geophys. Res., 110, C12013, https://doi.org/10.1029/2004JC002797, 2005.
Barnes, D. K.: The influence of ice on polar nearshore benthos, J. Mar.
Biolog. Assoc. UK, 79, 401–407, https://doi.org/10.1017/S0025315498000514, 1999.
Barnes, D. K. and Souster, T.: Reduced survival of Antarctic benthos linked
to climate-induced iceberg scouring, Nat. Clim. Change, 1, 365–368,
https://doi.org/10.1038/nclimate1232, 2011.
Barrera-Oro, E. and Casaux R. J.: Feeding selectivity in Notothenia
neglecta, Nybelin, from Potter Cove, South Shetland Islands, Antarctica,
Antarct. Sci., 2, 207–213, https://doi.org/10.1017/S0954102090000281, 1990.
Clarke, A. and Prothero-Thomas E.: The influence of feeding on oxygen
consumption and nitrogen excretion in the Antarctic nemertean Parborlasia
corrugatus, Physiol. Zool., 70, 639–649, https://doi.org/10.1086/515868, 1997.
Dayton, P. K., Robilliard, G. A., and Devries A. L.: Anchor ice formation in
McMurdo Sound, Antarctica, and its biological effects, Science, 163,
273–274, https://doi.org/10.1126/science.163.3864.273, 1969.
Denny, M., Dorgan, K. M., Evangelista, D., Hettinger, A., Leichter, J.,
Ruder, W. C., and Tuval, I.: Anchor Ice and Benthic Disturbance in Shallow
Antarctic Waters: Interspecific Variation in Initiation and Propagation of
Ice Crystals, Biol. Bull. 221, 155–163, https://doi.org/10.1086/BBLv221n2p155, 2011.
Ducklow, H. W., Wilson, S. E., Post, A. F., Stammerjohn, S. E., Erickson,
M., Lee, S., Lowry, K. E., Sherrell, R. M., and Yager P. L.: Particle flux
on the continental shelf in the Amundsen Sea Polynya and Western Antarctic
Peninsula, Elementa, 3, 000046, https://doi.org/10.12952/journal.elementa.000046, 2015.
Gutt, J.: On the direct impact of ice on marine benthic communities, a
review, Polar Biol., 24, 553–564, https://doi.org/10.1007/s003000100262, 2001.
Heine, J., McClintock, J., Slattery, M., and Weston J.: Energetic
composition, biomass, and chemical defense in the common Antarctic nemertean
Parborlasia corrugatus McIntosh, J. Exp. Mar. Biol. Ecol., 153, 15–25,
https://doi.org/10.1016/S0022-0981(05)80003-6, 1991.
Kempema, E., Reimnitz, E., and Barnes P. W.: Sea ice sediment entrainment
and rafting in the Arctic, J. Sediment. Res., 59, 308–317, https://doi.org/10.1306/212F8F80-2B24-11D7-8648000102C1865D, 1989.
Kim, M., Hwang, J., Kim, H. J., Kim, D., Yang, E. J., Ducklow, H. W., La S.
H., Lee, S. H., Park, J., and Lee S.: Sinking particle flux in the sea ice
zone of the Amundsen shelf, Antarctica, Deep-Sea Res. Pt. I, 101, 110–117,
https://doi.org/10.1016/j.dsr.2015.04.002, 2015.
Kim, M., Yang, E. J., Kim, D., Jeong, J.-H., Kim, H. J., Park, J., Jung, J.,
Ducklow, H. W., Lee, S., and Hwang J.: Sinking particle flux and composition
at three sites of different annual sea ice cover in the Amundsen Sea,
Antarctica, J. Mar. Syst., 192, 42–50, https://doi.org/10.1016/j.jmarsys.2019.01.002, 2019.
Kim, C. S., Kim, T. W., Cho, K. H., Ha, H. K., Lee, S. H., Kim, H. C., and
Lee, J. H.: Variability of the Antarctic Coastal Current in the Amundsen
Sea, Estuar. Coast Shelf Sci., 181, 123–133, https://doi.org/10.1016/j.ecss.2016.08.004, 2016.
Kirkwood, J. and Burton H. J.: Macrobenthic species assemblages in Ellis
Fjord, Vestfold Hills, Antarctica, Mar. Biol., 97, 445–457, https://doi.org/10.1007/BF00397776, 1988.
Lee, S., Hwang, J., Ducklow, H. W., Hahm, D., Lee, S. H., Kim, D., Hyun, J.
H., Park, J., Ha, H. K., and Kim, T. W.: Evidence of minimal carbon
sequestration in the productive Amundsen Sea polynya, Geophy. Res. Lett., 44,
7892–7899, https://doi.org/10.1002/2017GL074646, 2017.
Leonard, G., Mager, S., Pauling, A., Hughes, K., and Smith I. J.: Towards a
process model for predicting potential anchor ice formation sites in coastal
Antarctic waters, J. Spat. Sci., 59, 297–312, https://doi.org/10.1080/14498596.2014.913271, 2014.
