Articles | Volume 18, issue 12
https://doi.org/10.5194/bg-18-3637-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-3637-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The impact of the freeze–melt cycle of land-fast ice on the distribution of dissolved organic matter in the Laptev and East Siberian seas (Siberian Arctic)
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Bremerhaven, Germany
Bennet Juhls
Department of Earth Sciences, Institute for Space Sciences, Freie Universität Berlin, Berlin, Germany
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Dorothea Bauch
Leibniz Laboratory for Radiometric Dating and Stable Isotope Research,
University of Kiel CAU, Kiel, Germany
GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany
Markus Janout
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Bremerhaven, Germany
Boris P. Koch
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Bremerhaven, Germany
Faculty 1, University of Applied Sciences Bremerhaven, Bremerhaven, Germany
Birgit Heim
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Related authors
Bennet Juhls, Anne Morgenstern, Jens Hölemann, Antje Eulenburg, Birgit Heim, Frederieke Miesner, Hendrik Grotheer, Gesine Mollenhauer, Hanno Meyer, Ephraim Erkens, Felica Yara Gehde, Sofia Antonova, Sergey Chalov, Maria Tereshina, Oxana Erina, Evgeniya Fingert, Ekaterina Abramova, Tina Sanders, Liudmila Lebedeva, Nikolai Torgovkin, Georgii Maksimov, Vasily Povazhnyi, Rafael Gonçalves-Araujo, Urban Wünsch, Antonina Chetverova, Sophie Opfergelt, and Pier Paul Overduin
Earth Syst. Sci. Data, 17, 1–28, https://doi.org/10.5194/essd-17-1-2025, https://doi.org/10.5194/essd-17-1-2025, 2025
Short summary
Short summary
The Siberian Arctic is warming fast: permafrost is thawing, river chemistry is changing, and coastal ecosystems are affected. We aimed to understand changes in the Lena River, a major Arctic river flowing to the Arctic Ocean, by collecting 4.5 years of detailed water data, including temperature and carbon and nutrient contents. This dataset records current conditions and helps us to detect future changes. Explore it at https://doi.org/10.1594/PANGAEA.913197 and https://lena-monitoring.awi.de/.
Jacob Schladebach, Birgit Heim, Léa Enguehard, Mareike Wieczorek, Jakob Broers, Robert Jackisch, Josias Gloy, Kunyan Hao, James Tretton, Anna Gorshunova, and Stefan Kruse
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-340, https://doi.org/10.5194/essd-2025-340, 2025
Preprint under review for ESSD
Short summary
Short summary
BorFIT is a novel training dataset for LiDAR point cloud segmentation and tree species detection in boreal forests. Comprising 384 plots across Siberia, Canada, and Alaska, it features 16,530 manually segmented trees of 12 species. BorFIT supports AI applications for analyzing species distribution, stand structure, and boreal forest response to climate change.
Chenzhi Li, Anne Dallmeyer, Jian Ni, Manuel Chevalier, Matteo Willeit, Andrei A. Andreev, Xianyong Cao, Laura Schild, Birgit Heim, Mareike Wieczorek, and Ulrike Herzschuh
Clim. Past, 21, 1001–1024, https://doi.org/10.5194/cp-21-1001-2025, https://doi.org/10.5194/cp-21-1001-2025, 2025
Short summary
Short summary
We present global megabiome dynamics and distributions derived from pollen-based reconstructions over the last 21 000 years, which are suitable for the evaluation of Earth-system-model-based paleo-megabiome simulations. We identified strong deviations between pollen- and model-derived megabiome distributions in the circum-Arctic and Tibetan Plateau areas during the Last Glacial Maximum and early deglaciation and in northern Africa and the Mediterranean region during the Holocene.
Simeon Lisovski, Alexandra Runge, Iuliia Shevtsova, Nele Landgraf, Anne Morgenstern, Ronald Reagan Okoth, Matthias Fuchs, Nikolay Lashchinskiy, Carl Stadie, Alison Beamish, Ulrike Herzschuh, Guido Grosse, and Birgit Heim
Earth Syst. Sci. Data, 17, 1707–1730, https://doi.org/10.5194/essd-17-1707-2025, https://doi.org/10.5194/essd-17-1707-2025, 2025
Short summary
Short summary
The Lena Delta is the largest river delta in the Arctic and represents a biodiversity hotspot. Here, we describe multiple field datasets and a detailed habitat classification map for the Lena Delta. We present context and methods of these openly available datasets and show how they can improve our understanding of the rapidly changing Arctic tundra system.
Vår Dundas, Kjersti Daae, Elin Darelius, Markus Janout, Jean-Baptiste Sallée, and Svein Østerhus
EGUsphere, https://doi.org/10.5194/egusphere-2025-1537, https://doi.org/10.5194/egusphere-2025-1537, 2025
Short summary
Short summary
Moored observations confirm that strong westward ocean surface stress events ("storms'') can increase the speed of the Antarctic Slope Current and the circulation in the Filchner Trough region. Roughly one-third of the identified storm events cause an increased southward current speed on the shelf. This enhances the southward transport of heat already present on the shelf and the likelihood that this heat reaches the ice shelf front before it is lost to the atmosphere during winter.
Ole Pinner, Friederike Pollmann, Markus Janout, Gunnar Voet, and Torsten Kanzow
Ocean Sci., 21, 701–726, https://doi.org/10.5194/os-21-701-2025, https://doi.org/10.5194/os-21-701-2025, 2025
Short summary
Short summary
The Weddell Sea Bottom Water gravity current transports dense water from the continental shelf to the deep sea and is crucial for the formation of new deep-sea water. Building on vertical profiles and time series measured in the northwestern Weddell Sea, we apply three methods to distinguish turbulence caused by internal waves from that by other sources. We find that in the upper part of the gravity current, internal waves are important for the mixing of less dense water down into the current.
Shenjie Zhou, Pierre Dutrieux, Claudia F. Giulivi, Adrian Jenkins, Alessandro Silvano, Christopher Auckland, E. Povl Abrahamsen, Michael P. Meredith, Irena Vaňková, Keith W. Nicholls, Peter E. D. Davis, Svein Østerhus, Arnold L. Gordon, Christopher J. Zappa, Tiago S. Dotto, Theodore A. Scambos, Kathyrn L. Gunn, Stephen R. Rintoul, Shigeru Aoki, Craig Stevens, Chengyan Liu, Sukyoung Yun, Tae-Wan Kim, Won Sang Lee, Markus Janout, Tore Hattermann, Julius Lauber, Elin Darelius, Anna Wåhlin, Leo Middleton, Pasquale Castagno, Giorgio Budillon, Karen J. Heywood, Jennifer Graham, Stephen Dye, Daisuke Hirano, and Una Kim Miller
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-54, https://doi.org/10.5194/essd-2025-54, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
We created the first standardised dataset of in-situ ocean measurements time series from around Antarctica collected since 1970s. This includes temperature, salinity, pressure, and currents recorded by instruments deployed in icy, challenging conditions. Our analysis highlights the dominance of tidal currents and separates these from other patterns to study regional energy distribution. This unique dataset offers a foundation for future research on Antarctic ocean dynamics and ice interactions.
Bennet Juhls, Anne Morgenstern, Jens Hölemann, Antje Eulenburg, Birgit Heim, Frederieke Miesner, Hendrik Grotheer, Gesine Mollenhauer, Hanno Meyer, Ephraim Erkens, Felica Yara Gehde, Sofia Antonova, Sergey Chalov, Maria Tereshina, Oxana Erina, Evgeniya Fingert, Ekaterina Abramova, Tina Sanders, Liudmila Lebedeva, Nikolai Torgovkin, Georgii Maksimov, Vasily Povazhnyi, Rafael Gonçalves-Araujo, Urban Wünsch, Antonina Chetverova, Sophie Opfergelt, and Pier Paul Overduin
Earth Syst. Sci. Data, 17, 1–28, https://doi.org/10.5194/essd-17-1-2025, https://doi.org/10.5194/essd-17-1-2025, 2025
Short summary
Short summary
The Siberian Arctic is warming fast: permafrost is thawing, river chemistry is changing, and coastal ecosystems are affected. We aimed to understand changes in the Lena River, a major Arctic river flowing to the Arctic Ocean, by collecting 4.5 years of detailed water data, including temperature and carbon and nutrient contents. This dataset records current conditions and helps us to detect future changes. Explore it at https://doi.org/10.1594/PANGAEA.913197 and https://lena-monitoring.awi.de/.
