Articles | Volume 17, issue 9
https://doi.org/10.5194/bg-17-2487-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-2487-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Carbon dioxide dynamics in an agricultural headwater stream driven by hydrology and primary production
Department of Aquatic Sciences and Assessment, Swedish University of
Agricultural Sciences, Uppsala, Sweden
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Joachim Audet
Department of Bioscience, Aarhus University, Silkeborg, Denmark
Mike Peacock
Department of Aquatic Sciences and Assessment, Swedish University of
Agricultural Sciences, Uppsala, Sweden
Erik Sahlée
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Mattias Winterdahl
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Department of Physical Geography, Stockholm University, Stockholm,
Sweden
Bolin Centre for Climate Research, Stockholm, Sweden
Related authors
Francesco Ulloa-Cedamanos, Adam T. Rexroade, Yihan Li, Lindsay B. Hutley, Wei Wen Wong, Marcus B. Wallin, Josep G. Canadell, Anna Lintern, and Clement Duvert
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-233, https://doi.org/10.5194/essd-2025-233, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
Rivers and streams play a key role in how carbon moves through the environment, but we know little about this in Australia. To help close this gap, we compile the first national database of carbon data from rivers and streams, combining past studies, government records, and new data. The data show where and when carbon was measured and reveal major gaps in long-term monitoring. This new resource will help scientists understand carbon and water systems across Australia.
Emily H. Stanley, Luke C. Loken, Nora J. Casson, Samantha K. Oliver, Ryan A. Sponseller, Marcus B. Wallin, Liwei Zhang, and Gerard Rocher-Ros
Earth Syst. Sci. Data, 15, 2879–2926, https://doi.org/10.5194/essd-15-2879-2023, https://doi.org/10.5194/essd-15-2879-2023, 2023
Short summary
Short summary
The Global River Methane Database (GRiMeDB) presents CH4 concentrations and fluxes for flowing waters and concurrent measures of CO2, N2O, and several physicochemical variables, plus information about sample locations and methods used to measure gas fluxes. GRiMeDB is intended to increase opportunities to understand variation in fluvial CH4, test hypotheses related to greenhouse gas dynamics, and reduce uncertainty in future estimates of gas emissions from world streams and rivers.
Lucía Gutiérrez-Loza, Erik Nilsson, Marcus B. Wallin, Erik Sahlée, and Anna Rutgersson
Biogeosciences, 19, 5645–5665, https://doi.org/10.5194/bg-19-5645-2022, https://doi.org/10.5194/bg-19-5645-2022, 2022
Short summary
Short summary
The exchange of CO2 between the ocean and the atmosphere is an essential aspect of the global carbon cycle and is highly relevant for the Earth's climate. In this study, we used 9 years of in situ measurements to evaluate the temporal variability in the air–sea CO2 fluxes in the Baltic Sea. Furthermore, using this long record, we assessed the effect of atmospheric and water-side mechanisms controlling the efficiency of the air–sea CO2 exchange under different wind-speed conditions.
Jens Daniel Müller, Bernd Schneider, Ulf Gräwe, Peer Fietzek, Marcus Bo Wallin, Anna Rutgersson, Norbert Wasmund, Siegfried Krüger, and Gregor Rehder
Biogeosciences, 18, 4889–4917, https://doi.org/10.5194/bg-18-4889-2021, https://doi.org/10.5194/bg-18-4889-2021, 2021
Short summary
Short summary
Based on profiling pCO2 measurements from a field campaign, we quantify the biomass production of a cyanobacteria bloom in the Baltic Sea, the export of which would foster deep water deoxygenation. We further demonstrate how this biomass production can be accurately reconstructed from long-term surface measurements made on cargo vessels in combination with modelled temperature profiles. This approach enables a better understanding of a severe concern for the Baltic’s good environmental status.
