Articles | Volume 17, issue 24
https://doi.org/10.5194/bg-17-6491-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-6491-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The suspended small-particle layer in the oxygen-poor Black Sea: a proxy for delineating the effective N2-yielding section
Rafael Rasse
CORRESPONDING AUTHOR
Sorbonne Université and CNRS, Laboratoire d'Océanographie de
Villefranche (LOV) UMR7093, Institut de la Mer de Villefranche (IMEV),
06230 Villefranche-sur-Mer, France
Hervé Claustre
Sorbonne Université and CNRS, Laboratoire d'Océanographie de
Villefranche (LOV) UMR7093, Institut de la Mer de Villefranche (IMEV),
06230 Villefranche-sur-Mer, France
Antoine Poteau
Sorbonne Université and CNRS, Laboratoire d'Océanographie de
Villefranche (LOV) UMR7093, Institut de la Mer de Villefranche (IMEV),
06230 Villefranche-sur-Mer, France
Related authors
No articles found.
Quentin Hyvernat, Alexandre Mignot, Elodie Gutknecht, Giovanni Ruggiero, Coralie Perruche, Guillaume Samson, Raphaëlle Sauzède, Olivier Aumont, Hervé Claustre, and Fabrizio D'Ortenzio
EGUsphere, https://doi.org/10.5194/egusphere-2025-4369, https://doi.org/10.5194/egusphere-2025-4369, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We introduce an iterative Importance Sampling (iIS) framework to optimize the PISCES model using BGC-Argo data. Using these data, 20 metrics are applied to better constrain parameter values. Three parameter selection strategies are compared: 29 main effects parameters, 66 parameters including interaction effects, and all 95 parameters. All yield statistically indistinguishable but significant skill gains, reducing NRMSE by 54–56% in median across assimilated metrics in the productive layer.
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Thomas Jackson, Andrei Chuprin, Malcolm Taberner, Ruth Airs, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Robert J. W. Brewin, Elisabetta Canuti, Francisco P. Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Afonso Ferreira, Scott Freeman, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Ralf Goericke, Richard Gould, Nathalie Guillocheau, Stanford B. Hooker, Chuamin Hu, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Steven Lohrenz, Hubert Loisel, Antonio Mannino, Victor Martinez-Vicente, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Enrique Montes, Frank Muller-Karger, Aimee Neeley, Michael Novak, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Rüdiger Röttgers, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Crystal Thomas, Rob Thomas, Gavin Tilstone, Andreia Tracana, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Bozena Wojtasiewicz, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022, https://doi.org/10.5194/essd-14-5737-2022, 2022
Short summary
Short summary
A compiled set of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here we describe the global compilation of bio-optical in situ data (spanning from 1997 to 2021) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Martí Galí, Marcus Falls, Hervé Claustre, Olivier Aumont, and Raffaele Bernardello
Biogeosciences, 19, 1245–1275, https://doi.org/10.5194/bg-19-1245-2022, https://doi.org/10.5194/bg-19-1245-2022, 2022
Short summary
Short summary
Part of the organic matter produced by plankton in the upper ocean is exported to the deep ocean. This process, known as the biological carbon pump, is key for the regulation of atmospheric carbon dioxide and global climate. However, the dynamics of organic particles below the upper ocean layer are not well understood. Here we compared the measurements acquired by autonomous robots in the top 1000 m of the ocean to a numerical model, which can help improve future climate projections.
Marie Barbieux, Julia Uitz, Alexandre Mignot, Collin Roesler, Hervé Claustre, Bernard Gentili, Vincent Taillandier, Fabrizio D'Ortenzio, Hubert Loisel, Antoine Poteau, Edouard Leymarie, Christophe Penkerc'h, Catherine Schmechtig, and Annick Bricaud
Biogeosciences, 19, 1165–1194, https://doi.org/10.5194/bg-19-1165-2022, https://doi.org/10.5194/bg-19-1165-2022, 2022
Short summary
Short summary
This study assesses marine biological production in two Mediterranean systems representative of vast desert-like (oligotrophic) areas encountered in the global ocean. We use a novel approach based on non-intrusive high-frequency in situ measurements by two profiling robots, the BioGeoChemical-Argo (BGC-Argo) floats. Our results indicate substantial yet variable production rates and contribution to the whole water column of the subsurface layer, typically considered steady and non-productive.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Cited articles
Argo: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC), SEANOE, https://doi.org/10.17882/42182, 2020.