Ivan Kuznetsov, Benjamin Rabe, Alexey Androsov, Ying-Chih Fang, Mario Hoppmann, Alejandra Quintanilla-Zurita, Sven Harig, Sandra Tippenhauer, Kirstin Schulz, Volker Mohrholz, Ilker Fer, Vera Fofonova, and Markus Janout
Ocean Sci., 20, 759–777, https://doi.org/10.5194/os-20-759-2024, https://doi.org/10.5194/os-20-759-2024, 2024
Short summary
Short summary
Our research introduces a tool for dynamically mapping the Arctic Ocean using data from the MOSAiC experiment. Incorporating extensive data into a model clarifies the ocean's structure and movement. Our findings on temperature, salinity, and currents reveal how water layers mix and identify areas of intense water movement. This enhances understanding of Arctic Ocean dynamics and supports climate impact studies. Our work is vital for comprehending this key region in global climate science.
Annett Bartsch, Aleksandra Efimova, Barbara Widhalm, Xaver Muri, Clemens von Baeckmann, Helena Bergstedt, Ksenia Ermokhina, Gustaf Hugelius, Birgit Heim, and Marina Leibman
Hydrol. Earth Syst. Sci., 28, 2421–2481, https://doi.org/10.5194/hess-28-2421-2024, https://doi.org/10.5194/hess-28-2421-2024, 2024
Short summary
Short summary
Wetness gradients and landcover diversity for the entire Arctic tundra have been assessed using a novel satellite-data-based map. Patterns of lakes, wetlands, general soil moisture conditions and vegetation physiognomy are represented at 10 m. About 40 % of the area north of the treeline falls into three units of dry types, with limited shrub growth. Wetter regions have higher landcover diversity than drier regions.
Angelika Graiff, Matthias Braun, Amelie Driemel, Jörg Ebbing, Hans-Peter Grossart, Tilmann Harder, Joseph I. Hoffman, Boris Koch, Florian Leese, Judith Piontek, Mirko Scheinert, Petra Quillfeldt, Jonas Zimmermann, and Ulf Karsten
Polarforschung, 91, 45–57, https://doi.org/10.5194/polf-91-45-2023, https://doi.org/10.5194/polf-91-45-2023, 2023
Short summary
Short summary
There are many approaches to better understanding Antarctic processes that generate very large data sets (
Antarctic big data). For these large data sets there is a pressing need for improved data acquisition, curation, integration, service, and application to support fundamental scientific research, and this article describes and evaluates the current status of big data in various Antarctic scientific disciplines, identifies current gaps, and provides solutions to fill these gaps.
Elin Darelius, Vår Dundas, Markus Janout, and Sandra Tippenhauer
Ocean Sci., 19, 671–683, https://doi.org/10.5194/os-19-671-2023, https://doi.org/10.5194/os-19-671-2023, 2023
Short summary
Short summary
Antarctica's ice shelves are melting from below as ocean currents bring warm water into the ice shelf cavities. The melt rates of the large Filchner–Ronne Ice Shelf in the southern Weddell Sea are currently low, as the water in the cavity is cold. Here, we present data from a scientific cruise to the region in 2021 and show that the warmest water at the upper part of the continental slope is now about 0.1°C warmer than in previous observations, while the surface water is fresher than before.
Martine Lizotte, Bennet Juhls, Atsushi Matsuoka, Philippe Massicotte, Gaëlle Mével, David Obie James Anikina, Sofia Antonova, Guislain Bécu, Marine Béguin, Simon Bélanger, Thomas Bossé-Demers, Lisa Bröder, Flavienne Bruyant, Gwénaëlle Chaillou, Jérôme Comte, Raoul-Marie Couture, Emmanuel Devred, Gabrièle Deslongchamps, Thibaud Dezutter, Miles Dillon, David Doxaran, Aude Flamand, Frank Fell, Joannie Ferland, Marie-Hélène Forget, Michael Fritz, Thomas J. Gordon, Caroline Guilmette, Andrea Hilborn, Rachel Hussherr, Charlotte Irish, Fabien Joux, Lauren Kipp, Audrey Laberge-Carignan, Hugues Lantuit, Edouard Leymarie, Antonio Mannino, Juliette Maury, Paul Overduin, Laurent Oziel, Colin Stedmon, Crystal Thomas, Lucas Tisserand, Jean-Éric Tremblay, Jorien Vonk, Dustin Whalen, and Marcel Babin
Earth Syst. Sci. Data, 15, 1617–1653, https://doi.org/10.5194/essd-15-1617-2023, https://doi.org/10.5194/essd-15-1617-2023, 2023
Short summary
Short summary
Permafrost thaw in the Mackenzie Delta region results in the release of organic matter into the coastal marine environment. What happens to this carbon-rich organic matter as it transits along the fresh to salty aquatic environments is still underdocumented. Four expeditions were conducted from April to September 2019 in the coastal area of the Beaufort Sea to study the fate of organic matter. This paper describes a rich set of data characterizing the composition and sources of organic matter.
Ngai-Ham Chan, Moritz Langer, Bennet Juhls, Tabea Rettelbach, Paul Overduin, Kimberly Huppert, and Jean Braun
Earth Surf. Dynam., 11, 259–285, https://doi.org/10.5194/esurf-11-259-2023, https://doi.org/10.5194/esurf-11-259-2023, 2023
Short summary
Short summary
Arctic river deltas influence how nutrients and soil organic carbon, carried by sediments from the Arctic landscape, are retained or released into the Arctic Ocean. Under climate change, the deltas themselves and their ecosystems are becoming more vulnerable. We build upon previous models to reproduce for the first time an important feature ubiquitous to Arctic deltas and simulate its future under climate warming. This can impact the future of Arctic deltas and the carbon release they moderate.
Olga Ogneva, Gesine Mollenhauer, Bennet Juhls, Tina Sanders, Juri Palmtag, Matthias Fuchs, Hendrik Grotheer, Paul J. Mann, and Jens Strauss
Biogeosciences, 20, 1423–1441, https://doi.org/10.5194/bg-20-1423-2023, https://doi.org/10.5194/bg-20-1423-2023, 2023
Short summary
Short summary
Arctic warming accelerates permafrost thaw and release of terrestrial organic matter (OM) via rivers to the Arctic Ocean. We compared particulate organic carbon (POC), total suspended matter, and C isotopes (δ13C and Δ14C of POC) in the Lena delta and Lena River along a ~1600 km transect. We show that the Lena delta, as an interface between the Lena River and the Arctic Ocean, plays a crucial role in determining the qualitative and quantitative composition of OM discharged into the Arctic Ocean.
Julian Gutt, Stefanie Arndt, David Keith Alan Barnes, Horst Bornemann, Thomas Brey, Olaf Eisen, Hauke Flores, Huw Griffiths, Christian Haas, Stefan Hain, Tore Hattermann, Christoph Held, Mario Hoppema, Enrique Isla, Markus Janout, Céline Le Bohec, Heike Link, Felix Christopher Mark, Sebastien Moreau, Scarlett Trimborn, Ilse van Opzeeland, Hans-Otto Pörtner, Fokje Schaafsma, Katharina Teschke, Sandra Tippenhauer, Anton Van de Putte, Mia Wege, Daniel Zitterbart, and Dieter Piepenburg
Biogeosciences, 19, 5313–5342, https://doi.org/10.5194/bg-19-5313-2022, https://doi.org/10.5194/bg-19-5313-2022, 2022
Short summary
Short summary
Long-term ecological observations are key to assess, understand and predict impacts of environmental change on biotas. We present a multidisciplinary framework for such largely lacking investigations in the East Antarctic Southern Ocean, combined with case studies, experimental and modelling work. As climate change is still minor here but is projected to start soon, the timely implementation of this framework provides the unique opportunity to document its ecological impacts from the very onset.
