Articles | Volume 17, issue 21
https://doi.org/10.5194/bg-17-5263-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-5263-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Uncertainties, sensitivities and robustness of simulated water erosion in an EPIC-based global gridded crop model
Tony W. Carr
CORRESPONDING AUTHOR
University College London, Institute for Sustainable Resources,
London, United Kingdom
Juraj Balkovič
International Institute for Applied Systems Analysis, Ecosystem
Services and Management Program, Laxenburg, Austria
Department of Soil Science, Faculty of Natural Sciences, Comenius
University in Bratislava, Bratislava, Slovak Republic
Paul E. Dodds
University College London, Institute for Sustainable Resources,
London, United Kingdom
Christian Folberth
International Institute for Applied Systems Analysis, Ecosystem
Services and Management Program, Laxenburg, Austria
Emil Fulajtar
International Atomic Energy Agency, Joint FAO/IAEA Division of
Nuclear Techniques in Food and Agriculture, Vienna, Austria
Rastislav Skalsky
International Institute for Applied Systems Analysis, Ecosystem
Services and Management Program, Laxenburg, Austria
National Agricultural and Food Centre, Soil Science and Conservation
Research Institute, Bratislava, Slovak Republic
Related authors
No articles found.
Christian Folberth, Artem Baklanov, Nikolay Khabarov, Thomas Oberleitner, Juraj Balkovič, and Rastislav Skalský
Geosci. Model Dev., 18, 5759–5779, https://doi.org/10.5194/gmd-18-5759-2025, https://doi.org/10.5194/gmd-18-5759-2025, 2025
Short summary
Short summary
Global gridded crop models (GGCMs) are important tools in agricultural climate impact assessments but computationally costly. An emergent approach to derive crop productivity estimates similar to those from GGCMs are emulators that mimic the original model, but typically with considerable bias. Here we present a modelling package that trains emulators with very high accuracy and high computational gain, providing a basis for more comprehensive scenario assessments.
Stefano Gianessi, Matteo Polo, Luca Stevanato, Marcello Lunardon, Till Francke, Sascha E. Oswald, Hami Said Ahmed, Arsenio Toloza, Georg Weltin, Gerd Dercon, Emil Fulajtar, Lee Heng, and Gabriele Baroni
Geosci. Instrum. Method. Data Syst., 13, 9–25, https://doi.org/10.5194/gi-13-9-2024, https://doi.org/10.5194/gi-13-9-2024, 2024
Short summary
Short summary
Soil moisture monitoring is important for many applications, from improving weather prediction to supporting agriculture practices. Our capability to measure this variable is still, however, limited. In this study, we show the tests conducted on a new soil moisture sensor at several locations. The results show that the new sensor is a valid and compact alternative to more conventional, non-invasive soil moisture sensors that can pave the way for a wide range of applications.
Matthew J. McGrath, Ana Maria Roxana Petrescu, Philippe Peylin, Robbie M. Andrew, Bradley Matthews, Frank Dentener, Juraj Balkovič, Vladislav Bastrikov, Meike Becker, Gregoire Broquet, Philippe Ciais, Audrey Fortems-Cheiney, Raphael Ganzenmüller, Giacomo Grassi, Ian Harris, Matthew Jones, Jürgen Knauer, Matthias Kuhnert, Guillaume Monteil, Saqr Munassar, Paul I. Palmer, Glen P. Peters, Chunjing Qiu, Mart-Jan Schelhaas, Oksana Tarasova, Matteo Vizzarri, Karina Winkler, Gianpaolo Balsamo, Antoine Berchet, Peter Briggs, Patrick Brockmann, Frédéric Chevallier, Giulia Conchedda, Monica Crippa, Stijn N. C. Dellaert, Hugo A. C. Denier van der Gon, Sara Filipek, Pierre Friedlingstein, Richard Fuchs, Michael Gauss, Christoph Gerbig, Diego Guizzardi, Dirk Günther, Richard A. Houghton, Greet Janssens-Maenhout, Ronny Lauerwald, Bas Lerink, Ingrid T. Luijkx, Géraud Moulas, Marilena Muntean, Gert-Jan Nabuurs, Aurélie Paquirissamy, Lucia Perugini, Wouter Peters, Roberto Pilli, Julia Pongratz, Pierre Regnier, Marko Scholze, Yusuf Serengil, Pete Smith, Efisio Solazzo, Rona L. Thompson, Francesco N. Tubiello, Timo Vesala, and Sophia Walther
Earth Syst. Sci. Data, 15, 4295–4370, https://doi.org/10.5194/essd-15-4295-2023, https://doi.org/10.5194/essd-15-4295-2023, 2023
Short summary
Short summary
Accurate estimation of fluxes of carbon dioxide from the land surface is essential for understanding future impacts of greenhouse gas emissions on the climate system. A wide variety of methods currently exist to estimate these sources and sinks. We are continuing work to develop annual comparisons of these diverse methods in order to clarify what they all actually calculate and to resolve apparent disagreement, in addition to highlighting opportunities for increased understanding.
