Articles | Volume 18, issue 10
https://doi.org/10.5194/bg-18-3029-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-3029-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Rain-fed streams dilute inorganic nutrients but subsidise organic-matter-associated nutrients in coastal waters of the northeast Pacific Ocean
Kyra A. St. Pierre
CORRESPONDING AUTHOR
Hakai Institute, Tula Foundation, Heriot Bay, BC, V0P 1H0, Canada
Institute for the Oceans and Fisheries, University of British
Columbia, Vancouver, BC, V6T 1Z4, Canada
Brian P. V. Hunt
Hakai Institute, Tula Foundation, Heriot Bay, BC, V0P 1H0, Canada
Institute for the Oceans and Fisheries, University of British
Columbia, Vancouver, BC, V6T 1Z4, Canada
Department of Earth, Ocean and Atmospheric Sciences, University of
British Columbia, Vancouver, BC, V6T 1Z4, Canada
Suzanne E. Tank
Hakai Institute, Tula Foundation, Heriot Bay, BC, V0P 1H0, Canada
Department of Biological Sciences, University of Alberta, Edmonton, AB,
T6G 2E9, Canada
Ian Giesbrecht
Hakai Institute, Tula Foundation, Heriot Bay, BC, V0P 1H0, Canada
School of Resource and Environmental Management, Simon Fraser
University, Burnaby, BC, V5A 1S6, Canada
Maartje C. Korver
Hakai Institute, Tula Foundation, Heriot Bay, BC, V0P 1H0, Canada
current address: Department of Geography, McGill University, Montréal, QC, H3A
0B9, Canada
William C. Floyd
Ministry of Forests, Lands and Natural Resource Operations, Nanaimo,
BC, V9T 6E9, Canada
Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
Allison A. Oliver
Hakai Institute, Tula Foundation, Heriot Bay, BC, V0P 1H0, Canada
Department of Biological Sciences, University of Alberta, Edmonton, AB,
T6G 2E9, Canada
current address: Skeena Fisheries Commission, Kispiox, BC, V0J 1Y4, Canada
Kenneth P. Lertzman
Hakai Institute, Tula Foundation, Heriot Bay, BC, V0P 1H0, Canada
School of Resource and Environmental Management, Simon Fraser
University, Burnaby, BC, V5A 1S6, Canada
Related authors
No articles found.
Hayley F. Drapeau, Suzanne E. Tank, Maria A. Cavaco, Jessica A. Serbu, Vincent L. St. Louis, and Maya P. Bhatia
Biogeosciences, 22, 1369–1391, https://doi.org/10.5194/bg-22-1369-2025, https://doi.org/10.5194/bg-22-1369-2025, 2025
Short summary
Short summary
From glacial headwaters to 100 km downstream, we found clear organic matter gradients in Canadian Rocky Mountain rivers. In contrast, microbial communities exhibited overall cohesion, indicating that species dispersal may be an over-riding control on community dynamics in these connected rivers. Identification of glacial-specific microbes suggests that glaciers seed headwater microbial assemblages; these findings show the importance of glacial waters and microbiomes in changing mountain systems.
Krysten Rutherford, Laura Bianucci, and William Floyd
Geosci. Model Dev., 17, 6083–6104, https://doi.org/10.5194/gmd-17-6083-2024, https://doi.org/10.5194/gmd-17-6083-2024, 2024
Short summary
Short summary
Nearshore ocean models often lack complete information about freshwater fluxes due to numerous ungauged rivers and streams. We tested a simple rain-based hydrological model as inputs into an ocean model of Quatsino Sound, Canada, with the aim of improving the representation of the land–ocean connection in the nearshore model. Through multiple tests, we found that the performance of the ocean model improved when providing 60 % or more of the freshwater inputs from the simple runoff model.
Laura Bianucci, Jennifer M. Jackson, Susan E. Allen, Maxim V. Krassovski, Ian J. W. Giesbrecht, and Wendy C. Callendar
Ocean Sci., 20, 293–306, https://doi.org/10.5194/os-20-293-2024, https://doi.org/10.5194/os-20-293-2024, 2024
Short summary
Short summary
While the deeper waters in the coastal ocean show signs of climate-change-induced warming and deoxygenation, some fjords can keep cool and oxygenated waters in the subsurface. We use a model to investigate how these subsurface waters created during winter can linger all summer in Bute Inlet, Canada. We found two main mechanisms that make this fjord retentive: the typical slow subsurface circulation in such a deep, long fjord and the further speed reduction when the cold waters are present.
Maartje C. Korver, Emily Haughton, William C. Floyd, and Ian J. W. Giesbrecht
Earth Syst. Sci. Data, 14, 4231–4250, https://doi.org/10.5194/essd-14-4231-2022, https://doi.org/10.5194/essd-14-4231-2022, 2022
Short summary
Short summary
The central coastline of the northeast Pacific coastal temperate rainforest contains many small streams that are important for the ecology of the region but are sparsely monitored. Here we present the first 5 years (2013–2019) of streamflow and weather data from seven small streams, using novel automated methods with estimations of measurement uncertainties. These observations support regional climate change monitoring and provide a scientific basis for environmental management decisions.
Sarah Shakil, Suzanne E. Tank, Jorien E. Vonk, and Scott Zolkos
Biogeosciences, 19, 1871–1890, https://doi.org/10.5194/bg-19-1871-2022, https://doi.org/10.5194/bg-19-1871-2022, 2022
Short summary
Short summary
Permafrost thaw-driven landslides in the western Arctic are increasing organic carbon delivered to headwaters of drainage networks in the western Canadian Arctic by orders of magnitude. Through a series of laboratory experiments, we show that less than 10 % of this organic carbon is likely to be mineralized to greenhouse gases during transport in these networks. Rather most of the organic carbon is likely destined for burial and sequestration for centuries to millennia.