Femke van Geffen, Birgit Heim, Frederic Brieger, Rongwei Geng, Iuliia A. Shevtsova, Luise Schulte, Simone M. Stuenzi, Nadine Bernhardt, Elena I. Troeva, Luidmila A. Pestryakova, Evgenii S. Zakharov, Bringfried Pflug, Ulrike Herzschuh, and Stefan Kruse
Earth Syst. Sci. Data, 14, 4967–4994, https://doi.org/10.5194/essd-14-4967-2022, https://doi.org/10.5194/essd-14-4967-2022, 2022
Short summary
Short summary
SiDroForest is an attempt to remedy data scarcity regarding vegetation data in the circumpolar region, whilst providing adjusted and labeled data for machine learning and upscaling practices. SiDroForest contains four datasets that include SfM point clouds, individually labeled trees, synthetic tree crowns and labeled Sentinel-2 patches that provide insights into the vegetation composition and forest structure of two important vegetation transition zones in Siberia, Russia.
Ulrike Herzschuh, Chenzhi Li, Thomas Böhmer, Alexander K. Postl, Birgit Heim, Andrei A. Andreev, Xianyong Cao, Mareike Wieczorek, and Jian Ni
Earth Syst. Sci. Data, 14, 3213–3227, https://doi.org/10.5194/essd-14-3213-2022, https://doi.org/10.5194/essd-14-3213-2022, 2022
Short summary
Short summary
Pollen preserved in environmental archives such as lake sediments and bogs are extensively used for reconstructions of past vegetation and climate. Here we present LegacyPollen 1.0, a dataset of 2831 fossil pollen records from all over the globe that were collected from publicly available databases. We harmonized the names of the pollen taxa so that all datasets can be jointly investigated. LegacyPollen 1.0 is available as an open-access dataset.
Niek Jesse Speetjens, George Tanski, Victoria Martin, Julia Wagner, Andreas Richter, Gustaf Hugelius, Chris Boucher, Rachele Lodi, Christian Knoblauch, Boris P. Koch, Urban Wünsch, Hugues Lantuit, and Jorien E. Vonk
Biogeosciences, 19, 3073–3097, https://doi.org/10.5194/bg-19-3073-2022, https://doi.org/10.5194/bg-19-3073-2022, 2022
Short summary
Short summary
Climate change and warming in the Arctic exceed global averages. As a result, permanently frozen soils (permafrost) which store vast quantities of carbon in the form of dead plant material (organic matter) are thawing. Our study shows that as permafrost landscapes degrade, high concentrations of organic matter are released. Partly, this organic matter is degraded rapidly upon release, while another significant fraction enters stream networks and enters the Arctic Ocean.
Matthias Fuchs, Juri Palmtag, Bennet Juhls, Pier Paul Overduin, Guido Grosse, Ahmed Abdelwahab, Michael Bedington, Tina Sanders, Olga Ogneva, Irina V. Fedorova, Nikita S. Zimov, Paul J. Mann, and Jens Strauss
Earth Syst. Sci. Data, 14, 2279–2301, https://doi.org/10.5194/essd-14-2279-2022, https://doi.org/10.5194/essd-14-2279-2022, 2022
Short summary
Short summary
We created digital, high-resolution bathymetry data sets for the Lena Delta and Kolyma Gulf regions in northeastern Siberia. Based on nautical charts, we digitized depth points and isobath lines, which serve as an input for a 50 m bathymetry model. The benefit of this data set is the accurate mapping of near-shore areas as well as the offshore continuation of the main deep river channels. This will improve the estimation of river outflow and the nutrient flux output into the coastal zone.
Thomas Krumpen, Luisa von Albedyll, Helge F. Goessling, Stefan Hendricks, Bennet Juhls, Gunnar Spreen, Sascha Willmes, H. Jakob Belter, Klaus Dethloff, Christian Haas, Lars Kaleschke, Christian Katlein, Xiangshan Tian-Kunze, Robert Ricker, Philip Rostosky, Janna Rückert, Suman Singha, and Julia Sokolova
The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021, https://doi.org/10.5194/tc-15-3897-2021, 2021
Short summary
Short summary
We use satellite data records collected along the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) drift to categorize ice conditions that shaped and characterized the floe and surroundings during the expedition. A comparison with previous years is made whenever possible. The aim of this analysis is to provide a basis and reference for subsequent research in the six main research areas of atmosphere, ocean, sea ice, biogeochemistry, remote sensing and ecology.
Lydia Stolpmann, Caroline Coch, Anne Morgenstern, Julia Boike, Michael Fritz, Ulrike Herzschuh, Kathleen Stoof-Leichsenring, Yury Dvornikov, Birgit Heim, Josefine Lenz, Amy Larsen, Katey Walter Anthony, Benjamin Jones, Karen Frey, and Guido Grosse
Biogeosciences, 18, 3917–3936, https://doi.org/10.5194/bg-18-3917-2021, https://doi.org/10.5194/bg-18-3917-2021, 2021
Short summary
Short summary
Our new database summarizes DOC concentrations of 2167 water samples from 1833 lakes in permafrost regions across the Arctic to provide insights into linkages between DOC and environment. We found increasing lake DOC concentration with decreasing permafrost extent and higher DOC concentrations in boreal permafrost sites compared to tundra sites. Our study shows that DOC concentration depends on the environmental properties of a lake, especially permafrost extent, ecoregion, and vegetation.
Iuliia Shevtsova, Ulrike Herzschuh, Birgit Heim, Luise Schulte, Simone Stünzi, Luidmila A. Pestryakova, Evgeniy S. Zakharov, and Stefan Kruse
Biogeosciences, 18, 3343–3366, https://doi.org/10.5194/bg-18-3343-2021, https://doi.org/10.5194/bg-18-3343-2021, 2021
Short summary
Short summary
In the light of climate changes in subarctic regions, notable general increase in above-ground biomass for the past 15 years (2000 to 2017) was estimated along a tundra–taiga gradient of central Chukotka (Russian Far East). The greatest increase occurred in the northern taiga in the areas of larch closed-canopy forest expansion with Cajander larch as a main contributor. For the estimations, we used field data (taxa-separated plant biomass, 2018) and upscaled it based on Landsat satellite data.
Ingeborg Bussmann, Irina Fedorova, Bennet Juhls, Pier Paul Overduin, and Matthias Winkel
Biogeosciences, 18, 2047–2061, https://doi.org/10.5194/bg-18-2047-2021, https://doi.org/10.5194/bg-18-2047-2021, 2021
Short summary
Short summary
Arctic rivers, lakes, and bays are affected by a warming climate. We measured the amount and consumption of methane in waters from Siberia under ice cover and in open water. In the lake, methane concentrations under ice cover were much higher than in summer, and methane consumption was highest. The ice cover leads to higher methane concentration under ice. In a warmer Arctic, there will be more time with open water when methane is consumed by bacteria, and less methane will escape into the air.
Cited articles
Alling, V., Sanchez-Garcia, L., Porcelli, D., Pugach, S., Vonk, J. E., van
Dongen, B., Morth, C. M., Anderson, L. G., Sokolov, A., Andersson, P.,
Humborg, C., Semiletov, I., and Gustafsson, O.: Nonconservative behavior of
dissolved organic carbon across the Laptev and East Siberian seas, Global
Biogeochem. Cy., 24, Gb4033, https://doi.org/10.1029/2010gb003834, 2010.
Amon, R. M. W.: The role of dissolved organic matter for the organic carbon
cycle in the Arctic Ocean, in: The organic carbon cycle in the Arctic Ocean,
edited by: Stein, R. and MacDonald, R. W., Springer Verlag, Berlin, 83–99,
2004.
Amon, R. M. W. and Meon, B.: The biogeochemistry of dissolved organic
matter and nutrients in two large Arctic estuaries and potential
implications for our understanding of the Arctic Ocean system, Mar. Chem., 92,
311–330, https://doi.org/10.1016/j.marchem.2004.06.034, 2004.
Amon, R. M. W., Rinehart, A. J., Duan, S., Louchouarn, P., Prokushkin, A.,
Guggenberger, G., Bauch, D., Stedmon, C., Raymond, P. A., Holmes, R. M.,
McClelland, J. W., Peterson, B. J., Walker, S. A., and Zhulidov, A. V.:
Dissolved organic matter sources in large Arctic rivers, Geochim. Cosmochim.
Ac., 94, 217–237, https://doi.org/10.1016/j.gca.2012.07.015, 2012.
Anderson, L. G. and Amon, R. M. W.: DOM in the Arctic Ocean, chap. 14,
in: Biogeochemistry of Marine Dissolved Organic Matter (2nd Edn.),
edited by: Hansell, D. A. and Carlson, C. A., Academic Press, Boston,
609–633, 2015.