Henrique M. D. Goulart, Karin van der Wiel, Christian Folberth, Juraj Balkovic, and Bart van den Hurk
Earth Syst. Dynam., 12, 1503–1527, https://doi.org/10.5194/esd-12-1503-2021, https://doi.org/10.5194/esd-12-1503-2021, 2021
Short summary
Short summary
Agriculture is sensitive to weather conditions and to climate change. We identify the weather conditions linked to soybean failures and explore changes related to climate change. Additionally, we build future versions of a historical extreme season under future climate scenarios. Results show that soybean failures are likely to increase with climate change. Future events with similar physical conditions to the extreme season are not expected to increase, but events with similar impacts are.
Ana Maria Roxana Petrescu, Matthew J. McGrath, Robbie M. Andrew, Philippe Peylin, Glen P. Peters, Philippe Ciais, Gregoire Broquet, Francesco N. Tubiello, Christoph Gerbig, Julia Pongratz, Greet Janssens-Maenhout, Giacomo Grassi, Gert-Jan Nabuurs, Pierre Regnier, Ronny Lauerwald, Matthias Kuhnert, Juraj Balkovič, Mart-Jan Schelhaas, Hugo A. C. Denier van der
Gon, Efisio Solazzo, Chunjing Qiu, Roberto Pilli, Igor B. Konovalov, Richard A. Houghton, Dirk Günther, Lucia Perugini, Monica Crippa, Raphael Ganzenmüller, Ingrid T. Luijkx, Pete Smith, Saqr Munassar, Rona L. Thompson, Giulia Conchedda, Guillaume Monteil, Marko Scholze, Ute Karstens, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2363–2406, https://doi.org/10.5194/essd-13-2363-2021, https://doi.org/10.5194/essd-13-2363-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CO2 fossil emissions and CO2 land fluxes in the EU27+UK. The data integrate recent emission inventories with ecosystem data, land carbon models and regional/global inversions for the European domain, aiming at reconciling CO2 estimates with official country-level UNFCCC national GHG inventories in support to policy and facilitating real-time verification procedures.
Bruno Ringeval, Christoph Müller, Thomas A. M. Pugh, Nathaniel D. Mueller, Philippe Ciais, Christian Folberth, Wenfeng Liu, Philippe Debaeke, and Sylvain Pellerin
Geosci. Model Dev., 14, 1639–1656, https://doi.org/10.5194/gmd-14-1639-2021, https://doi.org/10.5194/gmd-14-1639-2021, 2021
Short summary
Short summary
We assess how and why global gridded crop models (GGCMs) differ in their simulation of potential yield. We build a GCCM emulator based on generic formalism and fit its parameters against aboveground biomass and yield at harvest simulated by eight GGCMs. Despite huge differences between GGCMs, we show that the calibration of a few key parameters allows the emulator to reproduce the GGCM simulations. Our simple but mechanistic model could help to improve the global simulation of potential yield.
Cited articles
Alewell, C., Borrelli, P., Meusburger, K., and Panagos, P.: Using the USLE:
Chances, challenges and limitations of soil erosion modelling, Int. Soil
Water Conserv. Res., 7, 203–225, https://doi.org/10.1016/j.iswcr.2019.05.004, 2019.
Almas, M. and Jamal, T.: Use of RUSLE for Soil Loss Prediction During
Different Growth Periods, Pakistan J. Biol. Sci., 3, 118–121,
https://doi.org/10.3923/pjbs.2000.118.121, 2009.
Auerswald, K., Kainz, M., and Fiener, P.: Soil erosion potential of organic
versus conventional farming evaluated by USLE modelling of cropping
statistics for agricultural districts in Bavaria, Soil Use Manag., 19,
305–311, https://doi.org/10.1079/sum2003212, 2004.
Auerswald, K., Fiener, P., and Dikau, R.: Rates of sheet and rill erosion in
Germany – A meta-analysis, Geomorphology, 111, 182–193,
https://doi.org/10.1016/j.geomorph.2009.04.018, 2009.
Balkovič, J., van der Velde, M., Skalský, R., Xiong, W., Folberth,
C., Khabarov, N., Smirnov, A., Mueller, N. D., and Obersteiner, M.: Global
wheat production potentials and management flexibility under the
representative concentration pathways, Glob. Planet. Change, 122, 107–121,
https://doi.org/10.1016/j.gloplacha.2014.08.010, 2014.
Balkovič, J., Skalský, R., Folberth, C., Khabarov, N., Schmid, E.,
Madaras, M., Obersteiner, M., and van der Velde, M.: Impacts and
Uncertainties of +2 ∘C of Climate Change and Soil Degradation on
European Crop Calorie Supply, Earth's Futur., 6, 373–395,
https://doi.org/10.1002/2017EF000629, 2018.
Benaud, P., Anderson, K., Evans, M., Farrow, L., Glendell, M., James, M.,
Quine, T., Quinton, J., Rawlins, B., Rickson, J., and Brazier, R.:
National-scale geodata describe widespread accelerated soil erosion,
Geoderma, 371, 114378, https://doi.org/10.1016/j.geoderma.2020.114378, 2020.