Anna-Maria Virkkala, Isabel Wargowsky, Judith Vogt, McKenzie A. Kuhn, Simran Madaan, Richard O'Keefe, Tiffany Windholz, Kyle A. Arndt, Brendan M. Rogers, Jennifer D. Watts, Kelcy Kent, Mathias Göckede, David Olefeldt, Gerard Rocher-Ros, Edward A. G. Schuur, David Bastviken, Kristoffer Aalstad, Kelly Aho, Joonatan Ala-Könni, Haley Alcock, Inge Althuizen, Christopher D. Arp, Jun Asanuma, Katrin Attermeyer, Mika Aurela, Sivakiruthika Balathandayuthabani, Alan Barr, Maialen Barret, Ochirbat Batkhishig, Christina Biasi, Mats P. Björkman, Andrew Black, Elena Blanc-Betes, Pascal Bodmer, Julia Boike, Abdullah Bolek, Frédéric Bouchard, Ingeborg Bussmann, Lea Cabrol, Eleonora Canfora, Sean Carey, Karel Castro-Morales, Namyi Chae, Andres Christen, Torben R. Christensen, Casper T. Christiansen, Housen Chu, Graham Clark, Francois Clayer, Patrick Crill, Christopher Cunada, Scott J. Davidson, Joshua F. Dean, Sigrid Dengel, Matteo Detto, Catherine Dieleman, Florent Domine, Egor Dyukarev, Colin Edgar, Bo Elberling, Craig A. Emmerton, Eugenie Euskirchen, Grant Falvo, Thomas Friborg, Michelle Garneau, Mariasilvia Giamberini, Mikhail V. Glagolev, Miquel A. Gonzalez-Meler, Gustaf Granath, Jón Guðmundsson, Konsta Happonen, Yoshinobu Harazono, Lorna Harris, Josh Hashemi, Nicholas Hasson, Janna Heerah, Liam Heffernan, Manuel Helbig, Warren Helgason, Michal Heliasz, Greg Henry, Geert Hensgens, Tetsuya Hiyama, Macall Hock, David Holl, Beth Holmes, Jutta Holst, Thomas Holst, Gabriel Hould-Gosselin, Elyn Humphreys, Jacqueline Hung, Jussi Huotari, Hiroki Ikawa, Danil V. Ilyasov, Mamoru Ishikawa, Go Iwahana, Hiroki Iwata, Marcin Antoni Jackowicz-Korczynski, Joachim Jansen, Järvi Järveoja, Vincent E. J. Jassey, Rasmus Jensen, Katharina Jentzsch, Robert G. Jespersen, Carl-Fredrik Johannesson, Chersity P. Jones, Anders Jonsson, Ji Young Jung, Sari Juutinen, Evan Kane, Jan Karlsson, Sergey Karsanaev, Kuno Kasak, Julia Kelly, Kasha Kempton, Marcus Klaus, George W. Kling, Natacha Kljun, Jacqueline Knutson, Hideki Kobayashi, John Kochendorfer, Kukka-Maaria Kohonen, Pasi Kolari, Mika Korkiakoski, Aino Korrensalo, Pirkko Kortelainen, Egle Koster, Kajar Koster, Ayumi Kotani, Praveena Krishnan, Juliya Kurbatova, Lars Kutzbach, Min Jung Kwon, Ethan D. Kyzivat, Jessica Lagroix, Theodore Langhorst, Elena Lapshina, Tuula Larmola, Klaus S. Larsen, Isabelle Laurion, Justin Ledman, Hanna Lee, A. Joshua Leffler, Lance Lesack, Anders Lindroth, David Lipson, Annalea Lohila, Efrén López-Blanco, Vincent L. St. Louis, Erik Lundin, Misha Luoto, Takashi Machimura, Marta Magnani, Avni Malhotra, Marja Maljanen, Ivan Mammarella, Elisa Männistö, Luca Belelli Marchesini, Phil Marsh, Pertti J. Martkainen, Maija E. Marushchak, Mikhail Mastepanov, Alex Mavrovic, Trofim Maximov, Christina Minions, Marco Montemayor, Tomoaki Morishita, Patrick Murphy, Daniel F. Nadeau, Erin Nicholls, Mats B. Nilsson, Anastasia Niyazova, Jenni Nordén, Koffi Dodji Noumonvi, Hannu Nykanen, Walter Oechel, Anne Ojala, Tomohiro Okadera, Sujan Pal, Alexey V. Panov, Tim Papakyriakou, Dario Papale, Sang-Jong Park, Frans-Jan W. Parmentier, Gilberto Pastorello, Mike Peacock, Matthias Peichl, Roman Petrov, Kyra St. Pierre, Norbert Pirk, Jessica Plein, Vilmantas Preskienis, Anatoly Prokushkin, Jukka Pumpanen, Hilary A. Rains, Niklas Rakos, Aleski Räsänen, Helena Rautakoski, Riika Rinnan, Janne Rinne, Adrian Rocha, Nigel Roulet, Alexandre Roy, Anna Rutgersson, Aleksandr F. Sabrekov, Torsten Sachs, Erik Sahlée, Alejandro Salazar, Henrique Oliveira Sawakuchi, Christopher Schulze, Roger Seco, Armando Sepulveda-Jauregui, Svetlana Serikova, Abbey Serrone, Hanna M. Silvennoinen, Sofie Sjogersten, June Skeeter, Jo Snöälv, Sebastian Sobek, Oliver Sonnentag, Emily H. Stanley, Maria Strack, Lena Strom, Patrick Sullivan, Ryan Sullivan, Anna Sytiuk, Torbern Tagesson, Pierre Taillardat, Julie Talbot, Suzanne E. Tank, Mario Tenuta, Irina Terenteva, Frederic Thalasso, Antoine Thiboult, Halldor Thorgeirsson, Fenix Garcia Tigreros, Margaret Torn, Amy Townsend-Small, Claire Treat, Alain Tremblay, Carlo Trotta, Eeva-Stiina Tuittila, Merritt Turetsky, Masahito Ueyama, Muhammad Umair, Aki Vähä, Lona van Delden, Maarten van Hardenbroek, Andrej Varlagin, Ruth K. Varner, Elena Veretennikova, Timo Vesala, Tarmo Virtanen, Carolina Voigt, Jorien E. Vonk, Robert Wagner, Katey Walter Anthony, Qinxue Wang, Masataka Watanabe, Hailey Webb, Jeffrey M. Welker, Andreas Westergaard-Nielsen, Sebastian Westermann, Jeffrey R. White, Christian Wille, Scott N. Williamson, Scott Zolkos, Donatella Zona, and Susan M. Natali