Anderson, L. G. and Macdonald, R. W.: Observing the Arctic Ocean carbon
cycle in a changing environment, Polar Res., 34, 26891,
https://doi.org/10.3402/polar.v34.26891, 2015.
Anderson, L. G., Bjork, G., Jutterstrom, S., Pipko, I., Shakhova, N.,
Semiletov, I., and Wahlstrom, I.: East Siberian Sea, an Arctic region of
very high biogeochemical activity, Biogeosciences, 8, 1745–1754,
https://doi.org/10.5194/bg-8-1745-2011, 2011.
Anderson, L. G., Bjork, G., Holby, O., Jutterstrom, S., Morth, C. M.,
O'Regan, M., Pearce, C., Semiletov, I., Stranne, C., Stoven, T., Tanhua, T.,
Ulfsbo, A., and Jakobsson, M.: Shelf-Basin interaction along the East
Siberian Sea, Ocean Sci., 13, 349–363,
https://doi.org/10.5194/os-13-349-2017, 2017.
Bareiss, J. and Görgen, K.: Spatial and temporal variability of sea ice
in the Laptev Sea: Analyses and review of satellite passive-microwave data
and model results, 1979 to 2002, Global Planet. Change, 48, 28–54,
https://doi.org/10.1016/j.gloplacha.2004.12.004, 2005.
Bauch, D. and Thibodeau, B.: Stable oxygen isotope analysis of water samples
during helicopter/ice camp TRANSDRIFT-XX, Laptev Sea, PANGAEA [Dataset],
https://doi.org/10.1594/PANGAEA.924538, 2020.
Bauch, D., Erlenkeuser, H., and Andersen, N.: Water mass processes on Arctic
shelves as revealed from delta O-18 of H2O, Global Planet. Change, 48,
165–174, https://doi.org/10.1016/j.gloplacha.2004.12.011, 2005.
Bauch, D., Dmitrenko, I. A., Wegner, C., Hölemann, J., Kirillov, S. A.,
Timokhov, L. A., and Kassens, H.: Exchange of Laptev Sea and Arctic Ocean
halocline waters in response to atmospheric forcing, J. Geophys. Res.-Ocean.,
114, C05008, https://doi.org/10.1029/2008jc005062, 2009a.
Bauch, D., Dmitrenko, I., Kirillov, S., Wegner, C., Hölemann, J.,
Pivovarov, S., Timokhov, L., and Kassens, H.: Eurasian Arctic shelf
hydrography: Exchange and residence time of southern Laptev Sea waters, Cont.
Shelf Res., 29, 1815, https://doi.org/10.1016/j.csr.2009.06.009, 2009b.
Bauch, D., Hölemann, J., Willmes, S., Groger, M., Novikhin, A.,
Nikulina, A., Kassens, H., and Timokhov, L.: Changes in distribution of
brine waters on the Laptev Sea shelf in 2007, J. Geophys. Res.-Ocean., 115,
C11008, https://doi.org/10.1029/2010jc006249, 2010.
Bauch, D., van der Loeff, M. R., Andersen, N., Torres-Valdes, S., Bakker,
K., and Abrahamsen, E. P.: Origin of freshwater and polynya water in the
Arctic Ocean halocline in summer 2007, Prog. Oceanogr., 91, 482–495,
https://doi.org/10.1016/j.pocean.2011.07.017, 2011.
Bauch, D., Hölemann, J. A., Dmitrenko, I. A., Janout, M. A., Nikulina,
A., Kirillov, S. A., Krumpen, T., Kassens, H., and Timokhov, L.: Impact of
Siberian coastal polynyas on shelf-derived Arctic Ocean halocline waters, J.
Geophys. Res.-Ocean., 117, C00g12, https://doi.org/10.1029/2011jc007282,
2012.
Bauch, D., Hölemann, J. A., Nikulina, A., Wegner, C., Janout, M. A.,
Timokhov, L. A., and Kassens, H.: Correlation of river water and local
sea-ice melting on the Laptev Sea shelf (Siberian Arctic), J. Geophys.
Res.-Ocean., 118, 550–561, https://doi.org/10.1002/jgrc.20076, 2013.
Bauch, D., Cherniavskaia, E., Novikhin, A., and Kassens, H.: Physical oceanography, nutrients, and δ18O measured on water bottle samples in the Laptev Sea, PANGAEA [Dataset], https://doi.org/10.1594/PANGAEA.885448, 2018.
Bélanger, S., Xie, H. X., Krotkov, N., Larouche, P., Vincent, W. F., and
Babin, M.: Photomineralization of terrigenous dissolved organic matter in
Arctic coastal waters from 1979 to 2003: Interannual variability and
implications of climate change, Global Biogeochem. Cy., 20, Gb4005,
https://doi.org/10.1029/2006gb002708, 2006.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G.,
Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H.,
Delaloye, R., Diekmann, B., Drozdov, D., Etzelmuller, B., Grosse, G.,
Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson,
M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P.,
Kroger, T., Lambiel, C., Lanckman, J. P., Luo, D. L., Malkova, G.,
Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel,
A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q. B.,
Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a
global scale, Nat. Commun., 10, 264, https://doi.org/:10.1038/s41467-018-08240-4, 2019.
Cauwet, G. and Sidorov, I.: The biogeochemistry of Lena River: Organic
carbon and nutrients distribution, Mar. Chem., 53, 211–227,
https://doi.org/10.1016/0304-4203(95)00090-9, 1996.
Charette, M. A., Kipp, L. E., Jensen, L. T., Dabrowski, J. S., Whitmore, L.
M., Fitzsimmons, J. N., Williford, T., Ulfsbo, A., Jones, E., Bundy, R. M.,
Vivancos, S. M., Pahnke, K., John, S. G., Xiang, Y., Hatta, M., Petrova, M.
V., Heimbürger-Boavida, L.-E., Bauch, D., Newton, R., Pasqualini, A.,
Agather, A. M., Amon, R. M. W., Anderson, R. F., Andersson, P. S., Benner,
R., Bowman, K. L., Edwards, R. L., Gdaniec, S., Gerringa, L. J. A.,
González, A. G., Granskog, M., Haley, B., Hammerschmidt, C. R., Hansell,
D. A., Henderson, P. B., Kadko, D. C., Kaiser, K., Laan, P., Lam, P. J.,
Lamborg, C. H., Levier, M., Li, X., Margolin, A. R., Measures, C., Middag,
R., Millero, F. J., Moore, W. S., Paffrath, R., Planquette, H., Rabe, B.,
Reader, H., Rember, R., Rijkenberg, M. J. A., Roy-Barman, M., Rutgers van
der Loeff, M., Saito, M., Schauer, U., Schlosser, P., Sherrell, R. M.,
Shiller, A. M., Slagter, H., Sonke, J. E., Stedmon, C., Woosley, R. J.,
Valk, O., van Ooijen, J., and Zhang, R.: The Transpolar Drift as a Source of
Riverine and Shelf-Derived Trace Elements to the Central Arctic Ocean,
J. Geophys. Res.-Ocean., 125, 1–34, https://doi.org/10.1029/2019jc015920, 2020.
Coble, P. G.: Marine optical biogeochemistry: The chemistry of ocean color,
Chem. Rev., 107, 402–418, https://doi.org/10.1021/cr050350+, 2007.
Cooper, L. W., Benner, R., McClelland, J. W., Peterson, B. J., Holmes, R.
M., Raymond, P. A., Hansell, D. A., Grebmeier, J. M., and Codispoti, L. A.:
Linkages among runoff, dissolved organic carbon, and the stable oxygen
isotope composition of seawater and other water mass indicators in the
Arctic Ocean, J. Geophys. Res.-Biogeo., 110, G02013,
https://doi.org/10.1029/2005jg000031, 2005.
Craig, H.: Standard for Reporting Concentrations of Deuterium and Oxygen-18
in Natural Waters, Science, 133, 1833–1834,
https://doi.org/10.1126/science.133.3467.1833, 1961.
Danhiez, F. P., Vantrepotte, V., Cauvin, A., Lebourg, E., and Loisel, H.:
Optical properties of chromophoric dissolved organic matter during a
phytoplankton bloom. Implication for DOC estimates from CDOM absorption,
Limnol. Oceanogr., 62, 1409–1425, https://doi.org/10.1002/lno.10507, 2017.