Boardman, J.: Soil erosion on the South Downs: a review, in Soil Erosion on
Agricultural Land, edited by: Boardman, J., Foster, I. D. L., and
Dearing, J. A., John Wiley & Sons Ltd, Chichester, 87–105, 1990.
Boardman, J.: Soil erosion and flooding on the eastern South Downs, southern
England, 1976–2001, Trans. Inst. Br. Geogr., 28, 176–196,
https://doi.org/10.1111/1475-5661.00086, 2003.
Boardman, J.: Soil erosion science: Reflections on the limitations of
current approaches, Catena, 68, 73–86,
https://doi.org/10.1016/j.catena.2006.03.007, 2006.
Boardman, J. and Evans, R.: The measurement, estimation and monitoring of
soil erosion by runoff at the field scale: Challenges and possibilities with
particular reference to Britain, Prog. Phys. Geogr., 44, 31–49,
https://doi.org/10.1177/0309133319861833, 2020.
Boix-Fayos, C., Martínez-Mena, M., Arnau-Rosalén, E., Calvo-Cases,
A., Castillo, V., and Albaladejo, J.: Measuring soil erosion by field plots:
Understanding the sources of variation, Earth-Sci. Rev., 78,
267–285, https://doi.org/10.1016/j.earscirev.2006.05.005, 2006.
Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C.,
Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V.,
Bagarello, V., Oost, K. Van, Montanarella, L., and Panagos, P.: An assessment
of the global impact of 21st century land use change on soil erosion, Nat.
Commun., 8, 1–13, https://doi.org/10.1038/s41467-017-02142-7, 2017.
Brazier, R.: Quantifying soil erosion by water in the UK: A review of
monitoring and modelling approaches, Prog. Phys. Geogr., 28, 340–365,
https://doi.org/10.1191/0309133304pp415ra, 2004.
Casali, J., Loizu, J., Campo, M. A., De Santisteban, L. M., and
Alvarez-Mozos, J.: Accuracy of methods for field assessment of rill and
ephemeral gully erosion, Catena, 67, 128–138, 2006.
Cerdan, O., Govers, G., Le Bissonnais, Y., Van Oost, K., Poesen, J., Saby,
N., Gobin, A., Vacca, A., Quinton, J., Auerswald, K., Klik, A., Kwaad, F. J.
P. M., Raclot, D., Ionita, I., Rejman, J., Rousseva, S., Muxart, T., Roxo,
M. J., and Dostal, T.: Rates and spatial variations of soil erosion in
Europe: A study based on erosion plot data, Geomorphology, 122,
167–177, https://doi.org/10.1016/j.geomorph.2010.06.011, 2010.
Chappell, A., Baldock, J., and Sanderman, J.: The global significance of
omitting soil erosion from soil organic carbon cycling schemes, Nat. Clim.
Change, 6, 187–191, https://doi.org/10.1038/nclimate2829, 2016.
Chung, S. W., Gassman, P. W., Kramer, L. A., Williams, J. R., Gu, R. R.,
Chung, S. W., Gassman, P. W., Kramer, L. A., and Williams, J. R.:
Validation of EPIC for Two Watersheds in Southwest Iowa Recommended Citation
Validation of EPIC for Two Watersheds in Southwest Iowa, Iowa State University, Ames, Iowa, USA,
27 pp., 1999.
Cohen, M. J., Shepherd, K. D., and Walsh, M. G.: Empirical reformulation of
the universal soil loss equation for erosion risk assessment in a tropical
watershed, Geoderma, 124, 235–252,
https://doi.org/10.1016/j.geoderma.2004.05.003, 2005.
Den Biggelaar, C., Lal, R., Wiebe, K., Eswaran, H., Breneman, V., and Reich,
P.: The Global Impact Of Soil Erosion On Productivity*, II: Effects On Crop
Yields And Production Over Time, Adv. Agron., 81, 49–95,
https://doi.org/10.1016/S0065-2113(03)81002-7, 2004.
Deng, L., Shangguan, Z., and Li, R.: Effects of the grain-for-green
program on soil erosion in China, Int. J. Sediment Res., 27, 120–127,
https://doi.org/10.1016/S1001-6279(12)60021-3, 2012.
De Ploey, J. and Gabriels, D.: Measuring soil loss and experimental studies,
in Soil Erosion, edited by: Kirkby, M. J. and Morgan, R. P. C.,
Willey, Chichester, 63–108, 1980.
Doetterl, S., Van Oost, K., and Six, J.: Towards constraining the magnitude
of global agricultural sediment and soil organic carbon fluxes, Earth Surf.
Proc. Landforms, 37, 642–655, https://doi.org/10.1002/esp.3198, 2012.
Evans, R.: Finding out about water erosion, Teach. Geogr., 12, 17–20, 1986.
Evans, R.: Some methods of directly assessing water erosion of cultivated
land – a comparison of measurements made in plots and in fields, Prog.
Phys. Geogr., 19, 115–129, 1995.
Evans, R.: An alternative way to assess water erosion of cultivated land –
field-based measurements: An analysis of some results, Appl. Geogr., 22,
187–208, 2002.