Mager, S. M., Smith, I. J., Kempema, E. W., Thomson, B. J., and Leonard G.
H.: Anchor ice in polar oceans, Prog. Phys. Geogr., 37, 468–483,
https://doi.org/10.1177/0309133313479815, 2013.
Mager, S. M., Leonard, G. H., Pauling, A. G., and Smith I. J.: A framework
for estimating anchor ice extent at potential formation sites in McMurdo
Sound, Antarctica, Ann. Glaciol., 56, 394–404, https://doi.org/10.3189/2015AoG69A711, 2015.
Meredith, M. P., Ducklow, H. W., Schofield, O., Wåhlin, A., Newman, L.,
and Lee, S.: The interdisciplinary marine system of the Amundsen Sea, Southern
Ocean: Recent advances and the need for sustained observations, Deep-Sea
Res. Pt. II, 123, 1–6, https://doi.org/10.1016/j.dsr2.2015.12.002,
2016.
Nihashi, S. and Ohshima K. I.: Circumpolar mapping of Antarctic coastal
polynyas and landfast sea ice: relationship and variability, J. Clim.,
28, 3650–3670, https://doi.org/10.1175/JCLI-D-14-00369.1,
2015.
Nürnberg, D., Wollenburg, I., Dethleff, D., Eicken, H., Kassens, H.,
Letzig, T., Reimnitz, E., and Thiede, J.: Sediments in Arctic sea ice:
implications for entrainment, transport and release, Mar. Geol., 119, 185–214,
https://doi.org/10.1016/0025-3227(94)90181-3, 1994.
Obermüller, B. E., Truebano, M., Peck, L. S., Eastman, J. T., and Morley
S. A.: Reduced seasonality in elemental CHN composition of Antarctic marine
benthic predators and scavengers, J. Exp. Mar. Biol. Ecol., 446, 328–333,
https://doi.org/10.1016/j.jembe.2013.06.001, 2013.
Pfirman, S., Lange, M., Wollenburg, I., and Schlosser P.: Sea ice
characteristics and the role of sediment inclusions in deep-sea deposition:
Arctic–Antarctic comparisons, in: Geological
History of the Polar Oceans: Arctic versus Antarctic, edited by: Bleil, U. and Thiede, J., NATO ASI Series,
308, 187–211, Springer, https://doi.org/10.1007/978-94-009-2029-3_11, 1990.
Picken, G. B.: Reproductive adaptations of Antarctic benthic invertebrates,
Biol. J. Linnean. Soc., 14, 67–75, https://doi.org/10.1111/j.1095-8312.1980.tb00098, 1980.
Reimnitz, E., Marincovich Jr., L., McCormick, M., and Briggs W.: Suspension
freezing of bottom sediment and biota in the Northwest Passage and
implications for Arctic Ocean sedimentation, Can. J. Earth Sci., 29,
693–703, https://doi.org/10.1139/e92-060, 1992.
Robinson, N. J., Williams, M. J., Stevens, C. L., Langhorne, P. J., and
Haskell, T. G.: Evolution of a supercooled Ice Shelf Water plume with an
actively growing subice platelet matrix, J. Geophys. Res., 119, 3425–3446,
https://doi.org/10.1002/2013JC009399, 2014.
Stammerjohn, S., Maksym, T., Massom, R., Lowry, K., Arrigo, K., Yuan, X.,
Raphael, M., Randall-Goodwin, E., Sherrell, R., and Yager P.: Seasonal sea
ice changes in the Amundsen Sea, Antarctica, over the period of 1979–2014,
Elementa, 3, 000055, https://doi.org/10.12952/journal.elementa.000055,
2015.
Yager, P. L., Sherrell, L., Stammerjohn, S., Alderkamp, A., Schofield, O.,
Abrahamsen, E., Arrigo, K., Bertilsson, S., Garay, D., and Guerrero, R.: ASPIRE:
The Amundsen Sea Polynya International Research Expedition, Oceanogr., 25,
40–53, https://doi.org/10.5670/oceanog.2012.73, 2012.
Yager, P. L., Sherrell, R., Stammerjohn, S., Ducklow, H., Schofield, O.,
Ingall, E., Wilson, S., Lowry, K., Williams, C., and Riemann, L.: A carbon
budget for the Amundsen Sea Polynya, Antarctica: Estimating net community
production and export in a highly productive polar ecosystem, Elementa, 4, 000140,
https://doi.org/10.12952/journal.elementa.000140, 2016.
Short summary
Unexpectedly, in sediment traps deployed in the Antarctic Amundsen Sea to catch small sinking particles in the water, large benthic invertebrates such as long and slender worms, baby sea urchins, and small scallops were found. We suggest three hypotheses: lifting of these animals by anchor ice formation and subsequent transport by ice rafting, spending their juvenile period in a habitat underneath the sea ice and subsequent falling, or their active use of the current as a means of dispersal.
Unexpectedly, in sediment traps deployed in the Antarctic Amundsen Sea to catch small sinking...
Altmetrics
Final-revised paper
Preprint