Babbin, A. R., Keil, R. G., Devol, A. H., and Ward, B. B.: Organic matter
stoichiometry, flux, and oxygen control nitrogen loss in the ocean, Science,
344, 406–408, https://doi.org/10.1126/science.1248364, 2014.
Bianchi, D., Dunne, J. P., Sarmiento, J. L., and Galbraith, E. D.:
Data-based estimates of suboxia, denitrification, and N2O production in
the ocean and their sensitivities to dissolved O2, Global Biogeochem.
Cy., 26, GB004209, https://doi.org/10.1029/2011GB004209, 2012.
Bianchi, D., Weber, T. S., Kiko, R., and Deutsch, C.: Global niche of marine
anaerobic metabolisms expanded by particle microenvironments, Nat. Geosci.,
11, 263–268, https://doi.org/10.1038/s41561-018-0081-0, 2018.
Bishop, J. K. and Wood, T. J.: Year-round observations of carbon biomass
and flux variability in the Southern Ocean, Global Biogeochem. Cy., 23,
https://doi.org/10.1029/2008GB003206, 2009.
Bittig, H. C. and Körtzinger, A.: Tackling oxygen optode drift: Near-surface and in-air oxygen optode measurements on a float provide an
accurate in situ reference, J. Atmos. Ocean. Technol., 32, 1536–1543,
https://doi.org/10.1175/JTECH-D-14-00162.1, 2015.
Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A., and Weber, T.:
Multi-faceted particle pumps drive carbon sequestration in the ocean,
Nature, 568, 327–335, https://doi.org/10.1038/s41586-019-1098-2, 2019.
Briggs, N., Perry, M. J., Cetinić, I., Lee, C., D'Asaro, E., Gray, A.
M., and Rehm, E.: High-resolution observations of aggregate flux during a
sub-polar North Atlantic spring bloom, Deep-Sea Res. Pt. I., 58,
1031–1039, https://doi.org/10.1016/j.dsr.2011.07.007, 2011.
Briggs, N., Dall'Olmo, G., and Claustre, H.: Major role of particle
fragmentation in regulating biological sequestration of CO2 by the
oceans, Science, 367, 791–793, https://doi.org/10.1126/science.aay1790, 2020.
Bristow, L. A., Dalsgaard, T., Tiano, L., Mills, D. B., Bertagnolli, A. D.,
Wright, J. J., Hallam, S. J., Ulloa, O., Canfield, D. E., Revsbech, N. P., and Thamdrup, B.: Ammonium and nitrite oxidation at nanomolar oxygen
concentrations in oxygen minimum zone waters, P. Natl. Acad. Sci. USA, 113, 10601–10606, https://doi.org/10.1073/pnas.1600359113, 2016.
Bristow, L. A., Callbeck, C. M., Larsen, M., Altabet, M. A., Dekaezemacker, J., Forth, M., Gauns, M., Glud, R. N., Kuypers, M. M., Lavik, G., and Milucka, J.: N2 production rates limited by nitrite availability in the Bay of Bengal oxygen minimum zone, Nat. Geosci., 10, 24–29,
https://doi.org/10.1038/ngeo2847, 2017.
Cavan, E. L., Trimmer, M., Shelley, F., and Sanders, R.: Remineralization
of particulate organic carbon in an ocean oxygen minimum zone, Nat. Commun.,
8, 1–9, https://doi.org/10.1038/ncomms14847, 2017.
Chang, B. X., Devol, A. H., and Emerson, S. R.: Denitrification and the
nitrogen gas excess in the eastern tropical South Pacific oxygen deficient
zone, Deep-Sea Res. Pt. I., 57, 1092–1101,
https://doi.org/10.1016/j.dsr.2010.05.009, 2010.
Chang, B. X., Devol, A. H., and Emerson, S. R.: Fixed nitrogen loss from the
eastern tropical North Pacific and Arabian Sea oxygen deficient zones
determined from measurements of N2 : Ar, Global Biogeochem. Cy., 26, GB004207,
https://doi.org/10.1029/2011GB004207, 2012.
Callbeck, C. M., Lavik, G., Ferdelman, T. G., Fuchs, B., Gruber-Vodicka, H. R., Hach, P. F., Littmann, S., Schoffelen, N. J., Kalvelage, T., Thomsen, S., and Schunck, H.: Oxygen minimum zone cryptic sulfur cycling sustained by
offshore transport of key sulfur oxidizing bacteria, Nat. Commun., 9,
1–11, https://doi.org/10.1038/s41467-018-04041-x, 2018.