Evans, R.: Assessment and monitoring of accelerated water erosion of
cultivated land – when will reality be acknowledged?, Soil Use Manag.,
29, 105–118, https://doi.org/10.1111/sum.12010, 2013.
Evans, R. and Boardman, J.: The new assessment of soil loss by water erosion
in Europe, Panagos P. et al., 2015 Environmental Science & Policy 54,
438-447-A response, Environ. Sci. Policy, 58, 11–15,
https://doi.org/10.1016/j.envsci.2015.12.013, 2016.
Evans, R. and Brazier, R.: Evaluation of modelled spatially distributed
predictions of soil erosion by water versus field-based assessments,
Environ. Sci. Pol., 8, 493–501, 2005.
FAO/IIASA/ISRIC/ISSCAS/JRC: Harmonized World Soil Database (version 1.1), FAO and IIASA, Rome, Italy and Laxenburg, Austria, 38 pp.,
2009.
FAO: AQUASTAT Main Database, available at:
http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en
(last access: 1 July 2020), 2016.
Fick, S. E. and Hijmans, R. .: Worldclim 2: New 1-km spatial resolution
climate surfaces for global land areas, Int. J. Climatol., 37, 4302–4315, 2017.
Fischer, F. K., Kistler, M., Brandhuber, R., Maier, H., Treisch, M., and
Auerswald, K.: Validation of official erosion modelling based on
high-resolution radar rain data by aerial photo erosion classification,
Earth Surf. Proc. Landforms, 43, 187–194, https://doi.org/10.1002/esp.4216, 2018.
Folberth, C., Elliott, J., Müller, C., Balkovič, J.,
Chryssanthacopoulos, J., Izaurralde, R. C., Jones, C. D., Khabarov, N., Liu,
W., Reddy, A., Schmid, E., Skalský, R., Yang, H., Arneth, A., Ciais, P.,
Deryng, D., Lawrence, P. J., Olin, S., Pugh, T. A. M., Ruane, A. C., and
Wang, X.: Parameterization-induced uncertainties and impacts of crop
management harmonization in a global gridded crop model ensemble, PLoS One,
14, e0221862, https://doi.org/10.1371/journal.pone.0221862, 2019.
Fritz, S., See, L., Mccallum, I., You, L., Bun, A., Moltchanova, E.,
Duerauer, M., Albrecht, F., Schill, C., Perger, C., Havlik, P., Mosnier, A.,
Thornton, P., Wood-Sichra, U., Herrero, M., Becker-Reshef, I., Justice, C.,
Hansen, M., Gong, P., Abdel Aziz, S., Cipriani, A., Cumani, R., Cecchi, G.,
Conchedda, G., Ferreira, S., Gomez, A., Haffani, M., Kayitakire, F.,
Malanding, J., Mueller, R., Newby, T., Nonguierma, A., Olusegun, A., Ortner,
S., Rajak, D. R., Rocha, J., Schepaschenko, D., Schepaschenko, M., Terekhov,
A., Tiangwa, A., Vancutsem, C., Vintrou, E., Wenbin, W., van der Velde, M.,
Dunwoody, A., Kraxner, F., and Obersteiner, M.: Mapping global cropland and
field size, Glob. Change Biol., 21, 1980–1992, https://doi.org/10.1111/gcb.12838,
2015.
Fu, B. J., Zhao, W. W., Chen, L. D., Zhang, Q. J., Lü, Y. H., Gulinck,
H., and Poesen, J.: Assessment of soil erosion at large watershed scale using
RUSLE and GIS: A case study in the Loess Plateau of China, L. Degrad. Dev.,
16, 73–85, https://doi.org/10.1002/ldr.646, 2005.
Fulajtar, E., Mabit, L., Renschler, C. S., and Lee Zhi Yi, A.: Use of 137Cs
for soil erosion assessment, FAO, Rome, FAO/IAEA, 63 pp., 2017.
García-Ruiz, J. M., Beguería, S., Nadal-Romero, E.,
González-Hidalgo, J. C., Lana-Renault, N., and Sanjuán, Y.: A
meta-analysis of soil erosion rates across the world, Geomorphology, 239,
160–173, https://doi.org/10.1016/j.geomorph.2015.03.008, 2015.
Haile, G. W. and Fetene, M.: Assessment of soil erosion hazard in kilie
catchment, East Shoa, Ethiopia, L. Degrad. Dev., 23, 293–306,
https://doi.org/10.1002/ldr.1082, 2012.
Herweg, K.: The applicability of large-scale geomorphological mapping to
erosion control and soil conservation in a research area in Tuscany,
Z. Geomorphol. Suppl., 68, 175–187, 1988.
Hsieh, Y. P., Grant, K. T., and Bugna, G. C.: A field method for soil erosion
measurements in agricultural and natural lands, J. Soil Water Conserv.,
64, 374–382, https://doi.org/10.2489/jswc.64.6.374, 2009.
Hudson, N. W.: Field measurement of soil erosion and runoff, Food and
Agriculture Organization of the United Nations, available at:
https://books.google.co.uk/books?id=rS1fiFU3rOwC (last access: 2 November 2020), 1993.
