Research article
18 Jun 2021
Research article
| 18 Jun 2021
The impact of the freeze–melt cycle of land-fast ice on the distribution of dissolved organic matter in the Laptev and East Siberian seas (Siberian Arctic)
Jens A. Hölemann et al.
Related authors
H. Jakob Belter, Thomas Krumpen, Stefan Hendricks, Jens Hoelemann, Markus A. Janout, Robert Ricker, and Christian Haas
The Cryosphere, 14, 2189–2203, https://doi.org/10.5194/tc-14-2189-2020, https://doi.org/10.5194/tc-14-2189-2020, 2020
Short summary
Short summary
The validation of satellite sea ice thickness (SIT) climate data records with newly acquired moored sonar SIT data shows that satellite products provide modal rather than mean SIT in the Laptev Sea region. This tendency of satellite-based SIT products to underestimate mean SIT needs to be considered for investigations of sea ice volume transports. Validation of satellite SIT in the first-year-ice-dominated Laptev Sea will support algorithm development for more reliable SIT records in the Arctic.
Thomas Krumpen, Florent Birrien, Frank Kauker, Thomas Rackow, Luisa von Albedyll, Michael Angelopoulos, H. Jakob Belter, Vladimir Bessonov, Ellen Damm, Klaus Dethloff, Jari Haapala, Christian Haas, Carolynn Harris, Stefan Hendricks, Jens Hoelemann, Mario Hoppmann, Lars Kaleschke, Michael Karcher, Nikolai Kolabutin, Ruibo Lei, Josefine Lenz, Anne Morgenstern, Marcel Nicolaus, Uwe Nixdorf, Tomash Petrovsky, Benjamin Rabe, Lasse Rabenstein, Markus Rex, Robert Ricker, Jan Rohde, Egor Shimanchuk, Suman Singha, Vasily Smolyanitsky, Vladimir Sokolov, Tim Stanton, Anna Timofeeva, Michel Tsamados, and Daniel Watkins
The Cryosphere, 14, 2173–2187, https://doi.org/10.5194/tc-14-2173-2020, https://doi.org/10.5194/tc-14-2173-2020, 2020
Short summary
Short summary
In October 2019 the research vessel Polarstern was moored to an ice floe in order to travel with it on the 1-year-long MOSAiC journey through the Arctic. Here we provide historical context of the floe's evolution and initial state for upcoming studies. We show that the ice encountered on site was exceptionally thin and was formed on the shallow Siberian shelf. The analyses presented provide the initial state for the analysis and interpretation of upcoming biogeochemical and ecological studies.
Bennet Juhls, Pier Paul Overduin, Jens Hölemann, Martin Hieronymi, Atsushi Matsuoka, Birgit Heim, and Jürgen Fischer
Biogeosciences, 16, 2693–2713, https://doi.org/10.5194/bg-16-2693-2019, https://doi.org/10.5194/bg-16-2693-2019, 2019
Short summary
Short summary
In this article, we present the variability and characteristics of dissolved organic matter at the fluvial–marine transition in the Laptev Sea from a unique dataset collected during 11 Arctic expeditions. We develop a new relationship between dissolved organic carbon (DOC) and coloured dissolved organic matter absorption, which is used to estimate surface water DOC concentration from space. We believe that our findings help current efforts to monitor ongoing changes in the Arctic carbon cycle.
B. Heim, E. Abramova, R. Doerffer, F. Günther, J. Hölemann, A. Kraberg, H. Lantuit, A. Loginova, F. Martynov, P. P. Overduin, and C. Wegner
Biogeosciences, 11, 4191–4210, https://doi.org/10.5194/bg-11-4191-2014, https://doi.org/10.5194/bg-11-4191-2014, 2014
L. Rabenstein, T. Krumpen, S. Hendricks, C. Koeberle, C. Haas, and J. A. Hoelemann
The Cryosphere, 7, 947–959, https://doi.org/10.5194/tc-7-947-2013, https://doi.org/10.5194/tc-7-947-2013, 2013
T. Krumpen, M. Janout, K. I. Hodges, R. Gerdes, F. Girard-Ardhuin, J. A. Hölemann, and S. Willmes
The Cryosphere, 7, 349–363, https://doi.org/10.5194/tc-7-349-2013, https://doi.org/10.5194/tc-7-349-2013, 2013
C. Wegner, D. Bauch, J. A. Hölemann, M. A. Janout, B. Heim, A. Novikhin, H. Kassens, and L. Timokhov
Biogeosciences, 10, 1117–1129, https://doi.org/10.5194/bg-10-1117-2013, https://doi.org/10.5194/bg-10-1117-2013, 2013
Ulrike Herzschuh, Chenzhi Li, Thomas Böhmer, Alexander K. Postl, Birgit Heim, Andrei A. Andreev, Xianyong Cao, Mareike Wieczorek, and Jian Ni
Earth Syst. Sci. Data, 14, 3213–3227, https://doi.org/10.5194/essd-14-3213-2022, https://doi.org/10.5194/essd-14-3213-2022, 2022
Short summary
Short summary
Pollen preserved in environmental archives such as lake sediments and bogs are extensively used for reconstructions of past vegetation and climate. Here we present LegacyPollen 1.0, a dataset of 2831 fossil pollen records from all over the globe that were collected from publicly available databases. We harmonized the names of the pollen taxa so that all datasets can be jointly investigated. LegacyPollen 1.0 is available as an open-access dataset.