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-585, https://doi.org/10.5194/essd-2025-585, 2025
Preprint under review for ESSD
Short summary
Short summary
This dataset includes monthly measurements of carbon dioxide and methane exchange between land, water, and the atmosphere from over 1,000 sites in Arctic and boreal regions. It combines measurements from a variety of ecosystems, including wetlands, forests, tundra, lakes, and rivers, gathered by over 260 researchers from 1984–2024. This dataset can be used to improve and reduce uncertainty in carbon budgets in order to strengthen our understanding of climate feedbacks in a warming world.
Francesco Ulloa-Cedamanos, Adam T. Rexroade, Yihan Li, Lindsay B. Hutley, Wei Wen Wong, Marcus B. Wallin, Josep G. Canadell, Anna Lintern, and Clement Duvert
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-233, https://doi.org/10.5194/essd-2025-233, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
Rivers and streams play a key role in how carbon moves through the environment, but we know little about this in Australia. To help close this gap, we compile the first national database of carbon data from rivers and streams, combining past studies, government records, and new data. The data show where and when carbon was measured and reveal major gaps in long-term monitoring. This new resource will help scientists understand carbon and water systems across Australia.
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Ville Vakkari, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 9, 821–840, https://doi.org/10.5194/wes-9-821-2024, https://doi.org/10.5194/wes-9-821-2024, 2024
Short summary
Short summary
Knowing the wind speed across the rotor of a wind turbine is key in making good predictions of the power production. However, models struggle to capture both the speed and the shape of the wind profile. Using machine learning methods based on the model data, we show that the predictions can be improved drastically. The work focuses on three coastal sites, spread over the Northern Hemisphere (the Baltic Sea, the North Sea, and the US Atlantic coast) with similar results for all sites.
Thomas A. Davidson, Martin Søndergaard, Joachim Audet, Eti Levi, Chiara Esposito, Tuba Bucak, and Anders Nielsen
Biogeosciences, 21, 93–107, https://doi.org/10.5194/bg-21-93-2024, https://doi.org/10.5194/bg-21-93-2024, 2024
Short summary
Short summary
Shallow lakes and ponds undergo frequent stratification in summer months. Here we studied how this affects greenhouse gas (GHG) emissions. We found that stratification caused anoxia in the bottom waters, driving increased GHG emissions, in particular methane released as bubbles. In addition, methane and carbon dioxide accumulated in the bottom waters during stratification, leading to large emissions when the lake mixed again.
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 8, 1651–1658, https://doi.org/10.5194/wes-8-1651-2023, https://doi.org/10.5194/wes-8-1651-2023, 2023
Short summary
Short summary
Low-level jets (LLJs) are special types of non-ideal wind profiles affecting both wind energy production and loads on a wind turbine. However, among LLJ researchers, there is no consensus regarding which definition to use to identify these profiles. In this work, we compare two different ways of identifying the LLJ – the falloff definition and the shear definition – and argue why the shear definition is better suited to wind energy applications.