IIASA/FAO: Global Agro-ecological Zones (GAEZ v3.0), IIASA, Laxenburg,
Austria and FAO, Rome, Italy, 116 pp., 2012.
Izaurralde, R. C., Williams, J. R., McGill, W. B., Rosenberg, N. J., and
Jakas, M. C. Q.: Simulating soil C dynamics with EPIC: Model description and
testing against long-term data, Ecol. Modell., 192, 362–384,
https://doi.org/10.1016/j.ecolmodel.2005.07.010, 2006.
Jenks, G. F.: The Data Model Concept in Statistical Mapping, Int. Yearb.
Cartogr., 7, 186–190, 1967.
Kaiser, J.: Wounding Earth ' s Fragile Skin, Science, 304,
1616–1618, https://doi.org/10.1126/science.304.5677.1616, 2004.
Kaiser, V. G.: Annual erosion survey of Whitman county, Washington,
1939/40-1975/76, Spokane, WA 99201, 1978.
Karydas, C. G., Sekuloska, T., and Silleos, G. N.: Quantification and
site-specification of the support practice factor when mapping soil erosion
risk associated with olive plantations in the Mediterranean island of Crete,
Environ. Monit. Assess., 149, 19–28, https://doi.org/10.1007/s10661-008-0179-8,
2009.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World Map of
the Köppen-Geiger climate classification updated, Meteorol. Z.,
15, 259–263, https://doi.org/10.1097/00041433-200208000-00008, 2006.
Labrière, N., Locatelli, B., Laumonier, Y., Freycon, V., and Bernoux, M.:
Soil erosion in the humid tropics: A systematic quantitative review, Agr.
Ecosyst. Environ., 203, 127–139, https://doi.org/10.1016/j.agee.2015.01.027, 2015.
Lesiv, M., Laso Bayas, J. C., See, L., Duerauer, M., Dahlia, D., Durando,
N., Hazarika, R., Kumar Sahariah, P., Vakolyuk, M., Blyshchyk, V., Bilous,
A., Perez-Hoyos, A., Gengler, S., Prestele, R., Bilous, S., Akhtar, I. ul
H., Singha, K., Choudhury, S. B., Chetri, T., Malek, Ž., Bungnamei, K.,
Saikia, A., Sahariah, D., Narzary, W., Danylo, O., Sturn, T., Karner, M.,
McCallum, I., Schepaschenko, D., Moltchanova, E., Fraisl, D., Moorthy, I.,
and Fritz, S.: Estimating the global distribution of field size using
crowdsourcing, Glob. Change Biol., 25, 174–186, https://doi.org/10.1111/gcb.14492,
2019.
Lobotka, V.: Terraced fields in Slovakia, Agric., 2, 539–549, 1955 (in Slovak: Terasove polia na
Slovensku).
Long, H. L., Heilig, G. K., Wang, J., Li, X. B., Luo, M., Wu, X. Q., and
Zhang, M.: Land use and soil erosion in the upper reaches of the Yangtze
River: Some socio-economic considerations on China's Grain-for-Green
Programme, L. Degrad. Dev., 17, 589–603, https://doi.org/10.1002/ldr.736, 2006.
Loughran, R. J., Elliott, G. L., Campbell, B. L., and Shelly, D. J.:
Estimation of soil erosion from caesium-137 measurements in a small,
cultivated catchment in Australia, Int. J. Radiat. Appl. Instrumentation.
Part, Vol. 39, edited by: Afshar, F. A., Ayoubi, S., and Jalalian, A., 1153–1157,
https://doi.org/10.1016/0883-2889(88)90009-3, 1988.
Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V.,
Carvalhais, N., Chappell, A., Ciais, P., Davidson, E. A., Finzi, A.,
Georgiou, K., Guenet, B., Hararuk, O., Harden, J. W., He, Y., Hopkins, F.,
Jiang, L., Koven, C., Jackson, R. B., Jones, C. D., Lara, M. J., Liang, J.,
McGuire, A. D., Parton, W., Peng, C., Randerson, J. T., Salazar, A., Sierra,
C. A., Smith, M. J., Tian, H., Todd-Brown, K. E. O., Torn, M., van
Groenigen, K. J., Wang, Y. P., West, T. O., Wei, Y., Wieder, W. R., Xia, J.,
Xu, X., Xu, X., and Zhou, T.: Toward more realistic projections of soil
carbon dynamics by Earth system models, Global Biogeochem. Cy., 30,
40–56, https://doi.org/10.1002/2015GB005239, 2016.
Mabit, L., Meusburger, K., Fulajtar, E., and Alewell, C.: The usefulness of
137Cs as a tracer for soil erosion assessment: A critical reply to Parsons
and Foster (2011), Earth-Sci. Rev., 127, 300–307,
https://doi.org/10.1016/j.earscirev.2013.05.008, 2013.
Mabit, L., Chhem-Kieth, S., Dornhofer, P., Toloza, A., Benmansour, M.,
Bernard, C., Fulajtar, E., and Walling, D. E.: 137Cs: A widely used and
validated medium-term soil tracer, in Guidelines for using fallout
radionuclides to assess erosion and effectiveness of soil conservation
strategies, IAEA-TECDOC-1741, IAEA, Vienna, 27–78, 2014.