Dittmar, T. and Kattner, G.: The biogeochemistry of the river and shelf
ecosystem of the Arctic Ocean: a review, Mar. Chem., 83, 103–120,
https://doi.org/10.1016/S0304-4203(03)00105-1, 2003.
Eicken, H., Dmitrenko, I., Tyshko, K., Darovskikh, A., Dierking, W., Blahak,
U., Groves, J., and Kassens, H.: Zonation of the Laptev Sea landfast ice
cover and its importance in a frozen estuary, Global Planet. Change, 48,
55–83, https://doi.org/10.1016/j.gloplacha.2004.12.005, 2005.
Eulenburg, A., Juhls, B., and Hölemann, J. A.: Surface water dissolved
organic matter (DOC, CDOM) in the Lena River, PANGAEA [Dataset],
https://doi.org/10.1594/PANGAEA.898711, 2019.
Fichot, C. G. and Benner, R.: The spectral slope coefficient of
chromophoric dissolved organic matter (S275–295) as a tracer of terrigenous
dissolved organic carbon in river-influenced ocean margins, Limnol. Oceanogr.,
57, 1453–1466, https://doi.org/10.4319/lo.2012.57.5.1453, 2012.
Frey, K. E. and Smith, L. C.: Amplified carbon release from vast West
Siberian peatlands by 2100, Geophys. Res. Lett., 32, L09401,
https://doi.org/10.1029/2004gl022025, 2005.
Giannelli, V., Thomas, D. N., Haas, C., Kattner, G., Kennedy, H., and
Dieckmann, G. S.: Behaviour of dissolved organic matter and inorganic
nutrients during experimental sea-ice formation, Ann. Glaciol., 33, 317–321,
https://doi.org/10.3189/172756401781818572, 2001.
Gnanadesikan, A., Kim, G. E., and Pradal, M. A. S.: Impact of Colored
Dissolved Materials on the Annual Cycle of Sea Surface Temperature:
Potential Implications for Extreme Ocean Temperatures, Geophys. Res. Lett., 46,
861–869, https://doi.org/10.1029/2018gl080695, 2019.
Gonçalves-Araújo, R., Stedmon, C. A., Heim, B., Dubinenkov, I., Kraberg, A.,
Moiseev, D., and Bracher, A.: From Fresh to Marine Waters: Characterization
and Fate of Dissolved Organic Matter in the Lena River Delta Region,
Siberia, Front. Mar. Sci., 2, 108,
https://doi.org/10.3389/fmars.2015.00108, 2015.
Granskog, M. A.: Changes in spectral slopes of colored dissolved organic
matter absorption with mixing and removal in a terrestrially dominated
marine system (Hudson Bay, Canada), Mar. Chem., 134/135, 10–17,
https://doi.org/10.1016/j.marchem.2012.02.008, 2012.
Granskog, M. A., Macdonald, R. W., Kuzyk, Z. Z. A., Senneville, S., Mundy,
C.-J., Barber, D. G., Stern, G. A., and Saucier, F.: Coastal conduit in
southwestern Hudson Bay (Canada) in summer: Rapid transit of freshwater and
significant loss of colored dissolved organic matter, J. Geophys.
Res.-Ocean., 114, C08012, https://doi.org/10.1029/2009JC005270, 2009.
Granskog, M. A., Stedmon, C. A., Dodd, P. A., Amon, R. M. W., Pavlov, A. K.,
de Steur, L., and Hansen, E.: Characteristics of colored dissolved organic
matter (CDOM) in the Arctic outflow in the Fram Strait: Assessing the
changes and fate of terrigenous CDOM in the Arctic Ocean, J. Geophys.
Res.-Ocean., 117, C12021, https://doi.org/10.1029/2012jc008075, 2012.
Granskog, M. A., Nomura, D., Muller, S., Krell, A., Toyota, T., and Hattori,
H.: Evidence for significant protein-like dissolved organic matter
accumulation in Sea of Okhotsk sea ice, Ann. Glaciol., 56, 1–8,
10.3189/2015AoG69A002, 2015a.
Granskog, M. A., Pavlov, A. K., Sagan, S., Kowalczuk, P., Raczkowska, A.,
and Stedmon, C. A.: Effect of sea-ice melt on inherent optical properties
and vertical distribution of solar radiant heating in Arctic surface waters,
J. Geophys. Res.-Ocean., 120, 7028–7039, https://doi.org/10.1002/2015jc011087,
2015b.
Gueguen, C., Guo, L. D., and Tanaka, N.: Distributions and characteristics
of colored dissolved organic matter in the Western Arctic Ocean, Cont. Shelf
Res., 25, 1195–1207, https://doi.org/10.1016/j.csr.2005.01.005, 2005.
Guo, L. D., Ping, C. L., and Macdonald, R. W.: Mobilization pathways of
organic carbon from permafrost to arctic rivers in a changing climate,
Geophys. Res. Lett., 34, L13603, https://doi.org/10.1029/2007gl030689,
2007.
Haine, T. W. N., Curry, B., Gerdes, R., Hansen, E., Karcher, M., Lee, C.,
Rudels, B., Spreen, G., de Steur, L., Stewart, K. D., and Woodgate, R.:
Arctic freshwater export: Status, mechanisms, and prospects, Global Planet. Change, 125, 13–35, https://doi.org/10.1016/j.gloplacha.2014.11.013, 2015.
Heim, B., Abramova, E., Doerffer, R., Gunther, F., Hölemann, J.,
Kraberg, A., Lantuit, H., Loginova, A., Martynov, F., Overduin, P. P., and
Wegner, C.: Ocean colour remote sensing in the southern Laptev Sea:
evaluation and applications, Biogeosciences, 11, 4191–4210,
https://doi.org/10.5194/bg-11-4191-2014, 2014.
Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., and
Mopper, K.: Absorption spectral slopes and slope ratios as indicators of
molecular weight, source, and photobleaching of chromophoric dissolved
organic matter, Limnol. Oceanogr., 53, 955–969,
https://doi.org/10.4319/lo.2008.53.3.0955, 2008.
Hill, V. J.: Impacts of chromophoric dissolved organic material on surface
ocean heating in the Chukchi Sea, J. Geophys. Res.-Ocean., 113, C07024,
https://doi.org/10.1029/2007jc004119, 2008.
Hölemann, J. A., Schirmacher, M., and Prange, A.: Seasonal variability
of trace metals in the Lena River and the southeastern Laptev Sea: Impact of
the spring freshet, Global Planet. Change, 48, 112–125,
https://doi.org/10.1016/j.gloplacha.2004.12.008, 2005.
Hölemann, J. A., Juhls, B., and Timokhov, L. A.: Colored dissolved organic
matter (CDOM) measured during cruise TRANSDRIFT-XVII, Laptev Sea, PANGAEA [Dataset],
https://doi.org/10.1594/PANGAEA.924206, 2020a.
Hölemann, J., Koch, B. P., Juhls, B., and Timokhov, L. A.: Colored dissolved
organic matter (CDOM) and dissolved organic carbon (DOC) measured during
cruise TRANSDRIFT-XIX, Laptev Sea, PANGAEA [Dataset],
https://doi.org/10.1594/PANGAEA.924209, 2020b.
Hölemann, J. A., Koch, B. P., Juhls, B., and Timokhov, L. A.: Colored
dissolved organic matter (CDOM) and dissolved organic carbon (DOC) measured
during helicopter/ice camp TRANSDRIFT-XX, Laptev Sea, PANGAEA [Dataset],
https://doi.org/10.1594/PANGAEA.924228, 2020c.
Hölemann, J. A., Juhls, B., and Timokhov, L. A.: Colored dissolved organic
matter (CDOM) measured during cruise TRANSDRIFT-XXI, Laptev Sea, PANGAEA [Dataset],
https://doi.org/10.1594/PANGAEA.924203, 2020d.
Hölemann, J., Koch, B. P., Juhls, B., and Timokhov, L. A.: Colored dissolved
organic matter (CDOM) and dissolved organic carbon (DOC) measured during
cruise TRANSDRIFT-XXII, Laptev Sea, PANGAEA [Dataset],
https://doi.org/10.1594/PANGAEA.924202, 2020e.