Christoffer Hallgren, Heiner Körnich, Stefan Ivanell, Ville Vakkari, and Erik Sahlée
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-129, https://doi.org/10.5194/wes-2023-129, 2023
Preprint withdrawn
Short summary
Short summary
Sometimes, the wind changes direction between the bottom and top part of a wind turbine. This affects both the power production and the loads on the turbine. In this study, a climatology of pronounced changes in wind direction across the rotor is created, focusing on Scandinavia. The weather conditions responsible for these changes in wind direction are investigated and the climatology is compared to measurements from two coastal sites, indicating an underestimation by the climatology.
Emily H. Stanley, Luke C. Loken, Nora J. Casson, Samantha K. Oliver, Ryan A. Sponseller, Marcus B. Wallin, Liwei Zhang, and Gerard Rocher-Ros
Earth Syst. Sci. Data, 15, 2879–2926, https://doi.org/10.5194/essd-15-2879-2023, https://doi.org/10.5194/essd-15-2879-2023, 2023
Short summary
Short summary
The Global River Methane Database (GRiMeDB) presents CH4 concentrations and fluxes for flowing waters and concurrent measures of CO2, N2O, and several physicochemical variables, plus information about sample locations and methods used to measure gas fluxes. GRiMeDB is intended to increase opportunities to understand variation in fluvial CH4, test hypotheses related to greenhouse gas dynamics, and reduce uncertainty in future estimates of gas emissions from world streams and rivers.
Lucía Gutiérrez-Loza, Erik Nilsson, Marcus B. Wallin, Erik Sahlée, and Anna Rutgersson
Biogeosciences, 19, 5645–5665, https://doi.org/10.5194/bg-19-5645-2022, https://doi.org/10.5194/bg-19-5645-2022, 2022
Short summary
Short summary
The exchange of CO2 between the ocean and the atmosphere is an essential aspect of the global carbon cycle and is highly relevant for the Earth's climate. In this study, we used 9 years of in situ measurements to evaluate the temporal variability in the air–sea CO2 fluxes in the Baltic Sea. Furthermore, using this long record, we assessed the effect of atmospheric and water-side mechanisms controlling the efficiency of the air–sea CO2 exchange under different wind-speed conditions.
Wantong Zhang, Zhengyi Hu, Joachim Audet, Thomas A. Davidson, Enze Kang, Xiaoming Kang, Yong Li, Xiaodong Zhang, and Jinzhi Wang
Biogeosciences, 19, 5187–5197, https://doi.org/10.5194/bg-19-5187-2022, https://doi.org/10.5194/bg-19-5187-2022, 2022
Short summary
Short summary
This work focused on the CH4 and N2O emissions from alpine peatlands in response to the interactive effects of altered water table levels and increased nitrogen deposition. Across the 2-year mesocosm experiment, nitrogen deposition showed nonlinear effects on CH4 emissions and linear effects on N2O emissions, and these N effects were associated with the water table levels. Our results imply the future scenario of strengthened CH4 and N2O emissions from an alpine peatland.
Christoffer Hallgren, Johan Arnqvist, Erik Nilsson, Stefan Ivanell, Metodija Shapkalijevski, August Thomasson, Heidi Pettersson, and Erik Sahlée
Wind Energ. Sci., 7, 1183–1207, https://doi.org/10.5194/wes-7-1183-2022, https://doi.org/10.5194/wes-7-1183-2022, 2022
Short summary
Short summary
Non-idealized wind profiles with negative shear in part of the profile (e.g., low-level jets) frequently occur in coastal environments and are important to take into consideration for offshore wind power. Using observations from a coastal site in the Baltic Sea, we analyze in which meteorological and sea state conditions these profiles occur and study how they alter the turbulence structure of the boundary layer compared to idealized profiles.
Christoffer Hallgren, Stefan Ivanell, Heiner Körnich, Ville Vakkari, and Erik Sahlée
Wind Energ. Sci., 6, 1205–1226, https://doi.org/10.5194/wes-6-1205-2021, https://doi.org/10.5194/wes-6-1205-2021, 2021
Short summary
Short summary
As wind power becomes more popular, there is a growing demand for accurate power production forecasts. In this paper we investigated different methods to improve wind power forecasts for an offshore location in the Baltic Sea, using both simple and more advanced techniques. The performance of the methods is evaluated for different weather conditions. Smoothing the forecast was found to be the best method in general, but we recommend selecting which method to use based on the forecasted weather.