McCool, D. K., Foster, G. R., Mutchler, C. K., and Meyer, L. D.: Revised
slope length factor for the Universal Soil Loss Equation, Trans. ASAE, 32,
1571–1576, 1989.
McDermid, S. S., Mearns, L. O., and Ruane, A. C.: Representing agriculture in
Earth System Models: Approaches and priorities for development, J. Adv.
Model. Earth Syst., 9, 2230–2265, https://doi.org/10.1002/2016MS000749, 2017.
Meyer, L. D.: Evolution of the Universal Soil Loss Equation, J. Soil Water
Conserv., 39, 99–104, 1984.
Montgomery, D. R.: Soil erosion and agricultural sustainability, P.
Natl. Acad. Sci. USA, 104, 13268–72, https://doi.org/10.1073/pnas.0611508104,
2007.
Morgan, R. P. C.: Soil erosion and conservation, 3rd Edn., Blackwell Science
Ltd., Oxford, 296 pp., 2005.
Mueller, C., Elliott, J., Chryssanthacopoulos, J., Arneth, A., Balkovic, J.,
Ciais, P., Deryng, D., Folberth, C., Glotter, M., Hoek, S., Iizumi, T.,
Izaurralde, R. C., Jones, C., Khabarov, N., Lawrence, P., Liu, W., Olin, S.,
Pugh, T. A. M., Ray, D. K., Reddy, A., Rosenzweig, C., Ruane, A. C.,
Sakurai, G., Schmid, E., Skalsky, R., Song, C. X., Wang, X., De Wit, A., and
Yang, H.: Global gridded crop model evaluation: Benchmarking, skills,
deficiencies and implications, Geosci. Model Dev., 10, 1403–1422,
https://doi.org/10.5194/gmd-10-1403-2017, 2017.
Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., and
Foley, J. A.: Closing yield gaps through nutrient and water management,
Nature, 494, 390–390, https://doi.org/10.1038/nature11907, 2012.
Mutchler, C. K., Murphree, C. E., and McGregor, K. C.: Laboratory and Field
Plots for Erosion Research, in: Soil Erosion Research Methods, edited by: R.
Lal, Routledge., p. 352, 1994.
Nearing, M. A., Romkens, M. J. M., Norton, L. D., Stott, D. E., Rhoton, F.
E., Laflen, J. M., Flanagan, D. C., Alonso, C. V., Binger, R. L., Dabney, S.
M., Doering, O. C., Huang, C. H., McGregor, K. C., and Simon, A.:
Measurements and models of soil loss rates, Science, 290,
1300–1301, 2000.
Nossent, J., Elsen, P., and Bauwens, W.: Sobol' sensitivity analysis of a
complex environmental model, Environ. Model. Softw., 26, 1515–1525,
https://doi.org/10.1016/j.envsoft.2011.08.010, 2011.
Nyssen, J., Frankl, A., Zenebe, A., Deckers, J., and Poesen, J.: Land
Management in the Northern Ethiopian Highlands: Local and Global
Perspectives; Past, Present and Future, L. Degrad. Dev., 26, 759–764,
https://doi.org/10.1002/ldr.2336, 2015.
Nyssen, J., Tielens, S., Gebreyohannes, T., Araya, T., Teka, K., van de
Wauw, J., Degeyndt, K., Descheemaeker, K., Amare, K., Haile, M., Zenebe, A.,
Munro, N., Walraevens, K., Gebrehiwot, K., Poesen, J., Frankl, A., Tsegay,
A., and Deckers, J.: Understanding spatial patterns of soils for sustainable
agriculture in northern Ethiopia's tropical mountains, PLoS ONE, 14, 1–42, 2019.
Onstad, C. A. and Foster, G. R.: Erosion modeling on a watershed, Trans.
ASAE, 18, 288–292, 1975.
Panagos, P., Borrelli, P., Meusburger, K., van der Zanden, E. H., Poesen, J.,
and Alewell, C.: Modelling the effect of support practices (P-factor) on the
reduction of soil erosion by water at European scale, Environ. Sci. Policy,
51, 23–34, https://doi.org/10.1016/j.envsci.2015.03.012, 2015.
Panagos, P., Borrelli, P., Poesen, J., Meusburger, K., Ballabio, C., Lugato,
E., Montanarella, L., and Alewell, C.: Reply to “The new assessment of soil
loss by water erosion in Europe”, Panagos P. et al., 2015 Environ. Sci.
Policy 54, 438-447-A response” by Evans and Boardman [Environ. Sci. Policy
58, 11–15], Environ. Sci. Policy, 59, 53–57,
https://doi.org/10.1016/j.envsci.2016.02.010, 2016.
Panagos, P., Standardi, G., Borrelli, P., Lugato, E., Montanarella, L., and
Bosello, F.: Cost of agricultural productivity loss due to soil erosion in
the European Union: From direct cost evaluation approaches to the use of
macroeconomic models, L. Degrad. Dev., 29, 471–484,
https://doi.org/10.1002/ldr.2879, 2018.
