Articles | Volume 17, issue 9
https://doi.org/10.5194/bg-17-2487-2020
https://doi.org/10.5194/bg-17-2487-2020
Research article
 | 
08 May 2020
Research article |  | 08 May 2020

Carbon dioxide dynamics in an agricultural headwater stream driven by hydrology and primary production

Marcus B. Wallin, Joachim Audet, Mike Peacock, Erik Sahlée, and Mattias Winterdahl

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (30 Mar 2020) by Paul Stoy
AR by Marcus Wallin on behalf of the Authors (02 Apr 2020)  Author's response    Manuscript
ED: Publish as is (06 Apr 2020) by Paul Stoy
Download
Short summary
Here we show that small streams draining agricultural areas are potential hotspots for emissions of CO2 to the atmosphere. We further conclude that the variability in stream CO2 concentration over time is very high, caused by variations in both water discharge and primary production. Given the observed high levels of CO2 and its temporally variable nature, agricultural streams clearly need more attention in order to understand and incorporate these dynamics in large-scale extrapolations.
Altmetrics
Final-revised paper
Preprint