Jens Daniel Müller, Bernd Schneider, Ulf Gräwe, Peer Fietzek, Marcus Bo Wallin, Anna Rutgersson, Norbert Wasmund, Siegfried Krüger, and Gregor Rehder
Biogeosciences, 18, 4889–4917, https://doi.org/10.5194/bg-18-4889-2021, https://doi.org/10.5194/bg-18-4889-2021, 2021
Short summary
Short summary
Based on profiling pCO2 measurements from a field campaign, we quantify the biomass production of a cyanobacteria bloom in the Baltic Sea, the export of which would foster deep water deoxygenation. We further demonstrate how this biomass production can be accurately reconstructed from long-term surface measurements made on cargo vessels in combination with modelled temperature profiles. This approach enables a better understanding of a severe concern for the Baltic’s good environmental status.
Cited articles
Alberts, J. M., Beaulieu, J. J., and Buffam, I.: Watershed land use and
seasonal variation constrain the influence of riparian canopy cover on
stream ecosystem metabolism, Ecosystems, 20, 553–567,
https://doi.org/10.1007/s10021-016-0040-9, 2017.
Audet, J., Bastviken, D., Bundschuh, M., Buffam, I., Feckler, A.,
Klemedtsson, L., Laudon, H., Löfgren, S., Natchimuthu, S., Öquist,
M., Peacock, M., and Wallin, M. B.: Forest streams are important sources for
nitrous oxide emissions, Glob. Change Biol., 26, 629–641,
https://doi.org/10.1111/gcb.14812, 2020.
Bastviken, D., Sundgren, I., Natchimuthu, S., Reyier, H., and Gålfalk, M.: Technical Note: Cost-efficient approaches to measure carbon dioxide (CO2) fluxes and concentrations in terrestrial and aquatic environments using mini loggers, Biogeosciences, 12, 3849-3859. https://doi.org/10.5194/bg-12-3849-2015, 2015.
Berggren, M., Laudon, H., and Jansson, M.: Hydrological control of organic
carbon support for bacterial growth in boreal headwater streams, Microb.
Ecol., 57, 170–178, https://doi.org/10.1007/s00248-008-9423-6, 2009.
Bodmer, P., Heinz, M., Pusch, M., Singer, G., and Premke, K.: Carbon
dynamics and their link to dissolved organic matter quality across
contrasting stream ecosystems, Sci. Total Environ., 553,
574–586, https://doi.org/10.1016/j.scitotenv.2016.02.095, 2016.
Borges, A. V., Darchambeau, F., Lambert, T., Bouillon, S., Morana, C.,
Brouyère, S., Hakoun, V., Jurado, A., Tseng, H.-C., Descy, J.-P., and
Roland, F. A. E.: Effects of agricultural land use on fluvial carbon
dioxide, methane and nitrous oxide concentrations in a large European river,
the Meuse (Belgium), Sci. Total Environ., 610/611, 342–355,
https://doi.org/10.1016/j.scitotenv.2017.08.047, 2018.
Campeau, A., Bishop K., Billett, M. F., Garnett, M. H., Laudon, H., Leach,
J. A., Nilsson, M. B., Öquist, M. G., and Wallin, M. B.: Aquatic export
of young dissolved and gaseous carbon from a pristine boreal fen:
implications for peat carbon stock stability, Glob. Change Biol., 23,
5523–5536, https://doi.org/10.1111/gcb.13815, 2017a.
Campeau, A., Wallin, M. B., Giesler, R., Löfgren, S., Mörth, C-M.,
Schiff, S. L., Venkiteswaran, J. J., and Bishop, K.: Multiple sources and
sinks of dissolved inorganic carbon across Swedish streams, refocusing the
lens of stable C isotopes, Sci. Rep., 7, 9158,
https://doi.org/10.1038/s41598-017-09049-9, 2017b.
Campeau, A., Bishop, K., Nilsson, M. B., Klemedtsson, L., Laudon, H., Leith,
F. I., Öquist, M. G., and Wallin, M. B.: Stable carbon isotopes reveal
soil-stream DIC linkages in contrasting headwater catchments, J.
Geophys. Res.-Biogeo., 123, 149–167,
https://doi.org/10.1002/2017JG004083, 2018.
Castellano, M. J., Archontoulis, S. V., Helmers, M. J., Poffenbarger, H. J.,
and Six, J.: Sustainable intensification of agricultural drainage, Nat.
Sustain., 2, 914–921, https://doi.org/10.1038/s41893-019-0393-0,
2019.
Crawford, J. T., Stanley, E. H., Dornblaser, M. M., and Striegl, R. G.:
CO2 time series patterns in contrasting headwater streams of North
America, Aquat. Sci., 79, 473–486,
https://doi.org/10.1007/s00027-016-0511-2, 2017.