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie S. Euskirchen, Sarah A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen Manies, A. David McGuire, Susan M. Natali, Jonathan A. O'Donnell, Frans-Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire Treat, Ruth K. Varner, Tarmo Virtanen, Rebecca K. Warren, and Jennifer D. Watts
Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, https://doi.org/10.5194/essd-13-5127-2021, 2021
Short summary
Short summary
Wetlands, lakes, and rivers are important sources of the greenhouse gas methane to the atmosphere. To understand current and future methane emissions from northern regions, we need maps that show the extent and distribution of specific types of wetlands, lakes, and rivers. The Boreal–Arctic Wetland and Lake Dataset (BAWLD) provides maps of five wetland types, seven lake types, and three river types for northern regions and will improve our ability to predict future methane emissions.
Steven V. Kokelj, Justin Kokoszka, Jurjen van der Sluijs, Ashley C. A. Rudy, Jon Tunnicliffe, Sarah Shakil, Suzanne E. Tank, and Scott Zolkos
The Cryosphere, 15, 3059–3081, https://doi.org/10.5194/tc-15-3059-2021, https://doi.org/10.5194/tc-15-3059-2021, 2021
Short summary
Short summary
Climate-driven landslides are transforming glacially conditioned permafrost terrain, coupling slopes with aquatic systems, and triggering a cascade of downstream effects. Nonlinear intensification of thawing slopes is primarily affecting headwater systems where slope sediment yields overwhelm stream transport capacity. The propagation of effects across watershed scales indicates that western Arctic Canada will be an interconnected hotspot of thaw-driven change through the coming millennia.
Scott Zolkos, Suzanne E. Tank, Robert G. Striegl, Steven V. Kokelj, Justin Kokoszka, Cristian Estop-Aragonés, and David Olefeldt
Biogeosciences, 17, 5163–5182, https://doi.org/10.5194/bg-17-5163-2020, https://doi.org/10.5194/bg-17-5163-2020, 2020
Short summary
Short summary
High-latitude warming thaws permafrost, exposing minerals to weathering and fluvial transport. We studied the effects of abrupt thaw and associated weathering on carbon cycling in western Canada. Permafrost collapse affected < 1 % of the landscape yet enabled carbonate weathering associated with CO2 degassing in headwaters and increased bicarbonate export across watershed scales. Weathering may become a driver of carbon cycling in ice- and mineral-rich permafrost terrain across the Arctic.
Cited articles
Alaback, P. B.: Biodiversity Patterns in Relation to Climate: The Coastal
Temperate Rainforests of North America, in: High-Latitude Rainforests and
Associated Ecosystems of the West Coast of the Americas: Climate, Hydrology,
Ecology, and Conservation, edited by: Lawford, R. G., Fuentes, E., and
Alaback, P. B., Springer New York, New York, USA, 105–133, 1996.
Alvarez-Cobelas, M., Angeler, D. G., and Sánchez-Carrillo, S.: Export of
nitrogen from catchments: A worldwide analysis, Environ. Pollut., 156,
261–269, https://doi.org/10.1016/j.envpol.2008.02.016, 2008.
Analytical Methods Committee: What should be done with results below the
detection limit? Mentioning the unmentionable, AMC Technical Brief, Royal
Society of Chemistry, available at:
https://www.rsc.org/images/results-below-detection-limit-technical-brief-5_tcm18-214854.pdf (last access: 17 January 2021), London, UK, 2001.
Arimitsu, M. L., Hobson, K. A., Webber, D. A. N., Piatt, J. F., Hood, E. W.,
and Fellman, J. B.: Tracing biogeochemical subsidies from glacier runoff
into Alaska's coastal marine food webs, Global Change Biol., 24, 387–398,
https://doi.org/10.1111/gcb.13875, 2018.
Batchelli, S., Muller, F. L. L., Chang, K.-C., and Lee, C.-L.: Evidence for
Strong but Dynamic Iron-Humic Colloidal Associations in Humic-Rich Coastal
Waters, Environ. Sci. Technol., 44, 8485–8490,
https://doi.org/10.1021/es101081c, 2010.
Bates, D., Maechler, M., Bolker, B., and Walker, S.: Fitting Linear
Mixed-Effects Models Using lme4, J. Stat. Softw., 67, 1–48,
https://doi.org/10.18637/jss.v067.i01, 2015.
Bauer, J. E., Cai, W.-J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S.,
and Regnier, P. A. G.: The changing carbon cycle of the coastal ocean,
Nature, 504, 61–70, https://doi.org/10.1038/nature12857, 2013.
Benitez-Nelson, C. R.: The biogeochemical cycling of phosphorus in marine
systems, Earth-Sci. Rev., 51, 109–135,
https://doi.org/10.1016/S0012-8252(00)00018-0, 2000.
Bidlack, A. L., Bisbing, S. M., Buma, B. J., Diefenderfer, H. L., Fellman,
J. B., Floyd, W. C., Giesbrecht, I., Lally, A., Lertzman, K. P., Perakis, S.
S., Butman, D. E., D'Amore, D. V., Fleming, S. W., Hood, E. W., Hunt, B. P.
V., Kiffney, P. M., McNicol, G., Menounos, B., and Tank, S. E.:
Climate-Mediated Changes to Linked Terrestrial and Marine Ecosystems across
the Northeast Pacific Coastal Temperate Rainforest Margin, BioScience, biaa171,
https://doi.org/10.1093/biosci/biaa171, 2021.
Boiteau, R. M., Till, C. P., Coale, T. H., Fitzsimmons, J. N., Bruland, K.