Pannell, D. J., Llewellyn, R. S., and Corbeels, M.: The farm-level economics
of conservation agriculture for resource-poor farmers, Agr. Ecosyst.
Environ., 187, 52–64, https://doi.org/10.1016/j.agee.2013.10.014, 2014.
Parsons, A.: How reliable are our methods for estimating soil erosion by
water?, Sci. Total Environ., 676, 215–221, 2019.
Parsons, A. J. and Foster, I. D. L.: The assumptions of science, A reply to
Mabit et al. (2013), Earth-Sci. Rev., 127, 308–310,
https://doi.org/10.1016/j.earscirev.2013.05.011, 2013.
Pelletier, J. D., Broxton, P. D., Hazenberg, P., Zeng, X., Troch, P. A.,
Niu, G.-Y., Williams, Z., Brunke, M. A., and Gochis, D.: A gridded global
data set of soil, intact regolith, and sedimentary deposit thicknesses for
regional and global land surface modeling, J. Adv. Model. Earth Syst., 8,
41–65, https://doi.org/10.1002/2015MS000526, 2016.
Pimentel, D.: Soil erosion: A food and environmental threat, Environ. Dev.
Sustain., 8, 119–137, https://doi.org/10.1007/s10668-005-1262-8, 2006.
Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair,
M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R., and Blair, R.:
Environmental and economic costs of soil erosion and conservation benefits,
Science, 267, 1117–1123, https://doi.org/10.1126/science.267.5201.1117,
1995.
Poesen, J., Nachtergaele, J., Verstraeten, G., and Valentin, C.: Gully
erosion and environmental change: Importance and research needs, Catena,
50, 91–133, https://doi.org/10.1016/S0341-8162(02)00143-1, 2003.
Pongratz, J., Dolman, H., Don, A., Erb, K. H., Fuchs, R., Herold, M., Jones,
C., Kuemmerle, T., Luyssaert, S., Meyfroidt, P., and Naudts, K.: Models meet
data: Challenges and opportunities in implementing land management in Earth
system models, Glob. Change Biol., 24, 1470–1487, https://doi.org/10.1111/gcb.13988,
2018.
Portmann, F. T., Siebert, S., and Döll, P.: MIRCA2000 – Global monthly
irrigated and rainfed crop areas around the year 2000: A new high-resolution
data set for agricultural and hydrological modeling, Global Biogeochem.
Cy., 24, https://doi.org/10.1029/2008GB003435, 2010.
Porwollik, V., Rolinski, S., Heinke, J., and Müller, C.: Generating a
rule-based global gridded tillage dataset, Earth Syst. Sci. Data, 11,
823–843, https://doi.org/10.5194/essd-11-823-2019, 2019.
Rallison, R. E.: Origin and Evolution of the SCS Runoff Equation, in
Proceeding of the Symposium on Watershed Management '80 American Society of
Civil Engineering Boise ID, 1980.
Renard, K., Foster, G., Weesies, G., McCool, D., and Yoder, D.: Predicting
soil erosion by water: a guide to conservation planning with the Revised
Universal Soil Loss Equation (RUSLE), Agric. Handb., 703, 384 pp., 1997.
Romeo, R., Vita, A., Manuelli, S., Zanini, E., Freppaz, M., and Stanchi, S.:
Understanding Mountain Soils: A contribution from mountain areas to the
International Year of Soils 2015, Rome, 157 pp., 2015.
Roose, E.: Land husbandry – Components and strategy. 70 FAO soils bulletin,
Food and Agriculture Organization of the United Nations, Rome, 380 pp., 1996.
Ruane, A. C., Goldberg, R., and Chryssanthacopoulos, J.: Climate forcing
datasets for agricultural modeling: Merged products for gap-filling and
historical climate series estimation, Agr. Forest Meteorol., 200, 233–248,
https://doi.org/10.1016/j.agrformet.2014.09.016, 2015.
Sacks, W. J., Deryng, D., Foley, J. A., and Ramankutty, N.: Crop planting
dates: An analysis of global patterns, Glob. Ecol. Biogeogr., 19,
607–620, https://doi.org/10.1111/j.1466-8238.2010.00551.x, 2010.
Sadeghi, S. H. R. and Mizuyama, T.: Applicability of the Modified Universal
Soil Loss Equation for prediction of sediment yield in Khanmirza watershed,
Iran, Hydrol. Sci. J., 52, 1068–1075, https://doi.org/10.1623/hysj.52.5.1068, 2007.
Scherer, L. and Pfister, S.: Modelling spatially explicit impacts from
phosphorus emissions in agriculture, Int. J. Life Cycle Assess., 20,
785–795, https://doi.org/10.1007/s11367-015-0880-0, 2015.
Sharpley, A. N. and Williams, J. R.: EPIC – Erosion/Productivity Impact
Calculator: 1. Model Documentation, U.S. Dep. Agric. Tech. Bull., 1768, 235 pp.,
1990.