Deirmendjian, L., Anschutz, P., Morel, C., Mollier, A., Augusto, L.,
Loustau, D., Cotovicz, L. C., Buquet, D., Lajaunie, K., Chaillou, G., Voltz,
B., Charbonnier, C., Poirier, D., and Abril, G.: Importance of the
vegetation-groundwater-stream continuum to understand transformation of
biogenic carbon in aquatic systems – A case study based on a pine-maize
comparison in a lowland sandy watershed (Landes de Gascogne, SW France),
Sci. Total Environ., 661, 613–629,
https://doi.org/10.1016/j.scitotenv.2019.01.152, 2019.
Dinsmore, K. J. and Billett, M. F.: Continuous measurement and modeling of
CO2 losses from a peatland stream during stormflow events, Water
Resour. Res., 44, 11, https://doi.org/10.1029/2008WR007284, 2008.
Dinsmore, K. J., Wallin, M. B, Johnson, M. S., Billett, M. F., Bishop, K.,
Pumpanen, J., and Ojala, A.: Contrasting CO2 concentration discharge
dynamics in headwater streams: A multi-catchment comparison, J.
Geophys. Res.-Biogeo., 118, 445–461,
https://doi.org/10.1002/jgrg.20047, 2013.
Evans, C. and Davies, T. D.: Causes of Concentration/Discharge Hysteresis
and its Potential as a Tool for Analysis of Episode Hydrochemistry, Water
Resour. Res., 34, 129–137, https://doi.org/10.1029/97WR01881, 1998.
Gómez-Gener, L., Obrador, B., von Schiller, D., Marcé, R.,
Casas-Ruiz, J. P., Proia, L., Acuña, V., Catalán, N., Muñoz, I.,
and Koschorreck, M.: Hot spots for carbon emissions from Mediterranean
fluvial networks during summer drought, Biogeochemistry, 125, 409–426,
https://doi.org/10.1007/s10533-015-0139-7, 2015.
Hall Jr., R. O. and Ulseth, A. J.: Gas exchange in streams and rivers, WIREs
Water, 7, e1391, https://doi.org/10.1002/wat2.1391, 2020.
Halldin, S., Bergström, H., Gustafsson, D., Dahlgren, L., Hjelm, P.,
Lundin, L.C., Mellander, P. E., Nord, T., Jansson, P. E., Seibert, J.,
Stähli, M., Szilágyi Kishné, A., and Smedman, A. S.: Continuous
long-term measurements of soil–plant–atmosphere variables at an
agricultural site, Agr. Forest Meteorol., 98/99, 75–102,
https://doi.org/10.1016/S0168-1923(99)00149-5, 1999.
Holmqvist, M.: Avrinningsdynamik i fem små områden, Vattenbalans,
recession, magasinskoefficient och dynamiskt vattenmagasin, MSc thesis,
Uppsala University, 54 pp., 1998.
Hope, D., Palmer, S. M., Billett, M. F., and Dawson, J. J.: Variations in
dissolved CO2 and CH4 in a first-order stream and catchment: an
investigation of soil–stream linkages, Hydrol. Process., 18, 3255–3275,
https://doi.org/10.1002/hyp.5657, 2004.
Humborg, C., Mörth, C. M., Sundbom, M., Borg, H., Blenckner, T., Giesler, R., and Ittekkot, V.: CO2 supersaturation along the aquatic conduit in Swedish watersheds as constrained by terrestrial respiration, aquatic respiration and weathering, Glob. Change Biol., 16, 1966–1978, https://doi.org/10.1111/j.1365-2486.2009.02092.x, 2010.
Hughes, R. M., Herlihy, A. T., and Kaufmann, P. R.: An Evaluation of
Qualitative Indexes of Physical Habitat Applied to Agricultural Streams in
Ten US States, J. Am. Water Resour. As.,
46, 792–806, https://doi.org/10.1111/j.1752-1688.2010.00455.x, 2010.
Johnson, M. S., Weiler, M., Couto, E. G., Riha, S. J., and Lehmann, J.:
Storm pulses of dissolved CO2 in a forested headwater Amazonian stream
explored using hydrograph separation, Water Resour. Res., 43,
W11201, https://doi.org/10.1029/2007WR006359, 2007.
Johnson, M. S., Billett, M. F., Dinsmore, K. J., Wallin, M., Dyson, K. E.,
and Jassal, R. S.: Direct and continuous measurement of dissolved carbon
dioxide in freshwater aquatic systems – methods and applications,
Ecohydrology, 3, 68–78, https://doi.org/10.1002/eco.95, 2010.