Canfield, D. E. and Thamdrup, B.: Towards a consistent classification
scheme for geochemical environments, or, why we wish the term `suboxic'
would go away, Geobiology, 7, 385–392,
https://doi.org/10.1111/j.1472-4669.2009.00214.x, 2009.
Canfield, D. E., Stewart, F. J., Thamdrup, B., De Brabandere, L., Dalsgaard,
T., Delong, E. F., Revsbech, N. P., and Ulloa, O.: A cryptic sulfur cycle in
oxygen-minimum–zone waters off the Chilean coast, Science, 330,
1375–1378, https://doi.org/10.1126/science.1196889, 2010.
Clement, B. G., Luther, G. W., and Tebo, B. M.: Rapid, oxygen-dependent
microbial Mn (II) oxidation kinetics at sub-micromolar oxygen concentrations
in the Black Sea suboxic zone, Geochim. Cosmochim. Ac., 73, 1878–1889,
https://doi.org/10.1016/j.gca.2008.12.023, 2009.
Codispoti, L. A., Brandes, J. A., Christensen, J. P., Devol, A. H., Naqvi, S. W. A., Paerl, H. W., and Yoshinari, T.: The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we enter the anthropocene?, Sci. Mar., 65, 85–105, https://doi.org/10.3989/scimar.2001.65s285, 2001.
Codispoti, L. A.: An oceanic fixed nitrogen sink exceeding 400 Tg N a−1 vs the concept of homeostasis in the fixed-nitrogen inventory, Biogeosciences, 4, 233–253, https://doi.org/10.5194/bg-4-233-2007, 2007.
Codispoti, L. A., Brandes, J. A., Christensen, J. P., Devol, A. H., Naqvi,
S. W. A., Paerl, H. W., and Yoshinari, T.: The oceanic fixed nitrogen and
nitrous oxide budgets: Moving targets as we enter the anthropocene?, Sci.
Mar., 65, 85–105, 2007.
Çoban-Yıldız, Y., Altabet, M. A., Yılmaz, A., and Tuğrul, S.: Carbon and nitrogen isotopic ratios of suspended particulate organic matter (SPOM) in the Black Sea water column, Deep Sea Res. Pt. II, 53, 1875–1892, https://doi.org/10.1016/j.dsr2.2006.03.021, 2006.
Dall'Olmo, G. and Mork, K. A.: Carbon export by small particles in the
Norwegian Sea, Geophys. Res. Lett., 41, 2921–2927,
https://doi.org/10.1002/2014GL059244, 2014.
Dalsgaard, T., Thamdrup, B., Farías, L., and Revsbech, N. P.: Anammox
and denitrification in the oxygen minimum zone of the eastern South Pacific,
Limnol. Oceanogr., 57, 1331–1346,
https://doi.org/10.4319/lo.2012.57.5.1331, 2012.
Dalsgaard, T., Stewart, F. J., Thamdrup, B., De Brabandere, L., Revsbech,
N. P., Ulloa, O., Canfield, D. E. and DeLong, E. F.: Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and
denitrification in the oxygen minimum zone off northern Chile, Mbio, 5,
e01966-14, https://doi.org/10.1128/mBio.01966-14, 2014.
de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and
Iudicone, D.: Mixed layer depth over the global ocean: An examination of
profile data and a profile-based climatology, J. Geophys. Res.-Oceans,
109, https://doi.org/10.1029/2004JC002378, 2004.
Dellwig, O., Leipe, T., Ma, C., Glockzin, M., Pollehne, F., Schnetger, B.,
Yakushev, E. V, and Bo, M. E.: A new particulate Mn–Fe–P-shuttle at
the redoxcline of anoxic basins, Geochim. Cosmochim. Ac., 74, 7100–7115.
https://doi.org/10.1016/j.gca.2010.09.017, 2010.
DeVries, T., Deutsch, C., Primeau, F., Chang, B., and Devol, A.: Global
rates of water-column denitrification derived from nitrogen gas
measurements, Nat. Geosci., 5, 547–550, https://doi.org/10.1038/ngeo1515,
2012.