Skalský, R., Tarasovičová, Z., Balkovič, J., Schmid, E.,
Fuchs, M., Moltchanova, E., Kindermann, G., and Scholtz, P.: GEO-BENE global
database for bio-physical modeling, GEOBENE project, available
at:
http://geo-bene.project-archive.iiasa.ac.at/files/Deliverables/Geo-BeneGlbDb10(DataDescription).pdf (last access: 2 November 2020),
2008.
Sobol, I. M.: On sensitivity estimation for nonlinear mathematical models,
Matem. Mod., 2, 112–118, 1990.
Stroosnijder, L.: Measurement of erosion: Is it possible?, Catena, 64,
162–173, https://doi.org/10.1016/j.catena.2005.08.004, 2005.
Terranova, O., Antronico, L., Coscarelli, R., and Iaquinta, P.: Soil erosion
risk scenarios in the Mediterranean environment using RUSLE and GIS: An
application model for Calabria (southern Italy), Geomorphology, 112,
228–245, https://doi.org/10.1016/j.geomorph.2009.06.009, 2009.
Trimble, S. W. and Crosson, P.: U.S. Soil Erosion Rates–Myth and Reality,
Science, 289, 248–250, https://doi.org/10.1126/science.289.5477.248,
2000.
Turkelboom, F., Poesen, J., and Trébuil, G.: The multiple land
degradation effects caused by land-use intensification in tropical
steeplands: A catchment study from northern Thailand, Catena, 75,
102–116, https://doi.org/10.1016/j.catena.2008.04.012, 2008.
USDA-ARC: Science documentation. Revised Universal Soil Loss Equation,
Version 2 (RUSLE 2), Washington, D.C., 2013.
USGS: USGS 30 ARC-second Global Elevation Data, GTOPO30, https://doi.org/10.5066/F7DF6PQS, 1997.
Våje, P. I., Singh, B. R., and Lal, R.: Soil Erosion and Nutrient Losses
from a Volcanic Ash Soil in Kilimanjaro Region, Tanzania, J. Sustain. Agr.,
26, 23–42, 2005.
Valentin, C., Agus, F., Alamban, R., Boosaner, A., Bricquet, J. P., Chaplot,
V., de Guzman, T., de Rouw, A., Janeau, J. L., Orange, D., Phachomphonh, K.,
Do Duy Phai, Podwojewski, P., Ribolzi, O., Silvera, N., Subagyono, K.,
Thiébaux, J. P., Tran Duc Toan, and Vadari, T.: Runoff and sediment
losses from 27 upland catchments in Southeast Asia: Impact of rapid land use
changes and conservation practices, Agr. Ecosyst. Environ., 128,
225–238, https://doi.org/10.1016/j.agee.2008.06.004, 2008.
Van Oost, K., Quine, T. A., Govers, G., Gryze, S. De, Six, J., Harden, J.
W., Mccarty, G. W., Heckrath, G., Kosmas, C., Giraldez, J. V., and Silva, J.
R. M.: The Impact of Agricultural Soil Erosion on the Global Carbon Cycle,
Science, 318, 626–629, 2007.
Walling, D. E. and Webb, B. W.: Erosion and sediment yield: a global
overview, IAHS Publ. Proc. Reports-Intern Assoc Hydrol. Sci., 236,
3–20,
1996.
Walling, D. E., He, Q., and Zhang, Y.: Conversion Models And Related
Software, in Guidelines for Using Fallout Radionuclides to Assess Erosion
and Effectiveness of Soil Conservation Strategies, IAEA, Vienna, 125–148, 2014.
Watson, A. and Evans, R.: A comparison of estimates of soil erosion made in
the field and from photographs, Soil Till. Res., 19, 17–27, 1991.
Williams, J. R.: Sediment yield prediction with universal equation on using
runoff energy factor, in: Present and prospective technology for predicting
sediment yields and sources, ARS S-40, USDA-ARS,
Washington, DC, 244–252, 1975.
Williams, J. R.: The Erosion-Productivity Impact Calculator (EPIC) Model: A
Case History, Philos. Trans. R. Soc. B, 329, 421–428,
https://doi.org/10.1098/rstb.1990.0184, 1990.
Williams, J. R.: The EPIC model, in: Computer Models of Watershed Hydrology,
edited by: Singh, V. P., Water Resour. Publ., 909–1000, 1995.
Wischmeier, W. H. and Smith, D. D.: Predicting rainfall erosion losses,
Agric. Handb.,537, 285–291, https://doi.org/10.1029/TR039i002p00285, 1978.
Zachar, D.: Soil Erosion, Elsevier, Amsterdam, 544 pp., 1982.
Zapata, F.: Handbook for the Assessment of Soil Erosion and Sedimentation
Using Environmental Radionuclides, Springer, Dordrecht, 219 pp., 2002.
Short summary
We generate 30-year mean water erosion estimates in global maize and wheat fields based on daily simulation outputs from an EPIC-based global gridded crop model. Evaluation against field data confirmed the robustness of the outputs for the majority of global cropland and overestimations at locations with steep slopes and strong rainfall. Additionally, we address sensitivities and uncertainties of model inputs to improve water erosion estimates in global agricultural impact studies.
We generate 30-year mean water erosion estimates in global maize and wheat fields based on daily...
Altmetrics
Final-revised paper
Preprint