Hölemann, J. A., Koch, B. P., Juhls, B., and Ivanov, V.: Colored dissolved
organic matter (CDOM) and dissolved organic carbon (DOC) measured during
cruise TRANSDRIFT-XXIV, Laptev Sea, PANGAEA [Dataset],
https://doi.org/10.1594/PANGAEA.924210, 2020f.
Hölemann, J. A., Chetverova, A., Juhls, B., and Kusse-Tiuz, N.: Colored
dissolved organic matter (CDOM) and dissolved organic carbon (DOC) measured
during cruise TRANSARKTIKA-2019 Leg4, Laptev Sea and East Siberian Sea,
PANGAEA [Dataset], https://doi.org/10.1594/PANGAEA.924211, 2020g.
Holmes, R. M., McClelland, J. W., Peterson, B. J., Tank, S. E., Bulygina,
E., Eglinton, T. I., Gordeev, V. V., Gurtovaya, T. Y., Raymond, P. A.,
Repeta, D. J., Staples, R., Striegl, R. G., Zhulidov, A. V., and Zimov, S.
A.: Seasonal and Annual Fluxes of Nutrients and Organic Matter from Large
Rivers to the Arctic Ocean and Surrounding Seas, Estuar. Coast., 35, 369–382,
https://doi.org/10.1007/s12237-011-9386-6, 2012.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G.,
Ping, C. L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D.,
O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag,
J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with
quantified uncertainty ranges and identified data gaps, Biogeosciences, 11,
6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
Itkin, P. and Krumpen, T.: Winter sea ice export from the Laptev Sea
preconditions the local summer sea ice cover and fast ice decay, The Cryosphere,
11, 2383–2391, https://doi.org/10.5194/tc-11-2383-2017, 2017.
Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J. A., Forbes, S.,
Fridman, B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M.,
Schenke, H. W., Zarayskaya, Y., Accettella, D., Armstrong, A., Anderson, R.
M., Bienhoff, P., Camerlenghi, A., Church, I., Edwards, M., Gardner, J. V.,
Hall, J. K., Hell, B., Hestvik, O., Kristoffersen, Y., Marcussen, C.,
Mohammad, R., Mosher, D., Nghiem, S. V., Pedrosa, M. T., Travaglini, P. G.,
and Weatherall, P.: The International Bathymetric Chart of the Arctic Ocean
(IBCAO) Version 3.0, Geophys. Res. Lett., 39, L12609,
https://doi.org/10.1029/2012GL052219, 2012.
Janout, M. A., Hölemann, J., and Krumpen, T.: Cross-shelf transport of
warm and saline water in response to sea ice drift on the Laptev Sea shelf,
J. Geophys. Res.-Ocean., 118, 563–576, https://doi.org/10.1029/2011jc007731,
2013.
Janout, M. A., Aksenov, Y., Hölemann, J. A., Rabe, B., Schauer, U.,
Polyakov, I. V., Bacon, S., Coward, A. C., Karcher, M., Lenn, Y. D.,
Kassens, H., and Timokhov, L.: Kara Sea freshwater transport through
Vilkitsky Strait: Variability, forcing, and further pathways toward the
western Arctic Ocean from a model and observations, J. Geophys. Res.-Ocean.,
120, 4925–4944, https://doi.org/10.1002/2014jc010635, 2015.
Janout, M. A., Hölemann, J., Waite, A. M., Krumpen, T., von Appen, W.
J., and Martynov, F.: Sea-ice retreat controls timing of summer plankton
blooms in the Eastern Arctic Ocean, Geophys. Res. Lett., 43, 12493–12501,
https://doi.org/10.1002/2016gl071232, 2016a.
Janout, M. A., Holemann, J., Juhls, B., Krumpen, T., Rabe, B., Bauch, D.,
Wegner, C., Kassens, H., and Timokhov, L.: Episodic warming of near-bottom
waters under the Arctic sea ice on the central Laptev Sea shelf, Geophys. Res.
Lett., 43, 264–272, https://doi.org/10.1002/2015gl066565, 2016b.
Janout, M. A., Hölemann, J., Timokhov, L., Gutjahr, O., and Heinemann,
G.: Circulation in the northwest Laptev Sea in the eastern Arctic Ocean:
Crossroads between Siberian River water, Atlantic water and polynya-formed
dense water, J. Geophys. Res.-Ocean., 122, 6630–6647,
https://doi.org/10.1002/2017jc013159, 2017.
Janout, M.A., Hölemann, J., Smirnov, A., Krumpen, T., Bauch, D.,
Laukert, G., and Timokhov, L.: On the variability of stratification in the
freshwater influenced Laptev Sea region, Front Mar. Sci., 7, 543489,
https://doi.org/10.3389/fmars.2020.543489, 2020.
Jørgensen, L., Stedmon, C. A., Kaartokallio, H., Middelboe, M., and
Thomas, D. N.: Changes in the composition and bioavailability of dissolved
organic matter during sea ice formation, Limnol. Oceanogr., 60, 817–830,
https://doi.org/10.1002/lno.10058, 2015.
Juhls, B., Overduin, P. P., Hölemann, J., Hieronymi, M., Matsuoka, A.,
Heim, B., and Fischer, J.: Dissolved organic matter at the fluvial-marine
transition in the Laptev Sea using in situ data and ocean colour remote
sensing, Biogeosciences, 16, 2693–2713,
https://doi.org/10.5194/bg-16-2693-2019, 2019.
Juhls, B., Stedmon, C. A., Morgenstern, A., Meyer, H., Hölemann, J.,
Heim, B., Povazhnyi, V., and Overduin, P. P.: Identifying Drivers of
Seasonality in Lena River Biogeochemistry and Dissolved Organic Matter
Fluxes, Front. Environ. Sci., 8, 1–15,
https://doi.org/10.3389/fenvs.2020.00053, 2020.
Kaiser, K., Benner, R., and Amon, R. M. W.: The fate of terrigenous
dissolved organic carbon on the Eurasian shelves and export to the North
Atlantic, J. Geophys. Res.-Ocean., 122, 4–22,
https://doi.org/10.1002/2016jc012380, 2017a.
Kaiser, K., Canedo-Oropeza, M., McMahon, R., and Amon, R. M. W.: Origins and
transformations of dissolved organic matter in large Arctic rivers, Sci.
Rep.-UK, 7, 13064, https://doi.org/10.1038/s41598-017-12729-1, 2017b.
Kattner, G., Juhls, B., and Heim, B.: Surface water dissolved organic matter
(DOC, CDOM) in the Lena River, PANGAEA [Dataset],
https://doi.org/10.1594/PANGAEA.898705, 2010.
Kattner, G., Lobbes, J. M., Fitznar, H. P., Engbrodt, R., Nothig, E. M., and
Lara, R. J.: Tracing dissolved organic substances and nutrients from the
Lena River through Laptev Sea (Arctic), Mar. Chem., 65, 25–39,
https://doi.org/10.1016/S0304-4203(99)00008-0, 1999.
Köhler, H., Meon, B., Gordeev, V. V., Spitzy, A., and Amon, R. M. W.:
Dissolved organic matter (DOM) in the estuaries of Ob and Yenisei and the
adjacent Kara Sea, Russia, in: Siberian river run-off in the Kara Sea,
edited by: Stein, R., Fahl, K., Fütterer, D. K., Galimov, E. M., and
Stepanets, O. V.: Proceedings in Marine Science, 6, Elsevier Science B. V.,
Amsterdam, 281–308, 2003.
Kotchetov, S. V., Kulakov, I. Y., Kurajov, V. K., Timokhov, L. A., and
Vanda, Y. A.: Hydrometeorological regime of the Laptev Sea, Federal Service
of Russia for Hydrometeorology and Monitoring of the Environment, Arct.
Antarct. Res. Inst., St. Petersburg, Russia, 85, 1–34, 1994.
Kowalczuk, P., Meler, J., Kauko, H. M., Pavlov, A. K., Zablocka, M., Peeken,
I., Dybwad, C., Castellani, G., and Granskog, M. A.: Bio-optical properties
of Arctic drift ice and surface waters north of Svalbard from winter to
spring, J. Geophys. Res.-Ocean., 122, 4634–4660,
https://doi.org/10.1002/2016jc012589, 2017.