DeVries, T., Deutsch, C., Rafter, P. A., and Primeau, F.: Marine denitrification rates determined from a global 3-D inverse model, Biogeosciences, 10, 2481–2496, https://doi.org/10.5194/bg-10-2481-2013, 2013.
Ediger, D., Murray, J. W., and Yılmaz, A.: Phytoplankton biomass, primary
production and chemoautotrophic production of the Western Black Sea in April
2003, J. Mar. Syst., 198, 103183,
https://doi.org/10.1016/j.jmarsys.2019.103183, 2019.
Estapa, M. L., Feen, M. L., and Breves, E.: Direct observations of
biological carbon export from profiling floats in the subtropical North
Atlantic, Global Biogeochem. Cy., 33, 282–300,
https://doi.org/10.1029/2018GB006098, 2019.
Fuchsman, C. A., Murray, J. W., and Konovalov, S. K.: Concentration and
natural stable isotope profiles of nitrogen species in the Black Sea, Mar.
Chem., 111, 90–105, https://doi.org/10.1016/j.marchem.2008.04.009,
2008.
Fuchsman, C. A., Kirkpatrick, J. B., Brazelton, W. J., Murray, J. W., and
Staley, J. T.: Metabolic strategies of free-living and aggregate-associated
bacterial communities inferred from biologic and chemical profiles in the
Black Sea suboxic zone, FEMS Microbiol. Ecol., 78, 586–603,
https://doi.org/10.1111/j.1574-6941.2011.01189.x, 2011.
Fuchsman, C. A., Staley, J. T., Oakley, B. B., Kirkpatrick, J. B., and
Murray, J. W.: Free-living and aggregate-associated Planctomycetes in the
Black Sea, FEMS Microbiol. Ecol., 80, 402–416,
https://doi.org/10.1111/j.1574-6941.2012.01306.x, 2012a.
Fuchsman, C. A., Murray, J. W., and Staley, J. T.: Stimulation of
autotrophic denitrification by intrusions of the Bosporus Plume into the
anoxic Black Sea, Front. Microbiol., 3, 257,
https://doi.org/10.3389/fmicb.2012.00257, 2012b.
Fuchsman, C. A., Devol, A. H., Saunders, J. K., McKay, C., and Rocap, G.:
Niche partitioning of the N cycling microbial community of an offshore
oxygen deficient zone, Front. Microbiol., 8, 2384,
https://doi.org/10.3389/fmicb.2017.02384, 2017.
Fuchsman, C. A., Paul, B., Staley, J. T., Yakushev, E. V., and Murray, J.
W.: Detection of transient denitrification during a high organic matter
event in the Black Sea, Global Biogeochem. Cy., 33, 143–162,
https://doi.org/10.1029/2018GB006032, 2019.
Ganesh, S., Parris, D. J., DeLong, E. F., and Stewart, F. J.: Metagenomic
analysis of size-fractionated picoplankton in a marine oxygen minimum zone,
ISME J., 8, 187, https://doi.org/10.1038/ismej.2013.144, 2014.
Ganesh, S., Bristow, L. A., Larsen, M., Sarode, N., Thamdrup, B., and
Stewart, F. J.: Size-fraction partitioning of community gene transcription
and nitrogen metabolism in a marine oxygen minimum zone, ISME J., 9,
2682, https://doi.org/10.1038/ismej.2015.44, 2015.
Glaubitz, S., Labrenz, M., Jost, G., and Jürgens, K.: Diversity of
active chemolithoautotrophic prokaryotes in the sulfidic zone of a Black Sea
pelagic redoxcline as determined by rRNA-based stable isotope probing, FEMS
Microbiol. Ecol., 74, 32-41,
https://doi.org/10.1111/j.1574-6941.2010.00944.x, 2010.
Grote, J., Jost, G., Labrenz, M., Herndl, G. J., and Jürgens, K:
Epsilonproteobacteria represent the major portion of chemoautotrophic
bacteria in sulfidic waters of pelagic redoxclines of the Baltic and Black
Seas, Appl. Environ. Microbiol., 74, 7546–7551, https://doi.org/10.1128/AEM.01186-08, 2008.
Gruber, N. and Galloway, J. N.: An Earth-system perspective of the global
nitrogen cycle, Nature, 451, 293–296,
https://doi.org/10.1038/nature06592, 2008.
Gruber, N. and Sarmiento, J. L.: Global patterns of marine nitrogen
fixation and denitrification, Global Biogeochem. Cy., 11, 235–266,
https://doi.org/10.1029/97GB00077, 1997.