W., and Repeta, D. J.: Patterns of iron and siderophore distributions across
the California Current System, Limnol. Oceanogr., 64, 376–389,
https://doi.org/10.1002/lno.11046, 2019.
Bouwman, A. F., Bierkens, M. F. P., Griffioen, J., Hefting, M. M., Middelburg, J. J., Middelkoop, H., and Slomp, C. P.: Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards integration of ecological and biogeochemical models, Biogeosciences, 10, 1–22, https://doi.org/10.5194/bg-10-1-2013, 2013.
Boyer, E. W., Hornberger, G. M., Bencala, K. E., and McKnight, D. M.:
Response characteristics of DOC flushing in an alpine catchment, Hydrol.
Process., 11, 1635–1647,
https://doi.org/10.1002/(SICI)1099-1085(19971015)11:12<1635::AID-HYP494>3.0.CO;2-H, 1997.
Brigode, P., Mićović, Z., Bernardara, P., Paquet, E., Garavaglia, F., Gailhard, J., and Ribstein, P.: Linking ENSO and heavy rainfall events over coastal British Columbia through a weather pattern classification, Hydrol. Earth Syst. Sci., 17, 1455–1473, https://doi.org/10.5194/hess-17-1455-2013, 2013.
Bruland, K. W., Rue, E. L., and Smith, G. J.: Iron and macronutrients in
California coastal upwelling regimes: Implications for diatom blooms,
Limnol. Oceanogr., 46, 1661–1674, https://doi.org/10.4319/lo.2001.46.7.1661,
2001.
Brzezinski, M. A.: The ratio of marine diatoms: Interspecific
variability and the effect of some environmental variables, J. Phycol., 21,
347–357, https://doi.org/10.1111/j.0022-3646.1985.00347.x, 1985.
Chase, Z., Hales, B., Cowles, T., Schwartz, R., and van Geen, A.:
Distribution and variability of iron input to Oregon coastal waters during
the upwelling season, J. Geophys. Res.-Oceans, 110, C10S12,
https://doi.org/10.1029/2004JC002590, 2005.
Climate Prediction Center: Cold & Warm Episodes by Season, Climate
Prediction Center, NOAA/National Weather Service, Online, 2019.
Cuevas, L. A., Tapia, F. J., Iriarte, J. L., González, H. E., Silva, N.,
and Vargas, C. A.: Interplay between freshwater discharge and oceanic waters
modulates phytoplankton size-structure in fjords and channel systems of the
Chilean Patagonia, Prog. Oceanogr., 173, 103–113,
https://doi.org/10.1016/j.pocean.2019.02.012, 2019.
Cullen, J. T., Chong, M., and Ianson, D.: British Columbian continental
shelf as a source of dissolved iron to the subarctic northeast Pacific
Ocean, Global Biogeochem. Cy., 23, GB4012,
https://doi.org/10.1029/2008GB003326, 2009.
De Baar, H. J. W. and De Jong, J. T. M.: Distributions, sources and sinks
of iron in seawater, in: The Biogeochemistry of Iron in Seawater, edited by:
Turner, D. R. and Hunter, K. A., IUPAC Series on Analytical and Physical
Chemistry of Environmental Systems, J. Wiley, Chichester; Rexdale, Ont., 123–253, 2001.
DellaSala, D. A.: Temperate and Boreal Rainforests of the World: Ecology and
Conservation, Island Press/Center for Resource Economics, Washington D.C., USA, 2011.
Diaz, F. and Raimbault, P.: Nitrogen regeneration and dissolved organic
nitrogen release during spring in a NW Mediterranean coastal zone (Gulf of
Lions): implications for the estimation of new production,
Mar. Ecol. Prog. Ser., 197, 51–65, https://doi.org/10.3354/meps197051, 2000.
Dürr, H. H., Meybeck, M., Hartmann, J., Laruelle, G. G., and Roubeix, V.: Global spatial distribution of natural riverine silica inputs to the coastal zone, Biogeosciences, 8, 597–620, https://doi.org/10.5194/bg-8-597-2011, 2011.
Eamer, J. and Shugar, D. H.: Geomorphology – Calvert Island, Hakai
Institute, Victoria, British Columbia, Canada, 2015.
Ecotrust, Pacific GIS, and Conservation International: Original
distribution of the Coastal Temperate Rain Forest, in: The Rainforests of Home: An Atlas of People and Place, Interrain, Portland, Oregon, USA, 1995.
Edwards, R. T., D'Amore, D. V., Norberg, E., and Biles, F.: Riparian
Ecology, Climate Change, and Management in North Pacific Coastal
Rainforests, in: North Pacific Temperate Rainforests: Ecology and
Conservation, edited by: Orians, G. H., and Schoen, J. W., Audubon Alaska,
Anchorage, Alaska, USA, 43–72, 2013.
Edwards, T. K. and Glysson, G. D.: Field methods for measurement of fluvial
sediment, in: Techniques of Water-Resources Investigations of the U.S.
Geological Survey, Applications of Hydraulics, U.S. Geological
Survey, Reston, Virginia, USA, 1999.
Eppley, R. W. and Peterson, B. J.: Particulate organic matter flux and
planktonic new production in the deep ocean, Nature, 282, 677–680,
https://doi.org/10.1038/282677a0, 1979.
Fellman, J. B., Hood, E., D'Amore, D. V., Edwards, R. T., and White, D.:
Seasonal changes in the chemical quality and biodegradability of dissolved
organic matter exported from soils to streams in coastal temperate
rainforest watersheds, Biogeochemistry, 95, 277–293,
https://doi.org/10.1007/s10533-009-9336-6, 2009a.