Krumpen, T., Hölemann, J. A., Willmes, S., Maqueda, M. A. M., Busche,
T., Dmitrenko, I. A., Gerdes, R., Haas, C., Heinemann, G., Hendricks, S.,
Kassens, H., Rabenstein, L., and Schroder, D.: Sea ice production and water
mass modification in the eastern Laptev Sea, J. Geophys. Res.-Ocean., 116,
C05014, https://doi.org/10.1029/2010jc006545, 2011.
Kwok, R. and Morison, J.: Dynamic topography of the ice-covered Arctic
Ocean from ICESat, Geophys. Res. Lett., 38, L02501,
https://doi.org/10.1029/2010gl046063, 2011.
Lara, R. J., Rachold, V., Kattner, G., Hubberten, H. W., Guggenberger, G.,
Skoog, A., and Thomas, D. N.: Dissolved organic matter and nutrients in the
Lena River, Siberian Arctic: Characteristics and distribution, Mar. Chem., 59,
301–309, https://doi.org/10.1016/S0304-4203(97)00076-5, 1998.
Letscher, R. T., Hansell, D. A., and Kadko, D.: Rapid removal of terrigenous
dissolved organic carbon over the Eurasian shelves of the Arctic Ocean, Mar.
Chem., 123, 78–87, https://doi.org/10.1016/j.marchem.2010.10.002, 2011.
Li, Z., Zhao, J., Su, J., Li, C., Cheng, B., Hui, F., Yang, Q., and Shi, L.:
Spatial and Temporal Variations in the Extent and Thickness of Arctic
Landfast Ice, Remote Sens-Basel, 12, 1–20, https://doi.org/10.3390/rs12010064,
2020.
Logvinova, C. L., Frey, K. E., and Cooper, L. W.: The potential role of sea
ice melt in the distribution of chromophoric dissolved organic matter in the
Chukchi and Beaufort Seas, Deep-Sea Res. Pt. II, 130, 28–42,
https://doi.org/10.1016/j.dsr2.2016.04.017, 2016.
Macdonald, R. W., Paton, D. W., Carmack, E. C., and Omstedt, A.: The
Fresh-Water Budget and under-Ice Spreading of Mackenzie River Water in the
Canadian Beaufort Sea Based on Salinity and O-18 O-16 Measurements in Water
and Ice, J. Geophys. Res.-Ocean., 100, 895–919,
https://doi.org/10.1029/94jc02700, 1995.
Manizza, M., Follows, M. J., Dutkiewicz, S., McClelland, J. W., Menemenlis,
D., Hill, C. N., Townsend-Small, A., and Peterson, B. J.: Modeling transport
and fate of riverine dissolved organic carbon in the Arctic Ocean, Global
Biogeochem. Cy., 23, Gb4006, https://doi.org/10.1029/2008gb003396, 2009.
Mann, P. J., Davydova, A., Zimov, N., Spencer, R. G. M., Davydov, S.,
Bulygina, E., Zimov, S., and Holmes, R. M.: Controls on the composition and
lability of dissolved organic matter in Siberia's Kolyma River basin, J.
Geophys. Res.-Biogeo., 117, G01028, https://doi.org/10.1029/2011jg001798,
2012.
Mann, P. J., Spencer, R. G. M., Hernes, P. J., Six, J., Aiken, G. R., Tank,
S. E., McClelland, J. W., Butler, K. D., Dyda, R. Y., and Holmes, R. M.:
Pan-Arctic Trends in Terrestrial Dissolved Organic Matter from Optical
Measurements, Front Earth Sc-Switz, 4, 1–18,
https://doi.org/10.3389/feart.2016.00025, 2016.
Mathis, J. T., Hansell, D. A., and Bates, N. R.: Strong hydrographic
controls on spatial and seasonal variability of dissolved organic carbon in
the Chukchi Sea, Deep-Sea Res. Pt. II, 52, 3245–3258,
https://doi.org/10.1016/j.dsr2.2005.10.002, 2005.
Matsuoka, A., Bricaud, A., Benner, R., Para, J., Sempere, R., Prieur, L.,
Belanger, S., and Babin, M.: Tracing the transport of colored dissolved
organic matter in water masses of the Southern Beaufort Sea: relationship
with hydrographic characteristics, Biogeosciences, 9, 925–940,
https://doi.org/10.5194/bg-9-925-2012, 2012.
Matsuoka, A., Boss, E., Babin, M., Karp-Boss, L., Hafez, M., Chekalyuk, A.,
Proctor, C. W., Werdell, P. J., and Bricaud, A.: Pan-Arctic optical
characteristics of colored dissolved organic matter: Tracing dissolved
organic carbon in changing Arctic waters using satellite ocean color data,
Remote Sens. Environ., 200, 89–101, https://doi.org/10.1016/j.rse.2017.08.009,
2017.
McClelland, J. W., Holmes, R. M., Peterson, B. J., and Stieglitz, M.:
Increasing river discharge in the Eurasian Arctic: Consideration of dams,
permafrost thaw, and fires as potential agents of change, J. Geophys.
Res.-Atmos., 109, D18102, https://doi.org/10.1029/2004jd004583, 2004.
Morison, J., Kwok, R., Peralta-Ferriz, C., Alkire, M., Rigor, I., Andersen,
R., and Steele, M.: Changing Arctic Ocean freshwater pathways, Nature, 481,
66–70, https://doi.org/10.1038/nature10705, 2012.
Müller, S., Vahatalo, A. V., Stedmon, C. A., Granskog, M. A., Norman,
L., Aslam, S. N., Underwood, G. J. C., Dieckmann, G. S., and Thomas, D. N.:
Selective incorporation of dissolved organic matter (DOM) during sea ice
formation, Mar. Chem., 155, 148–157,
https://doi.org/10.1016/j.marchem.2013.06.008, 2013.
Opsahl, S., Benner, R., and Amon, R. M. W.: Major flux of terrigenous
dissolved organic matter through the Arctic Ocean, Limnol. Oceanogr., 44,
2017–2023, https://doi.org/10.4319/lo.1999.44.8.2017, 1999.
Osburn, C. L., Retamal, L., and Vincent, W. F.: Photoreactivity of
chromophoric dissolved organic matter transported by the Mackenzie River to
the Beaufort Sea, Mar. Chem., 115, 10–20,
https://doi.org/10.1016/j.marchem.2009.05.003, 2009.
Overland, J. E., Wang, M. Y., and Box, J. E.: An integrated index of recent
pan-Arctic climate change, Environ. Res. Lett., 14, 035006,
https://doi.org/10.1088/1748-9326/aaf665, 2019.
Pavlov, A. K., Stedmon, C. A., Semushin, A. V., Martma, T., Ivanov, B. V.,
Kowalczuk, P., and Granskog, M. A.: Linkages between the circulation and
distribution of dissolved organic matter in the White Sea, Arctic Ocean,
Cont. Shelf Res., 119, 1–13, https://doi.org/10.1016/j.csr.2016.03.004, 2016.
Pegau, W. S.: Inherent optical properties of the central Arctic surface
waters, J. Geophys. Res.-Ocean., 107, 8035
https://doi.org/10.1029/2000jc000382, 2002.
Petrich, C. and Eicken, H.: Growth, Structure and Properties of Sea Ice,
in: Sea Ice, 2nd Edn., edited by: Thomas, D. N. and Dieckmann, G.
S., Wiley-Blackwell, Oxford, UK, 23–77, 2010.
Plaza, C., Pegoraro, E., Bracho, R., Celis, G., Crummer, K. G., Hutchings,
J. A., Pries, C. E. H., Mauritz, M., Natali, S. M., Salmon, V. G., Schadel,
C., Webb, E. E., and Schuur, E. A. G.: Direct observation of permafrost
degradation and rapid soil carbon loss in tundra, Nat. Geosci., 12, 627–631,
https://doi.org/10.1038/s41561-019-0387-6, 2019.
Prokushkin, A. S., Pokrovsky, O. S., Shirokova, L. S., Korets, M. A., Viers,
J., Prokushkin, S. G., Amon, R. M. W., Guggenberger, G., and McDowell, W.
H.: Sources and the flux pattern of dissolved carbon in rivers of the
Yenisey basin draining the Central Siberian Plateau, Environ. Res. Lett., 6,
045212, https://doi.org/10.1088/1748-9326/6/4/045212, 2011.
Pugach, S. P. and Pipko, I. I.: Dynamics of colored dissolved matter on the
East Siberian sea shelf, Dokl. Earth Sci., 448, 153–156,
https://doi.org/10.1134/S1028334x12120173, 2013.