Hamme, R. C. and Emerson, S. R.: The solubility of neon, nitrogen and argon
in distilled water and seawater, Deep-Sea Res. Pt. I, 51, 1517–1528,
https://doi.org/10.1016/j.dsr.2004.06.009, 2004.
Helm, K. P., Bindoff, N. L., and Church, J. A.: Observed decreases in oxygen
content of the global ocean, Geophys. Res. Lett., 38,
https://doi.org/10.1029/2011GL049513, 2011.
Jayakumar, A., Chang, B. X., Widner, B., Bernhardt, P., Mulholland, M. R.,
and Ward, B. B.: Biological nitrogen fixation in the oxygen-minimum region
of the eastern tropical North Pacific ocean, ISME J., 11, 2356–2367,
https://doi.org/10.1038/ismej.2017.97, 2017.
Jensen, M. M., Kuypers, M. M., Gaute, L., and Thamdrup, B.: Rates and
regulation of anaerobic ammonium oxidation and denitrification in the Black
Sea, Limnol. Oceanogr., 53, 23–36,
https://doi.org/10.4319/lo.2008.53.1.0023, 2008.
Johnson, K. S.: Manganese redox chemistry revisited, Science, 313,
1896–1897, https://doi.org/10.1126/science.1133496, 2006.
Johnson, K. S., Coale, K. H., Berelson, W. M., and Gordon, R. M.: On the
formation of the manganese maximum in the oxygen minimum, Geochim.
Cosmochim. Ac., 60, 1291–1299,
https://doi.org/10.1016/0016-7037(96)00005-1, 1996.
Johnson, K. S., Pasqueron de Fommervault, O., Serra, R., D'Ortenzio, F.,
Schmechtig, C., Claustre, H., and Poteau, A.: Processing Bio-Argo nitrate
concentration at the DAC level, https://doi.org/10.13155/46121, 2018.
Jørgensen, B. B., Fossing, H., Wirsen, C. O., and Jannasch, H. W.: Sulfide oxidation in the anoxic Black Sea chemocline, Deep-Sea Res., 38, S1083–S1103, https://doi.org/10.1016/S0198-0149(10)80025-1, 1991.
Karl, D. M., Knauer, G. A., and Martin, J. H.: Downward flux of particulate
organic matter in the ocean: a particle decomposition
paradox, Nature, 332, 438–441, https://doi.org/10.1038/332438a0, 1988.
Karl, D. M., Church, M. J., Dore, J. E., Letelier, R. M., and Mahaffey, C.:
Predictable and efficient carbon sequestration in the North Pacific Ocean
supported by symbiotic nitrogen fixation, P. Natl. Acad. Sci. USA,
109, 1842–1849, https://doi.org/10.1073/pnas.1120312109, 2012.
Keeling, R. F. and Garcia, H. E.: The change in oceanic O2 inventory
associated with recent global warming, P. Natl. Acad. Sci. USA,
99, 7848–7853, https://doi.org/10.1073/pnas.122154899, 2002.
Kiko, R., Biastoch, A., Brandt, P., Cravatte, S., Hauss, H., Hummels, R.,
Kriest, I., Marin, F., McDonnell, A. M. P., Oschlies, A., and Picheral, M.:
Biological and physical influences on marine snowfall at the equator, Nat.
Geosci., 10, 852–858, https://doi.org/10.1038/ngeo3042, 2017.
Kirkpatrick, J. B., Fuchsman, C. A., Yakushev, E., Staley, J. T., and
Murray, J. W.: Concurrent activity of anammox and denitrifying bacteria in
the Black Sea, Front. Microbiol., 3, 256,
https://doi.org/10.3389/fmicb.2012.00256, 2012.
Kirkpatrick, J. B., Fuchsman, C. A., Yakushev, E. V., Egorov, A. V., Staley,
J. T., and Murray, J. W.: Dark N2 fixation: nifH expression in the
redoxcline of the Black Sea, Aquat. Microb. Ecol., 82, 43–58.
https://doi.org/10.3354/ame01882, 2018.
Konovalov, S. K., Luther, G. I. W., Friederich, G. E., Nuzzio, D. B., Tebo, B. M., Murray, J. W., Oguz, T., Glazer, B., Trouwborst, R. E., Clement, B., and Murray, K. J.: Lateral injection of oxygen with the Bosporus plume–fingers of oxidizing potential in the Black Sea, Limnol. Oceanogr., 48, 2369–2376, https://doi.org/10.4319/lo.2003.48.6.2369, 2003.