Kokic, J., Wallin M. B., Chmiel H. E., Denfeld B. A., and Sobek S.: Carbon
dioxide evasion from headwater systems strongly contributes to the total
export of carbon from a small boreal lake catchment, J. Geophys. Res.-Biogeo.,
120, 13–28, https://doi.org/10.1002/2014JG002706, 2015.
Kokic, J., Sahlée, E., Sobek, S., Vachon, D., and Wallin, M. B.: High
spatial variability of gas transfer velocity in streams revealed by
turbulence measurements, Inland Waters, 8, 461–473,
https://doi.org/10.1080/20442041.2018.1500228, 2018.
Kyllmar, K., Forsberg, L. S., Andersson, S., and Mårtensson, K.: Small
agricultural monitoring catchments in Sweden representing environmental
impact, Agr. Ecosyst.
Environ., 198, 25–35, https://doi.org/10.1016/j.agee.2014.05.016, 2014.
Laudon, H., Sjöblom, V., Buffam, I., Seibert, J., and Mörth, M.: The
role of catchment scale and landscape characteristics for runoff generation
of boreal streams, J. Hydrol., 344, 198–209,
https://doi.org/10.1016/j.jhydrol.2007.07.010, 2007.
Leith, F. I., Dinsmore, K. J., Wallin, M. B., Billett, M. F., Heal, K. V., Laudon, H., Öquist, M. G., and Bishop, K.: Carbon dioxide transport across the hillslope–riparian–stream continuum in a boreal headwater catchment, Biogeosciences, 12, 1881–1892, https://doi.org/10.5194/bg-12-1881-2015, 2015.
Linefur, H., Norberg, L., Kyllmar, K., Andersson, S., and Blomberg, M.:
Växtnäringsförluster i små jordbruksdominerade
avrinningsområden 2016/2017, Uppsala, Sveriges lantbruksuniversitet,
Ekohydrologi, 155, 55 pp., 2018.
Looman, A., Maher, D. T., Pendall, E., Bass, A., and Santos, I. R.: The
carbon dioxide evasion cycle of an intermittent first-order stream:
contrasting water–air and soil–air exchange, Biogeochemistry, 132,
87–102, https://doi.org/10.1007/s10533-016-0289-2, 2017.
Marcé, R., Obrador, B., Gómez-Gener, L., Catalán, N.,
Koschorreck, M., Arce, M. I., Singer, G., and von Schiller, D.: Emissions
from dry inland waters are a blind spot in the global carbon cycle,
Earth-Sci. Rev. 188, 240–248,
https://doi.org/10.1016/j.earscirev.2018.11.012, 2019.
Morel, B., Durand, P., Jaffrezic, A., Gruau, G., and Molenat, J.: Sources of
dissolved organic carbon during stormflow in a headwater agricultural
catchment, Hydrol. Process., 23, 2888–2901,
https://doi.org/10.1002/hyp.7379, 2009.
Natchimuthu, S., Wallin, M. B., Klemedtsson, L., and Bastviken, D.:
Spatio-temporal patterns of stream methane and carbon dioxide emissions in a
hemiboreal catchment in Southwest Sweden, Sci. Rep., 7, 39729,
https://doi.org/10.1038/srep39729, 2017.
Öquist, M. G., Wallin, M., Seibert, J., Bishop, K., and Laudon, H.:
Dissolved inorganic carbon export across the soil/stream interface and its
fate in a boreal headwater stream, Environ. Sci. Technol.,
43, 7364–7369, https://doi.org/10.1021/es900416h, 2009.
Osborne, B., Saunders, M., Walmsley, D., Jones, M., and Smith, P.: Key
questions and uncertainties associated with the assessment of the cropland
greenhouse gas balance, Agr. Ecosyst. Environ., 139,
293–301, https://doi.org/10.1016/j.agee.2010.05.009, 2010.
Osterman, M.: Carbon dioxide in agricultural streams – magnitude and
patterns of an understudied atmospheric carbon source, MSc thesis, Uppsala
University, 58 pp., 2018.
Peter, H., Singer, G. A., Preiler, C., Chifflard, P., Steniczka, G., and
Battin, T. J.: Scales and drivers of temporal pCO2 dynamics in an
Alpine stream, J. Geophys. Res.-Biogeo., 119,
1078–1091, https://doi.org/10.1002/2013JG002552, 2014.
Ramankutty, N., Evan, A. T., Monfreda, C., and Foley, J. A.: Farming the
planet: 1. Geographic distribution of global agricultural lands in the year
2000, Global Biogeochem. Cy., 22,
https://doi.org/10.1029/2007GB002952, 2008.