Fellman, J. B., Hood, E., Edwards, R. T., and D'Amore, D. V.: Changes in the
concentration, biodegradability, and fluorescent properties of dissolved
organic matter during stormflows in coastal temperate watersheds, J.
Geophys. Res.-Biogeo., 114, G01021, https://doi.org/10.1029/2008JG000790, 2009b.
Fellman, J. B., Hood, E., Edwards, R. T., and Jones, J. B.: Uptake of
Allochthonous Dissolved Organic Matter from Soil and Salmon in Coastal
Temperate Rainforest Streams, Ecosystems, 12, 747–759, https://doi.org/10.1007/s10021-009-9254-4, 2009c.
Fellman, J. B., Spencer, R. G. M., Hernes, P. J., Edwards, R. T., D'Amore,
D. V., and Hood, E.: The impact of glacier runoff on the biodegradability
and biochemical composition of terrigenous dissolved organic matter in
near-shore marine ecosystems, Mar. Chem., 121, 112–122,
https://doi.org/10.1016/j.marchem.2010.03.009, 2010.
Fellman, J. B., Hood, E., D'Amore, D. V., and Edwards, R. T.: Streamflow
variability controls N and P export and speciation from Alaskan coastal
temperate rainforest watersheds, Biogeochemistry, 152, 253–270, https://doi.org/10.1007/s10533-020-00752-w, 2021.
Volume: 152
Page numbers:
Fleming, S. W., Hood, E., Dahlke, H. E., and O'Neel, S.: Seasonal flows of
international British Columbia-Alaska rivers: The nonlinear influence of
ocean-atmosphere circulation patterns, Adv. Water Resour., 87, 42–55,
https://doi.org/10.1016/j.advwatres.2015.10.007, 2016.
Giesbrecht, I., Floyd, W. C., Korver, M. C., Hunt, B. P. V., Lertzman, K.
P., Oliver, A. A., and Tank, S. E.: Monitoring pluvial watershed dynamics on
the Central Coast (Calvert Island): Sensor and sampling data from 2013 to
2015, in: State of the Physical, Biological and Selected Fishery Resources of Pacific Canadian Marine Ecosystems in 2015 ,edited by: Chandler, P. C., King, S. A., and Perry, R. I., Hakai Institute, Dept. Fisheries and Oceans Canada, Sidney, British Columbia, Canada, Can. Tech. Rep. Fish. Aquat. Sci. No. 3179, 214–217, available at: http://waves-vagues.dfo-mpo.gc.ca/Library/365564.pdf (last access: 25 May 2020), 2016.
Giesbrecht, I., Floyd, W. C., Tank, S. E., Lertzman, K. P., Hunt, B. P. V.,
Korver, M. C., Oliver, A. A., Brunsting, R., Sanborn, P., Gonzalez Arriola,
S. G., Frazer, G. F., Hateley, S., McPhail, J., Owen, C., Butler, S., Fedje,
B., Myers, E., Quayle, L., Haughton, E., Desmarais, I., White, R.,
Levy-Booth, D. J., Kellogg, C. T. E., Jackson, J. M., St. Pierre, K. A., Mohn, W. W., Hallam, S. J., and Del Bel Belluz, J.: The Kwakshua Watersheds Observatory, Central Coast of British Columbia, Canada, submitted to
Hydrol. Process., in press., 2021.
Goldman, J. C., Caron, D. A., and Dennett, M. R.: Regulation of gross growth
efficiency and ammonium regeneration in bacteria by substrate C:N ratio, Limnol. Oceanogr., 32, 1239–1252, https://doi.org/10.4319/lo.1987.32.6.1239,
1987.
Goñi, M. A., Hatten, J. A., Wheatcroft, R. A., and Borgeld, J. C.:
Particulate organic matter export by two contrasting small mountainous
rivers from the Pacific Northwest, USA, J. Geophys. Res.-Biogeo., 118,
112–134, https://doi.org/10.1002/jgrg.20024, 2013.
Gonzalez Arriola, S., Frazer, G. W., and Giesbrecht, I. J. W.: LiDAR-derived
watersheds and their metrics for Calvert Island, Hakai Institute Data Package, available at: https://doi.org/10.21966/1.15311, 2015.
Harding, J. M. S. and Reynolds, J. D.: From earth and ocean: investigating
the importance of cross-ecosystem resource linkages to a mobile estuarine
consumer, Ecosphere, 5, 54, https://doi.org/10.1890/ES14-00029.1, 2014.
Hartmann, J. and Moosdorf, N.: Global Lithological Map Database v1.0
(gridded to 0.5∞ spatial resolution), in: Supplement to: Hartmann,
J. and Moosdorf, N. (2012): The new global lithological map database GLiM:
A representation of rock properties at the Earth surface, Geochem. Geophy. Geosy., 13, Q12004, https://doi.org/10.1029/2012GC004370, PANGAEA, 2012.
Hedges, J. I., Keil, R. G., and Benner, R.: What happens to terrestrial
organic matter in the ocean?, Org. Geochem., 27, 195–212,
https://doi.org/10.1016/S0146-6380(97)00066-1, 1997.
Helsel, D. R.: Summing Nondetects: Incorporating Low-Level Contaminants in
Risk Assessment, Integr. Environ. Asses., 6,
361–366, https://doi.org/10.1002/IEAM.31, 2009.
Herzog, S. D., Gentile, L., Olsson, U., Persson, P., and Kritzberg, E. S.:
Characterization of iron and organic carbon colloids in boreal rivers and
their fate at high salinity, J. Geophys. Res.-Biogeo., 125, e2019JG005517,
https://doi.org/10.1029/2019JG005517, 2020a.