Konovalov, S. K., Murray, J. W., and Luther III, G. W.: Black Sea
Biogeochemistry, Oceanography, 18, 24,
https://doi.org/10.5670/oceanog.2005.39, 2005.
Konovalov, S. K., Murray, J. W., Luther, G. W., and Tebo, B. M.: Processes
controlling the redox budget for the oxic/anoxic water column of the Black
Sea, Deep-Sea Res. Pt. II, 53, 1817–1841,
https://doi.org/10.1016/j.dsr2.2006.03.013, 2006.
Kuypers, M. M., Sliekers, A. O., Lavik, G., Schmid, M., Jørgensen, B. B.,
Kuenen, J. G., Damsté, J. S. S., Strous, M., and Jetten, M. S.: Anaerobic
ammonium oxidation by anammox bacteria in the Black Sea, Nature, 422,
608, https://doi.org/10.1038/nature01472, 2003.
Lam, P., Jensen, M. M., Lavik, G., McGinnis, D. F., Müller, B.,
Schubert, C. J., Amann, R., Thamdrup, B., and Kuypers, M. M.: Linking
crenarchaeal and bacterial nitrification to anammox in the Black Sea, P.
Natl. Acad. Sci. USA, 104, 7104–7109,
https://doi.org/10.1073/pnas.0611081104, 2007.
Lam, P., Lavik, G., Jensen, M. M., van de Vossenberg, J., Schmid, M.,
Woebken, D., Gutiérrez, D., Amann, R., Jetten, M. S. and Kuypers, M. M.:
Revising the nitrogen cycle in the Peruvian oxygen minimum zone, P. Natl.
Acad. Sci. USA, 106, 4752–4757,
https://doi.org/10.1073/pnas.0812444106, 2009.
Lewis, B. L. and Luther III, G. W.: Processes controlling the distribution
and cycling of manganese in the oxygen minimum zone of the Arabian Sea, Deep
Sea Res. Pt. II, 47, 1541–1561,
https://doi.org/10.1016/S0967-0645(99)00153-8, 2000.
Margolin, A. R., Gerringa, L. J., Hansell, D. A., and Rijkenberg, M. J.: Net
removal of dissolved organic carbon in the anoxic waters of the Black Sea,
Mar. Chem., 183, 13–24, https://doi.org/10.1016/j.marchem.2016.05.003, 2016.
Margolskee, A., Frenzel, H., Emerson, S., and Deutsch, C.: Ventilation pathways for the North Pacific oxygen deficient zone, Global Biogeochem.
Cy., 33, 875–890, https://doi.org/10.1029/2018GB006149, 2019.
Martin, J. H. and Knauer, G. A.: VERTEX: manganese transport through
oxygen minima, Earth Planet. Sci., 67, 35–47,
https://doi.org/10.1016/0012-821X(84)90036-0, 1984.
Murray, J. W., Codispoti, L. A., and Friederich, G. E.: Oxidation-reduction
environments: The suboxic zone in the Black Sea, in: Aquatic chemistry: Interfacial and interspecies processes, edited by: Huang, C. P., O'Melia, C. R., and Morgan, J. J., ACS Advances in Chemistry Series, 224, 157–176, American Chemical Society, Washington DC, 1995.
Murray, J. W., Fuchsman, C., Kirkpatrick, J., Paul, B., and Konovalov, S.
K.: Species and δ15N Signatures of nitrogen
Transformations in the Suboxic Zone of the Black Sea, Oceanography., 18,
36–47, https://doi.org/10.5670/oceanog.2005.40, 2005.
Naqvi, S. W. A.: Geographical extent of denitrification in the Arabian Sea,
Oceanol. Acta, 14, 281–290, 1991.
Naqvi, S. W. A., Kumar, M. D., Narvekar, P. V., De Sousa, S. N., George, M.
D., and D'silva, C.: An intermediate nepheloid layer associated with high
microbial metabolic rates and denitrification in the northwest Indian Ocean,
J. Geophys. Res.-Oceans, 98, 16469–16479,
https://doi.org/10.1029/93JC00973, 1993.