Pugach, S. P., Pipko, I. I., Shakhova, N. E., Shirshin, E. A., Perminova, I.
V., Gustafsson, O., Bondur, V. G., Ruban, A. S., and Semiletov, I. P.:
Dissolved organic matter and its optical characteristics in the Laptev and
East Siberian seas: spatial distribution and interannual variability
(2003–2011), Ocean Sci., 14, 87–103, https://doi.org/10.5194/os-14-87-2018,
2018.
Retelletti-Brogi, S., Ha, S.-Y., Kim, K., Derrien, M., Lee, Y. K., and Hur,
J.: Optical and molecular characterization of dissolved organic matter (DOM)
in the Arctic ice core and the underlying seawater (Cambridge Bay, Canada):
Implication for increased autochthonous DOM during ice melting, Sci. Total
Environ., 627, 802–811, https://doi.org/10.1016/j.scitotenv.2018.01.251,
2018.
Rawlins, M. A., Steele, M., Holland, M. M., Adam, J. C., Cherry, J. E.,
Francis, J. A., Groisman, P. Y., Hinzman, L. D., Huntington, T. G., Kane, D.
L., Kimball, J. S., Kwok, R., Lammers, R. B., Lee, C. M., Lettenmaier, D.
P., McDonald, K. C., Podest, E., Pundsack, J. W., Rudels, B., Serreze, M.
C., Shiklomanov, A., Skagseth, O., Troy, T. J., Vorosmarty, C. J.,
Wensnahan, M., Wood, E. F., Woodgate, R., Yang, D. Q., Zhang, K., and Zhang,
T. J.: Analysis of the Arctic System for Freshwater Cycle Intensification:
Observations and Expectations, J. Clim., 23, 5715–5737,
https://doi.org/10.1175/2010jcli3421.1, 2010.
Raymond, P. A., McClelland, J. W., Holmes, R. M., Zhulidov, A. V., Mull, K.,
Peterson, B. J., Striegl, R. G., Aiken, G. R., and Gurtovaya, T. Y.: Flux
and age of dissolved organic carbon exported to the Arctic Ocean: A carbon
isotopic study of the five largest arctic rivers, Global Biogeochem. Cy., 21,
Gb4011, https://doi.org/10.1029/2007gb002934, 2007.
Schlitzer, R.: Interactive analysis and visualization of geoscience data
with Ocean Data View, Comput. Geosci.-UK, 28, 1211–1218, https://doi.org/10.1016/S0098-3004(02)00040-7, 2002.
Selyuzhenok, V., Krumpen, T., Mahoney, A., Janout, M., and Gerdes, R.:
Seasonal and interannual variability of fast ice extent in the southeastern
Laptev Sea between 1999 and 2013, J. Geophys. Res.-Ocean., 120, 7791–7806,
https://doi.org/10.1002/2015jc011135, 2015.
Semiletov, I., Pipko, I., Gustafsson, O., Anderson, L. G., Sergienko, V.,
Pugach, S., Dudarev, O., Charkin, A., Gukov, A., Broder, L., Andersson, A.,
Spivak, E., and Shakhova, N.: Acidification of East Siberian Arctic Shelf
waters through addition of freshwater and terrestrial carbon, Nat. Geosci., 9,
361–365, https://doi.org/10.1038/ngeo2695, 2016.
Shin, K. H. and Tanaka, N.: Distribution of dissolved organic matter in the
eastern Bering Sea, Chukchi Sea (Barrow Canyon) and Beaufort Sea, Geophys.
Res. Lett., 31, L24304, https://doi.org/10.1029/2004gl021039, 2004.
Shiklomanov, A. I., Holmes, R. M., McClelland, J. W., Tank, S. E., and
Spencer, R. G. M.: ArcticGRO Discharge Dataset, Version 2020-01-23,
available at: https://www.arcticgreatrivers.org/data (last access: 25 February 2020), 2020.
Soppa, M. A., Pefanis, V., Hellmann, S., Losa, S. N., Hölemann, J.,
Martynov, F., Heim, B., Janout, M. A., Dinter, T., Rozanov, V., and Bracher,
A.: Assessing the Influence of Water Constituents on the Radiative Heating
of Laptev Sea Shelf Waters, Front Mar. Sci., 6, 221,
https://doi.org/10.3389/fmars.2019.00221, 2019.
Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using
AMSR-E 89-GHz channels, J. Geophys. Res.-Ocean., 113, C02s03,
https://doi.org/10.1029/2005jc003384, 2008.
Stedmon, C. A. and Markager, S.: The optics of chromophoric dissolved
organic matter (CDOM) in the Greenland Sea: An algorithm for differentiation
between marine and terrestrially derived organic matter, Limnol. Oceanogr.,
46, 2087–2093, https://doi.org/10.4319/lo.2001.46.8.2087, 2001.
Stedmon, C. A., Amon, R. M. W., Rinehart, A. J., and Walker, S. A.: The
supply and characteristics of colored dissolved organic matter (CDOM) in the
Arctic Ocean: Pan Arctic trends and differences, Mar. Chem., 124, 108–118,
https://doi.org/10.1016/j.marchem.2010.12.007, 2011.
Stroeve, J. and Notz, D.: Changing state of Arctic sea ice across all
seasons, Environ. Res. Lett., 13, 103001,
https://doi.org/10.1088/1748-9326/aade56, 2018.
Tanaka, K., Takesue, N., Nishioka, J., Kondo, Y., Ooki, A., Kuma, K.,
Hirawake, T., and Yamashita, Y.: The conservative behavior of dissolved
organic carbon in surface waters of the southern Chukchi Sea, Arctic Ocean,
during early summer, Sci. Rep.-UK, 6, 34123,
https://doi.org/10.1038/srep34123, 2016.
Tank, S. E., Striegl, R. G., McClelland, J. W., and Kokelj, S. V.:
Multi-decadal increases in dissolved organic carbon and alkalinity flux from
the Mackenzie drainage basin to the Arctic Ocean, Environ. Res. Lett., 11,
054015, https://doi.org/10.1088/1748-9326/11/5/054015, 2016.
Terhaar, J., Lauerwald, R., Regnier, P., Gruber, N., and Bopp, L.: Around
one third of current Arctic Ocean primary production sustained by rivers and
coastal erosion, Nat. Commun., 12, 169,
https://doi.org/10.1038/s41467-020-20470-z, 2021.
Timmermans, M.-L. and Marshall, J.: Understanding Arctic Ocean Circulation:
A Review of Ocean Dynamics in a Changing Climate, J. Geophys.
Res.-Ocean., 125, 1–35, https://doi.org/10.1029/2018jc014378, 2020.
Wegner, C., Wittbrodt, K., Hölemann, J. A., Janout, M. A., Krumpen, T.,
Selyuzhenok, V., Novikhin, A., Polyakova, Y., Krykova, I., Kassens, H., and
Timokhov, L.: Sediment entrainment into sea ice and transport in the
Transpolar Drift: A case study from the Laptev Sea in winter 2011/2012, Cont.
Shelf Res., 141, 1–10, https://doi.org/10.1016/j.csr.2017.04.010, 2017.
Xie, H., Aubry, C., Zhang, Y., and Song, G.: Chromophoric dissolved organic
matter (CDOM) in first-year sea ice in the western Canadian Arctic, Mar.
Chem., 165, 25–35, https://doi.org/10.1016/j.marchem.2014.07.007, 2014.
Zabłocka, M., Kowalczuk, P., Meler, J., Peeken, I., Dragańska-Deja,
K., and Winogradow, A.: Compositional differences of fluorescent dissolved
organic matter in Arctic Ocean spring sea ice and surface waters north of
Svalbard, Mar. Chem., 227, 103893,
https://doi.org/10.1016/j.marchem.2020.103893, 2020.
Short summary
The Arctic Ocean receives large amounts of river water rich in terrestrial dissolved organic matter (tDOM), which is an important component of the Arctic carbon cycle. Our analysis shows that mixing of three major freshwater sources is the main factor that regulates the distribution of tDOM concentrations in the Siberian shelf seas. In this context, the formation and melting of the land-fast ice in the Laptev Sea and the peak spring discharge of the Lena River are of particular importance.
The Arctic Ocean receives large amounts of river water rich in terrestrial dissolved organic...
Altmetrics
Final-revised paper
Preprint