Niek Jesse Speetjens, George Tanski, Victoria Martin, Julia Wagner, Andreas Richter, Gustaf Hugelius, Chris Boucher, Rachele Lodi, Christian Knoblauch, Boris P. Koch, Urban Wünsch, Hugues Lantuit, and Jorien E. Vonk
Biogeosciences, 19, 3073–3097, https://doi.org/10.5194/bg-19-3073-2022, https://doi.org/10.5194/bg-19-3073-2022, 2022
Short summary
Short summary
Climate change and warming in the Arctic exceed global averages. As a result, permanently frozen soils (permafrost) which store vast quantities of carbon in the form of dead plant material (organic matter) are thawing. Our study shows that as permafrost landscapes degrade, high concentrations of organic matter are released. Partly, this organic matter is degraded rapidly upon release, while another significant fraction enters stream networks and enters the Arctic Ocean.
Ngai-Ham Chan, Moritz Langer, Bennet Juhls, Tabea Rettelbach, Paul Overduin, Kimberly Huppert, and Jean Braun
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-25, https://doi.org/10.5194/esurf-2022-25, 2022
Preprint under review for ESurf
Short summary
Short summary
Arctic river deltas influence how nutrients and soil organic carbon, carried by sediments from the Arctic landscape, are retained or released into the Arctic Ocean. Under climate change, the deltas themselves and their ecosystems are becoming more vulnerable. We build upon previous models to reproduce for the first time an important feature seen in all Arctic deltas, and simulate its future under a warming climate. This can impact the future of Arctic deltas and the carbon release they moderate.
Martine Lizotte, Bennet Juhls, Atsushi Matsuoka, Philippe Massicotte, Gaëlle Mével, David Obie James Anikina, Sofia Antonova, Guislain Bécu, Marine Béguin, Simon Bélanger, Thomas Bossé-Demers, Lisa Bröder, Flavienne Bruyant, Gwénaëlle Chaillou, Jérôme Comte, Raoul-Marie Couture, Emmanuel Devred, Gabrièle Deslongchamps, Thibaud Dezutter, Miles Dillon, David Doxaran, Aude Flamand, Frank Fell, Joannie Ferland, Marie-Hélène Forget, Michael Fritz, Thomas J. Gordon, Caroline Guilmette, Andrea Hilborn, Rachel Hussherr, Charlotte Irish, Fabien Joux, Lauren Kipp, Audrey Laberge-Carignan, Hugues Lantuit, Edouard Leymarie, Antonio Mannino, Juliette Maury, Paul Overduin, Laurent Oziel, Colin Stedmon, Crystal Thomas, Lucas Tisserand, Jean-Éric Tremblay, Jorien Vonk, Dustin Whalen, and Marcel Babin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-163, https://doi.org/10.5194/essd-2022-163, 2022
Preprint under review for ESSD
Short summary
Short summary
Permafrost thaw in the Mackenzie Delta region results in the release of organic matter into the coastal marine environment. What happens to this carbon-rich organic matter as it transits along the fresh to salty aquatic environments is still under-documented. Four expeditions were conducted from April to September 2019 in the coastal area of the Beaufort Sea to study the fate of organic matter. This paper describes a rich set of data characterizing the composition and sources of organic matter.