Organelli, E., Dall'Olmo, G., Brewin, R. J., Tarran, G. A., Boss, E., and
Bricaud, A.: The open-ocean missing backscattering is in the structural
complexity of particles, Nat. Commun., 9, 1–11,
https://doi.org/10.1038/s41467-018-07814-6, 2018.
Oschlies, A., Brandt, P., Stramma, L., and Schmidtko, S.: Drivers and
mechanisms of ocean deoxygenation, Nat. Geosci., 11, 467–473,
https://doi.org/10.1038/s41561-018-0152-2, 2018.
Peters, B. D., Babbin, A. R., Lettmann, K. A., Mordy, C. W., Ulloa, O.,
Ward, B. B., and Casciotti, K. L.: Vertical modeling of the nitrogen cycle
in the eastern tropical South Pacific oxygen deficient zone using
high-resolution concentration and isotope measurements, Global Biogeochem.
Cy., 30, 1661–1681, https://doi.org/10.1002/2016GB005415, 2016.
Rasse, R. and Dall'Olmo, G.: Do oceanic hypoxic regions act as barriers for
sinking particles? A case study in the eastern tropical north Atlantic,
Global Biogeochem. Cy., 33, https://doi.org/10.1029/2019GB006305, 2019.
Reed, A., McNeil, C., D'Asaro, E., Altabet, M., Bourbonnais, A., and
Johnson, B.: A gas tension device for the mesopelagic zone, Deep Sea Res.
Pt. I, 139, 68–78, https://doi.org/10.1016/j.dsr.2018.07.007, 2018.
Schmechtig, C., Claustre, H., Poteau, A., and D'Ortenzio, F.: Bio-Argo
quality control manual for the chlorophyll-a concentration, Argo
Data Management, https://doi.org/10.13155/35385, 2014.
Schmechtig, C., Poteau, A., Claustre, H., D'ortenzio, F., Giorgio Dall'Olmo,
G., and Boss E.: Processing BGC-Argo particle backscattering at the DAC
level, Argo
Data Management, https://doi.org/10.13155/39459, 2015.
Schmidtko, S., Stramma, L., and Visbeck, M.: Decline in global oceanic oxygen
content during the past five decades, Nature, 542, 335–339,
https://doi.org/10.1038/nature21399, 2017.
Sorokin, Y. I.: The Black Sea: ecology and oceanography, Biology of Inland Waters Series, Leiden Backhuys, Netherlands, 875 pp., 2002.
Spinrad, R. W., Glover, H., Ward, B. B., Codispoti, L. A., and Kullenberg,
G.: Suspended particle and bacterial maxima in Peruvian coastal waters
during a cold water anomaly, Deep-Sea Res. Pt. I, 36, 715–733, 1989.
Stanev, E. V., Grayek, S., Claustre, H., Schmechtig, C., and Poteau, A.:
Water intrusions and particle signatures in the Black Sea: a
Biogeochemical-Argo float investigation, Ocean Dyn., 67, 1119–1136,
https://doi.org/10.1007/s10236-017-1077-9, 2017.
Stanev, E. V., Poulain, P. M., Grayek, S., Johnson, K. S., Claustre, H., and
Murray, J. W.: Understanding the Dynamics of the Oxic-Anoxic Interface in
the Black Sea, Geophys. Res. Lett., 45, 864–871,
https://doi.org/10.1002/2017GL076206, 2018.
Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding
oxygen-minimum zones in the tropical oceans, Science, 320, 655–658,
https://doi.org/10.1126/science.1153847, 2008.
Stramski, D., Reynolds, R. A., Kahru, M., and Mitchell, B. G.: Estimation of
particulate organic carbon in the ocean from satellite remote sensing,
Science, 285, 239–242, https://doi.org/10.1126/science.285.5425.239, 1999.
Stramski, D., Boss, E., Bogucki, D., and Voss, K. J.: The role of seawater
constituents in light backscattering in the ocean, Prog. Oceanogr., 61,
27–56, https://doi.org/10.1016/j.pocean.2004.07.001, 2004.
Stumm, W. and Morgan, J. J.: Aquatic Chemistry: An Introduction Emphasizing
Chemical Equilibria in Natural Waters, Wiley-Interscience, New York, 1970.
Thierry, V., Bittig, H., and Argo BGC Team.: Argo quality control manual for
dissolved oxygen concentration, Version 2.0, 23 October 2018, Argo
Data Management,
https://doi.org/10.13155/46542, 2018.