Herzog, S. D., Persson, P., Kvashnina, K., and Kritzberg, E. S.: Organic iron complexes enhance iron transport capacity along estuarine salinity gradients of Baltic estuaries, Biogeosciences, 17, 331–344, https://doi.org/10.5194/bg-17-331-2020, 2020b.
Hitchcock, J. N., Mitrovic, S. M., Hadwen, W. L., Roelke, D. L., Growns, I.
O., and Rohlfs, A.-M.: Terrestrial dissolved organic carbon subsidizes
estuarine zooplankton: An in situ mesocosm study, Limnol. Oceanogr., 61,
254–267, https://doi.org/10.1002/lno.10207, 2016.
Ho, T.-Y., Quigg, A., Finkel, Z. V., Milligan, A. J., Wyman, K., Falkowski,
P. G., and Morel, F. M. M.: The elemental composition of some marine
phytoplankton, J. Phycol., 39, 1145–1159,
https://doi.org/10.1111/j.0022-3646.2003.03-090.x, 2003.
Hoffman, J. C., Bronk, D. A., and Olney, J. E.: Organic Matter Sources
Supporting Lower Food Web Production in the Tidal Freshwater Portion of the
York River Estuary, Virginia, Estuar. Coast., 31, 898–911,
https://doi.org/10.1007/s12237-008-9073-4, 2008.
Hood, E. and Berner, L.: Effects of changing glacial coverage on the
physical and biogeochemical properties of coastal streams in southeastern
Alaska, J. Geophys. Res.-Biogeo., 114, G03001, https://doi.org/10.1029/2009JG000971, 2009.
Hood, E., Gooseff, M. N., and Johnson, S. L.: Changes in the character of
stream water dissolved organic carbon during flushing in three small
watersheds, Oregon, J. Geophys. Res.-Biogeo., 111, G01007,
https://doi.org/10.1029/2005JG000082, 2006.
Hood, E., Fellman, J., and Edwards, R. T.: Salmon influences on dissolved
organic matter in a coastal temperate brownwater stream: An application of
fluorescence spectroscopy, Limnol. Oceanogr., 52, 1580–1587,
https://doi.org/10.4319/lo.2007.52.4.1580, 2007.
Hood, E., Fellman, J., Spencer, R. G. M., Hernes, P. J., Edwards, R.,
D'Amore, D., and Scott, D.: Glaciers as a source of ancient and labile
organic matter to the marine environment, Nature, 462, 1044–1047,
https://doi.org/10.1038/nature08580, 2009.
Hunt, B. P. V., Jackson, J. M., Del Bel Belluz, J., and Barrette, J.: Hakai
Oceanography Program: British Columbia Central Coast Time Series
(2012–2017), in: State of the
Physical, Biological and Selected Fishery Resources of Pacific Canadian
Marine Ecosystems in 2017, edited by: Chandler, P. C., King, S. A., and Boldt, J., Government report available at: https://dfo-mpo.gc.ca/oceans/publications/soto-rceo/2017/index-eng.html
(last access: 25 May 2020), Nanaimo, BC, Canada by Department of Fisheries and Oceans Canada, 33–37, 2018.
Isles, P. D. F.: The misuse of ratios in ecological stoichiometry, Ecology,
101, e03153, https://doi.org/10.1002/ecy.3153, 2020.
Johnson, K. S., Chavez, F. P., and Friederich, G. E.: Continental-shelf
sediment as a primary source of iron for coastal phytoplankton, Nature, 398,
697–700, https://doi.org/10.1038/19511, 1999.
Johnson, W. K., Miller, L. A., Sutherland, N. E., and Wong, C. S.: Iron
transport by mesoscale Haida eddies in the Gulf of Alaska, Deep-Sea Res. Pt. II, 52, 933–953, https://doi.org/10.1016/j.dsr2.2004.08.017, 2005.
Jones, D. L.: Organic acids in the rhizosphere – a critical review,
Plant Soil, 205, 25–44, https://doi.org/10.1023/A:1004356007312, 1998.
Keller, C. K.: Carbon exports from terrestrial ecosystems: A critical-zone
framework, Ecosystems, 22, 1691–1705, https://doi.org/10.1007/s10021-019-00375-9, 2019.
Kiffney, P. M., Bull, J. P., and Feller, M. C.: Climatic and hydrologic
variability in a coastal watershed of southwestern British Columbia, J. Am. Water Resour. As., 38, 1437–1451,
https://doi.org/10.1111/j.1752-1688.2002.tb04357.x, 2002.
Klawonn, I., Bonaglia, S., Whitehouse, M. J., Littmann, S., Tienken, D.,
Kuypers, M. M. M., Brüchert, V., and Ploug, H.: Untangling hidden
nutrient dynamics: rapid ammonium cycling and single-cell ammonium
assimilation in marine plankton communities, ISME J., 13, 1960–1974,
https://doi.org/10.1038/s41396-019-0386-z, 2019.
Körtzinger, A., Koeve, W., Kähler, P., and Mintrop, L.: C:N ratios in the mixed layer during the productive season in the northeast Atlantic Ocean, Deep-Sea Res. Pt. I, 48, 661–688,
https://doi.org/10.1016/S0967-0637(00)00051-0, 2001.
Korver, M. C., Floyd, W. C., and Brunsting, R.: Observed streamflow from
seven small coastal watersheds in British Columbia, Canada, September 2013–April 2019, Version 4.1, Hakai Institute Dataset, available at: https://doi.org/10.21966/zvwf-qn04, 2019a.
Korver, M. C., Giesbrecht, I., Floyd, W. C., Oliver, A. A., and Tank, S. E.:
Stream event biogeochemistry of seven small watersheds at Calvert Island,
British Columbia, Canada, July 2015–November 2018, Version 2, Hakai Institute Dataset, available at: https://doi.org/10.21966/3nm8-av33, 2019b.