Raymond, P. A., Zappa, C. J., Butman, D., Bott, T. L., Potter, J.,
Mulholland, P., Laursen, A. E., Mcdowell, W. H., and Newbold, D.: Scaling
the gas transfer velocity and hydraulic geometry in streams and small
rivers, Limnol. Oceanogr., 2, 41–53,
https://doi.org/10.1215/21573689-1597669, 2012.
Raymond P. A., Hartmann, R., Lauerwald, R., Sobek, S., Mcdonald, C., Hoover,
M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P.,
Durr, H., Meybeck, M., Ciais, P., and Guth, P.: Global carbon dioxide
emissions from inland waters, Nature, 503, 355–359,
https://doi.org/10.1038/nature12760, 2013.
Rhoads, B. L., Schwartz, J. S., and Porter, S.: Stream geomorphology, bank
vegetation, and three-dimensional habitat hydraulics for fish in midwestern
agricultural streams, Water Resour. Res., 39,
https://doi.org/10.1029/2003WR002294, 2003.
Riml, J., Campeau, A., Bishop, K., and Wallin, M. B.: Spectral decomposition
of high-frequency CO2 concentrations reveals soil-stream linkages,
J. Geophys. Res.-Biogeo., 124, 3039–3056,
https://doi.org/10.1029/2018JG004981, 2019.
Rocher-Ros, G., Sponseller, R. A., Bergström, A.-K., Myrstener, M., and
Giesler, R.: Stream metabolism controls diel patterns and evasion of CO2 in
Arctic streams, Glob. Change Biol., 26, 1400–1413,
https://doi.org/10.1111/gcb.14895, 2020.
Royer, T. V. and David, M. B.: Export of dissolved organic carbon from
agricultural streams in Illinois, USA, Aquat. Sci., 67, 465–471,
https://doi.org/10.1007/s00027-005-0781-6, 2005.
Sand-Jensen, K. and Staehr, P. A.: CO2 dynamics along Danish lowland
streams: water–air gradients, piston velocities and evasion rates,
Biogeochemistry, 111, 615–628, https://doi.org/10.1007/s10533-011-9696-6,
2012.
Seibert, J., Grabs, T., Köhler, S., Laudon, H., Winterdahl, M., and Bishop, K.: Linking soil- and stream-water chemistry based on a Riparian Flow-Concentration Integration Model, Hydrol. Earth Syst. Sci., 13, 2287–2297, https://doi.org/10.5194/hess-13-2287-2009, 2009.
Wallin, M. B.: Supplementary data for Carbon dioxide dynamics in an agricultural headwater stream driven by hydrology and primary production, available at: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-408793, last access: 7 May 2020.
Wallin, M. B., Öquist, M. G., Buffam, I., Billett, M. F., Nisell, J.,
and Bishop, K. H.: Spatiotemporal variability in the gas transfer
coefficient (KCO2) of boreal streams; implications for large scale
estimates of CO2 evasion, Global Biogeochem. Cy., 25, GB3025,
https://doi.org/10.1029/2010GB003975, 2011.
Wallin, M. B., Grabs, T., Buffam, I., Laudon, H., Ågren, A., Öquist,
M. G., and Bishop, K.: Evasion of CO2 from streams – The dominant
component of the carbon export through the aquatic conduit in a boreal
catchment, Glob. Change Biol., 19, 785–797, 2013.
Wallin, M. B., Campeau, A., Audet, J., Bastviken, D., Bishop, K., Kokic, J.,
Laudon, H., Lundin, E., Löfgren, S., Natchimuthu, S., Sobek, S.,
Teutschbein, C., Weyhenmeyer, G., and Grabs, T.: Carbon dioxide and methane
emissions of Swedish low-order streams – a national estimate and lessons
learnt from more than a decade of observations, Limnol. Oceanogr., 3, 156–167, https://doi.org/10.1002/lol2.10061, 2018.
Weiss, R. F.: Carbon dioxide in water and seawater: The solubility of a non-ideal gas, Mar. Chem., 2, 203–215, https://doi.org/10.1016/0304-4203(74)90015-2, 1974.
Short summary
Here we show that small streams draining agricultural areas are potential hotspots for emissions of CO2 to the atmosphere. We further conclude that the variability in stream CO2 concentration over time is very high, caused by variations in both water discharge and primary production. Given the observed high levels of CO2 and its temporally variable nature, agricultural streams clearly need more attention in order to understand and incorporate these dynamics in large-scale extrapolations.
Here we show that small streams draining agricultural areas are potential hotspots for emissions...
Altmetrics
Final-revised paper
Preprint