Tsementzi, D., Wu, J., Deutsch, S., Nath, S., Rodriguez-R, L. M., Burns, A.
S., Ranjan, P., Sarode, N., Malmstrom, R. R., Padilla, C. C., nad Stone, B.
K.: SAR11 bacteria linked to ocean anoxia and nitrogen loss, Nature,
536, 179–183, https://doi.org/10.1038/nature19068, 2016.
Tutasi, P. and Escribano, R.: Zooplankton diel vertical migration and downward C flux into the oxygen minimum zone in the highly productive upwelling region off northern Chile, Biogeosciences, 17, 455–473, https://doi.org/10.5194/bg-17-455-2020, 2020.
Ulloa, O., Canfield, D. E., DeLong, E. F., Letelier, R. M., and Stewart, F.
J.: Microbial oceanography of anoxic oxygen minimum zones, P. Natl. Acad.
Sci. USA, 109, 15996–16003,
https://doi.org/10.1073/pnas.1205009109, 2012.
Wang, W. L., Moore, J. K., Martiny, A. C., and Primeau, F. W.: Convergent
estimates of marine nitrogen fixation, Nature, 566, 205–211,
https://doi.org/10.1038/s41586-019-0911-2, 2019.
Ward, B. B.: How nitrogen is lost, Science, 341, 352–353, https://doi.org/10.1126/science.1240314, 2013.
Ward, B. B., Devol, A. H., Rich, J. J., Chang, B. X., Bulow, S. E., Naik, H.,
Pratihary, A., and Jayakumar, A.: Denitrification as the dominant nitrogen
loss process in the Arabian Sea, Nature, 461, 78–81,
https://doi.org/10.1038/nature08276, 2009.
Ward, B. B. and Kilpatrick, K. A.: Nitrogen transformations in the oxic
layer of permanent anoxic basins: the Black Sea and the Cariaco Trench, in:
Black Sea Oceanography, Springer, Dordrecht,
https://doi.org/10.1007/978-94-011-2608-3_7, 111–124, 1991.
Ward, B. B., Tuit, C. B., Jayakumar, A., Rich, J. J., Moffett, J., and
Naqvi, S. W. A.: Organic carbon, and not copper, controls denitrification in
oxygen minimum zones of the ocean, Deep-Sea Res. Pt. I., 55, 1672–1683,
https://doi.org/10.1016/j.dsr.2008.07.005, 2008.
Whitmire, A. L., Letelier, R. M., Villagrán, V., and Ulloa, O.:
Autonomous observations of in vivo fluorescence and particle backscattering
in an oceanic oxygen minimum zone, Opt. Express, 17, 21992–22004,
https://doi.org/10.1364/OE.17.021992, 2009.
Wojtasiewicz, B., Trull, T. W., Bhaskar, T. U., Gauns, M., Prakash, S., Ravichandran, M., and Hardman-Mountford, N. J.: Autonomous profiling float observations reveal the dynamics of deep biomass distributions in the denitrifying oxygen minimum zone of the Arabian Sea, 207, 103103, J. Mar. Syst., https://doi.org/10.1016/j.jmarsys.2018.07.002, 2020.
Yakushev, E. V., Pollehne, F., Jost, G., Kuznetsov, I., Schneider, B., and
Umlauf, L.: Analysis of the water column oxic/anoxic interface in the Black
and Baltic seas with a numerical model, Mar. Chem., 107, 388–410,
https://doi.org/10.1016/j.marchem.2007.06.003, 2007.
Yılmaz, A., Çoban-Yıldız, Y., Telli-Karakoç, F., and Bologa,
A.: Surface and mid-water sources of organic carbon by photoautotrophic and
chemoautotrophic production in the Black Sea. Deep Sea Research Part II:
Topical Studies in Oceanography, Deep Sea Res. Pt. II, 53, 1988–2004, https://doi.org/10.1016/j.dsr2.2006.03.015, 2006.
Short summary
Here, data collected by BGC-Argo floats are used to investigate the origin of the suspended small-particle layer inferred from optical sensors in the oxygen-poor Black Sea. Our results suggest that this layer is at least partially composed of the microbial communities that produce dinitrogen. We propose that oxygen and the optically derived small-particle layer can be used in combination to refine delineation of the effective N2-yielding section of the Black Sea and oxygen-deficient zones.
Here, data collected by BGC-Argo floats are used to investigate the origin of the suspended...
Altmetrics
Final-revised paper
Preprint