Krachler, R., Jirsa, F., and Ayromlou, S.: Factors influencing the dissolved iron input by river water to the open ocean, Biogeosciences, 2, 311–315, https://doi.org/10.5194/bg-2-311-2005, 2005.
Ladd, C., Crawford, W. R., Harpold, C. E., Johnson, W. K., Kachel, N. B.,
Stabeno, P. J., and Whitney, F.: A synoptic survey of young mesoscale eddies
in the Eastern Gulf of Alaska, Deep-Sea Res. Pt. II, 56, 2460–2473,
https://doi.org/10.1016/j.dsr2.2009.02.007, 2009.
Lauderdale, J. M., Braakman, R., Forget, G., Dutkiewicz, S., and Follows, M.
J.: Microbial feedbacks optimize ocean iron availability,
P. Natl. Acad. Sci. USA, 117, 4842–4849, https://doi.org/10.1073/pnas.1917277117, 2020.
Lenth, R. V.: Least-Square Means: The R Package lsmeans, J. Stat. Softw.,
69, 1–33, https://doi.org/10.18637/jss.v069.i01, 2016.
Letscher, R. T., Hansell, D. A., Carlson, C. A., Lumpkin, R., and Knapp, A.
N.: Dissolved organic nitrogen in the global surface ocean: Distribution and
fate, Global Biogeochem. Cy., 27, 141–153,
https://doi.org/10.1029/2012GB004449, 2013.
Ling Ong, H., Swanson, V. E., and Bisque, R. E.: Natural organic acids as
agents of chemical weathering, United States Department of the Interior, United States Geological Survey, Mounds View, Minnesota, USA, 130–137, 1970.
Lorenz, D., Runkel, R., and De Cicco, L.: rloadest: river load estimation,
US Geological Survey, Mounds View, Minnesota, USA, 2015.
MacAdams, J.: Fish forensics: environmental DNA detection of juvenile coho
salmon and resident salmonids in Pacific coastal streams, School of
Environmental Studies, University of Victoria, Victoria, British Columbia, Canada, 79 pp., 2018.
Martin, J. H., Gordon, R. M., Fitzwater, S., and Broenkow, W. W.: Vertex:
phytoplankton/iron studies in the Gulf of Alaska, Deep-Sea Res., 36,
649–680, https://doi.org/10.1016/0198-0149(89)90144-1, 1989.
Martiny, A. C., Pham, C. T. A., Primeau, F. W., Vrugt, J. A., Moore, J. K.,
Levin, S. A., and Lomas, M. W.: Strong latitudinal patterns in the elemental
ratios of marine plankton and organic matter, Nat. Geosci., 6, 279–283, https://doi.org/10.1038/ngeo1757, 2013.
Matsunaga, K., Nishioka, J., Kuma, K., Toya, K., and Suzuki, Y.: Riverine
input of bioavailable iron supporting phytoplankton growth in Kesennuma Bay
(Japan), Water Res., 32, 3436–3442,
https://doi.org/10.1016/S0043-1354(98)00113-4, 1998.
McNicol, G., Bulmer, C., D'Amore, D., Sanborn, P., Saunders, S., Giesbrecht,
I., Arriola, S. G., Bidlack, A., Butman, D., and Buma, B.: Large,
climate-sensitive soil carbon stocks mapped with pedology-informed machine
learning in the North Pacific coastal temperate rainforest, Environ. Res.
Lett., 14, 014004, https://doi.org/10.1088/1748-9326/aaed52, 2019.
Meidinger, D. and Pojar, J.: Ecosystems of British Columbia, B. C. Ministry of Forests Series: Special Report Series 6, Victoria, BC, Canada, 330 pp., 1991.
Meybeck, M.: Carbon, nitrogen, and phosphorus transport by world rivers,
Am. J. Sci., 282, 401–450, 1982.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd,
P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells,
T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Marañón, E.,
Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A.,
Thingstad, T. F., Tsuda, A., and Ulloa, O.: Processes and patterns of
oceanic nutrient limitation, Nat. Geosci., 6, 701–710,
https://doi.org/10.1038/ngeo1765, 2013.
Morrison, J., Foreman, M. G. G., and Masson, D.: A method for estimating
monthly freshwater discharge affecting British Columbia coastal waters,
Atmos. Ocean, 50, 1–8, https://doi.org/10.1080/07055900.2011.637667, 2012.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I – A discussion of principles, J. Hydrol., 10, 282–290,
https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Neal, E. G., Hood, E., and Smikrud, K.: Contribution of glacier runoff to
freshwater discharge into the Gulf of Alaska, Geophys. Res. Lett., 37, L06404, https://doi.org/10.1029/2010GL042385, 2010.
O'Neel, S., Hood, E., Bidlack, A. L., Fleming, S. W., Arimitsu, M. L.,
Arendt, A., Burgess, E., Sergeant, C. J., Beaudreau, A. H., Timm, K.,
Hayward, G. D., Reynolds, J. H., and Pyare, S.: Icefield-to-ocean linkages
across the Northern Pacific coastal temperate rainforest ecosystem,
BioScience, 65, 499–512, https://doi.org/10.1093/biosci/biv027, 2015.
Oliver, A. A., Tank, S. E., Giesbrecht, I., Korver, M. C., Floyd, W. C., Sanborn, P., Bulmer, C., and Lertzman, K. P.: A global hotspot for dissolved organic carbon in hypermaritime watersheds of coastal British Columbia, Biogeosciences, 14, 3743–3762, https://doi.org/10.5194/bg-14-3743-2017, 2017.
Perez, B. C., Day, J. W., Justic, D., Lane, R. R., and Twilley, R. R.:
Nutrient stoichiometry, freshwater residence time, and nutrient retention in
a river-dominated estuary in the Mississippi Delta, Hydrobiologia, 658,
41–54, https://doi.org/10.1007/s10750-010-0472-8, 2011.
Redfield, A. C.: On the proportions of organic derivatives in sea water and
their relation to the composition of plankton, in: James Johnstone Memorial
Volume Lancashire Sea-Fisheries Laboratory, Liverpool Univ. Press,
Liverpool, UK, 176–192, 1934.
Roddick, J. A.: Geology Rivers Inlet (92M) – Queens Sound (102P) Map Areas,
Geological Survey of Canada, Ottawa, ON, Canada, 39 pp., 1996.
Royer, T. C.: Coastal fresh water discharge in the northeast Pacific,
J. Geophys. Res.-Oceans, 87, 2017–2021, https://doi.org/10.1029/JC087iC03p02017, 1982.
Runkel, R.: Revisions to LOADEST, April 2013, USGS, https://water.usgs.gov/software/loadest/doc/loadest_update.pdf (last access: 13 June 2020), 2013.
Runkel, R. L., Crawford, C. G., and Cohn, T. A.: Load estimator (LOADEST): a
FORTRAN program for estimating constituent loads in streams and rivers, in:
USGS Techniques and Methods Book 4, US Geological Survey, Reston,
Virginia, USA, 2004.
Sakamaki, T. and Richardson, J. S.: Effects of small rivers on chemical
properties of sediment and diets for primary consumers in estuarine tidal
flats, Mar. Ecol. Prog. Ser., 360, 13–24,
https://doi.org/10.3354/meps07388, 2008.
Salkfield, T., Walton, A., and Mackenzie, W.: Biogeoclimatic Ecosystem
Classification Map, Ministry of Forests, Lands, Natural Resource Operations
and Rural Development, available at: https://catalogue.data.gov.bc.ca/dataset/bec-map
(last access: 7 August 2020), 2016.
Sanderman, J., Lohse, K. A., Baldock, J. A., and Amundson, R.: Linking soils
and streams: Sources and chemistry of dissolved organic matter in a small
coastal watershed, Water Resour. Res., 45, W03418,
https://doi.org/10.1029/2008wr006977, 2009.
Shiller, V. J.: Spring and summer phytoplankton community dynamics and
comparison of FRRF- and 13C-derived measurements of primary productivity in Rivers Inlet, British Columbia, M.Sc., Faculty of Graduate Studies, University of British Columbia, Vancouver, British Columbia, Canada, 103 pp., 2012.
Stenback, G. A., Crumpton, W. G., Schilling, K. E., and Helmers, M. J.:
Rating curve estimation of nutrient loads in Iowa rivers, J. Hydrol., 396,
158–169, https://doi.org/10.1016/j.jhydrol.2010.11.006, 2011.
Sterner, R. W. and Elser, J. J.: Ecological stoichiometry: the biology of
the elements from molecules to the biosphere, Princeton University Press,
Princeton, New Jersey, USA, 439 pp., 2002.
St. Pierre, K. A., Oliver, A. A., Tank, S. E., Hunt, B. P. V., Giesbrecht,
I., Kellogg, C. T. E., Jackson, J. M., Lertzman, K. P., Floyd, W. C., and
Korver, M. C.: Terrestrial exports of dissolved and particulate organic
carbon affect nearshore ecosystems of the Pacific coastal temperate
rainforest, Limnol. Oceanogr., 65, 2657–2675,
https://doi.org/10.1002/lno.11538, 2020a.
St. Pierre, K. A., Hunt, B. P. V., Tank, S. E., Giesbrecht, I., Floyd, W.
C., Korver, M. C., and Lertzman, K. P.: Nutrient and dissolved organic
carbon in fresh and marine waters of Kwakshua Channel, British Columbia,
Canada, Version 1.0, Hakai Institute Dataset, available at: https://doi.org/10.21966/n0h9-cq15, 2020b.
Strom, S. L., Olson, M. B., Macri, E. L., and Mordy, C. W.: Cross-shelf
gradients in phytoplankton community structure, nutrient utilization, and
growth rate in the coastal Gulf of Alaska, Mar. Ecol. Prog. Ser., 328,
75–92, https://doi.org/10.3354/meps328075, 2006.
Sugai, S. F. and Burrell, D. C.: Transport of Dissolved Organic Carbon,
Nutrients, and Trace Metals from the Wilson and Blossom Rivers to Smeaton
Bay, Southeast Alaska, Can. J. Fish. Aquat. Sci., 41, 180–190,
https://doi.org/10.1139/f84-019, 1984.
Takeda, S.: Influence of iron availability on nutrient consumption ratio of
diatoms in oceanic waters, Nature, 393, 774–777,
https://doi.org/10.1038/31674, 1998.
Tank, S. E., Manizza, M., Holmes, R. M., McClelland, J. W., and Peterson, B.
J.: The Processing and Impact of Dissolved Riverine Nitrogen in the Arctic
Ocean, Estuar. Coast., 35, 401–415,
https://doi.org/10.1007/s12237-011-9417-3, 2012.
Terhaar, J., Lauerwald, R., Regnier, P., Gruber, N., and Bopp, L.: Around
one third of current Arctic Ocean primary production sustained by rivers and
coastal erosion, Nat. Commun., 12, 169,
https://doi.org/10.1038/s41467-020-20470-z, 2021.
Thompson, S. D., Nelson, T. A., Giesbrecht, I., Frazer, G., and Saunders, S.
C.: Data-driven regionalization of forested and non-forested ecosystems in
coastal British Columbia with LiDAR and RapidEye imagery, Appl. Geogr., 69,
35–50, https://doi.org/10.1016/j.apgeog.2016.02.002, 2016.
Thomson, R. E.: Northern Shelf Region, in: Oceanography of the
British Columbia Coast, Canadian Special Publication of Fisheries and
Aquatic Sciences, Department of Fisheries and Oceans, Ottawa, Ontario, Canada, 235–245, 1981.
Thomson, R. E., Heesemann, M., Davis, E. E., and Hourston, R. A. S.:
Continental microseismic intensity delineates oceanic upwelling timing along
the west coast of North America, Geophys. Res. Lett., 41, 6872–6880,
https://doi.org/10.1002/2014GL061241, 2014.
Voss, M. and Hietanen, S.: The depths of nitrogen cycling, Nature, 493,
616–618, https://doi.org/10.1038/493616a, 2013.
Walker, T. W. and Syers, J. K.: The fate of phosphorus during pedogenesis,
Geoderma, 15, 1–19, https://doi.org/10.1016/0016-7061(76)90066-5, 1976.
Wang, H., Yang, Z., Saito, Y., Liu, J. P., and Sun, X.: Interannual and
seasonal variation of the Huanghe (Yellow River) water discharge over the
past 50 years: Connections to impacts from ENSO events and dams,
Global Planet. Change, 50, 212–225,
https://doi.org/10.1016/j.gloplacha.2006.01.005, 2006.
Wang, T., Hamann, A., Spittlehouse, D., and Carroll, C.: Locally Downscaled
and Spatially Customizable Climate Data for Historical and Future Periods
for North America, PLOS ONE, 11, e0156720,
https://doi.org/10.1371/journal.pone.0156720, 2016.
Ward, P. J., Beets, W., Bouwer, L. M., Aerts, J. C. J. H., and Renssen, H.:
Sensitivity of river discharge to ENSO, Geophys. Res. Lett., 37, L12402,
https://doi.org/10.1029/2010GL043215, 2010.
Welti, N., Striebel, M., Ulseth, A. J., Cross, W. F., DeVilbiss, S.,
Glibert, P. M., Guo, L., Hirst, A. G., Hood, J., Kominoski, J. S., MacNeill,
K. L., Mehring, A. S., Welter, J. R., and Hillebrand, H.: Bridging Food
Webs, Ecosystem Metabolism, and Biogeochemistry Using Ecological
Stoichiometry Theory, Front. Microbiol., 8, 1298,
https://doi.org/10.3389/fmicb.2017.01298, 2017.
Wetz, M. S., Hales, B., Chase, Z., Wheeler, P. A., and Whitney, M. M.:
Riverine input of macronutrients, iron, and organic matter to the coastal
ocean off Oregon, USA, during the winter, Limnol. Oceanogr., 51,
2221–2231, https://doi.org/10.4319/lo.2006.51.5.2221, 2006.
Wetzel, R. G.: Limnology, edn. 3, Academic Press, San Diego, California,
USA, 1006 pp., 2001.
Weyhenmeyer, G. A. and Conley, D. J.: Large differences between carbon and
nutrient loss rates along the land to ocean aquatic continuum-implications
for energy:nutrient ratios at downstream sites, Limnol. Oceanogr., 62,
183–193, https://doi.org/10.1002/lno.10589, 2017.
Whitney, F. A. and Welch, D. W.: Impact of the 1997–1998 El Niño and
1999 La Niña on nutrient supply in the Gulf of Alaska, Prog. Oceanogr.,
54, 405–421, https://doi.org/10.1016/S0079-6611(02)00061-7, 2002.
Whitney, F. A., Crawford, W. R., and Harrison, P. J.: Physical processes
that enhance nutrient transport and primary productivity in the coastal and
open ocean of the subarctic NE Pacific, Deep-Sea Res. Pt. II, 52, 681–706,
https://doi.org/10.1016/j.dsr2.2004.12.023, 2005.
Wickham, H., François, R., Henry, L., and Müller, K.: dplyr: A
Grammar of Data Manipulation, 2019.
Wikner, J. and Andersson, A.: Increased freshwater discharge shifts the
trophic balance in the coastal zone of the northern Baltic Sea, Global Change Biol., 18, 2509–2519, https://doi.org/10.1111/j.1365-2486.2012.02718.x, 2012.
Wong, C. S., Yu, Z., Waser, N. A. D., Whitney, F. A., and Johnson, W. K.:
Seasonal changes in the distribution of dissolved organic nitrogen in
coastal and open-ocean waters in the North East Pacific: sources and sinks,
Deep-Sea Res. Pt. II, 49, 5759–5773,
https://doi.org/10.1016/S0967-0645(02)00213-8, 2002.
Xenopoulos, M. A., Downing, J. A., Kumar, M. D., Menden-Deuer, S., and Voss,
M.: Headwaters to oceans: Ecological and biogeochemical contrasts across the
aquatic continuum, Limnol. Oceanogr., 62, 3–14,
https://doi.org/10.1002/lno.10721, 2017.
Short summary
Using 4 years of paired freshwater and marine water chemistry from the Central Coast of British Columbia (Canada), we show that coastal temperate rainforest streams are sources of organic nitrogen, iron, and carbon to the Pacific Ocean but not the inorganic nutrients easily used by marine phytoplankton. This distinction may have important implications for coastal food webs and highlights the need to sample all nutrients in fresh and marine waters year-round to fully understand coastal dynamics.
Using 4 years of paired freshwater and marine water chemistry from the Central Coast of British...
Altmetrics
Final-revised paper
Preprint