Julian Gutt, Stefanie Arndt, David Keith Alan Barnes, Horst Bornemann, Thomas Brey, Olaf Eisen, Hauke Flores, Huw Griffiths, Christian Haas, Stefan Hain, Tore Hattermann, Christoph Held, Mario Hoppema, Enrique Isla, Markus Janout, Céline Le Bohec, Heike Link, Felix Christopher Mark, Sebastien Moreau, Scarlett Trimborn, Ilse van Opzeeland, Hans-Otto Pörtner, Fokje Schaafsma, Katharina Teschke, Sandra Tippenhauer, Anton Van de Putte, Mia Wege, Daniel Zitterbart, and Dieter Piepenburg
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-110, https://doi.org/10.5194/bg-2022-110, 2022
Preprint under review for BG
Short summary
Short summary
Long-term ecological observations are key to assess, understand and predict impacts of environmental change on biotas. We present a multidisciplinary framework for such largely lacking investigations in the East Antarctic Southern Ocean, combined with case studies, experimental and modelling work. As climate change is still minor here but is projected to start soon, the timely implementation of this framework provides the unique opportunity to document its ecological impacts from the very onset.
Matthias Fuchs, Juri Palmtag, Bennet Juhls, Pier Paul Overduin, Guido Grosse, Ahmed Abdelwahab, Michael Bedington, Tina Sanders, Olga Ogneva, Irina V. Fedorova, Nikita S. Zimov, Paul J. Mann, and Jens Strauss
Earth Syst. Sci. Data, 14, 2279–2301, https://doi.org/10.5194/essd-14-2279-2022, https://doi.org/10.5194/essd-14-2279-2022, 2022
Short summary
Short summary
We created digital, high-resolution bathymetry data sets for the Lena Delta and Kolyma Gulf regions in northeastern Siberia. Based on nautical charts, we digitized depth points and isobath lines, which serve as an input for a 50 m bathymetry model. The benefit of this data set is the accurate mapping of near-shore areas as well as the offshore continuation of the main deep river channels. This will improve the estimation of river outflow and the nutrient flux output into the coastal zone.
Femke van Geffen, Birgit Heim, Frederic Brieger, Rongwei Geng, Iuliia A. Shevtsova, Luise Schulte, Simone M. Stuenzi, Nadine Bernhardt, Elena I. Troeva, Luidmila A. Pestryakova, Evgenij S. Zakharov, Bringfried Pflug, Ulrike Herzschuh, and Stefan Kruse
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-281, https://doi.org/10.5194/essd-2021-281, 2021
Preprint under review for ESSD
Short summary
Short summary
SiDroForest is an attempt to remedy data scarcity regarding vegetation data in the circumpolar region, whilst providing adjusted and labelled data for machine learning and upscaling practices. SiDroForest contains four datasets that include SfM point clouds, individually labelled trees, synthetic tree crowns and labelled Sentinel-2 patches that provide insights into the vegetation composition and forest structure of two important vegetation transition zones in Siberia, Russia.
Thomas Krumpen, Luisa von Albedyll, Helge F. Goessling, Stefan Hendricks, Bennet Juhls, Gunnar Spreen, Sascha Willmes, H. Jakob Belter, Klaus Dethloff, Christian Haas, Lars Kaleschke, Christian Katlein, Xiangshan Tian-Kunze, Robert Ricker, Philip Rostosky, Janna Rückert, Suman Singha, and Julia Sokolova
The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021, https://doi.org/10.5194/tc-15-3897-2021, 2021
Short summary
Short summary
We use satellite data records collected along the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) drift to categorize ice conditions that shaped and characterized the floe and surroundings during the expedition. A comparison with previous years is made whenever possible. The aim of this analysis is to provide a basis and reference for subsequent research in the six main research areas of atmosphere, ocean, sea ice, biogeochemistry, remote sensing and ecology.
Lydia Stolpmann, Caroline Coch, Anne Morgenstern, Julia Boike, Michael Fritz, Ulrike Herzschuh, Kathleen Stoof-Leichsenring, Yury Dvornikov, Birgit Heim, Josefine Lenz, Amy Larsen, Katey Walter Anthony, Benjamin Jones, Karen Frey, and Guido Grosse
Biogeosciences, 18, 3917–3936, https://doi.org/10.5194/bg-18-3917-2021, https://doi.org/10.5194/bg-18-3917-2021, 2021
Short summary
Short summary
Our new database summarizes DOC concentrations of 2167 water samples from 1833 lakes in permafrost regions across the Arctic to provide insights into linkages between DOC and environment. We found increasing lake DOC concentration with decreasing permafrost extent and higher DOC concentrations in boreal permafrost sites compared to tundra sites. Our study shows that DOC concentration depends on the environmental properties of a lake, especially permafrost extent, ecoregion, and vegetation.
Iuliia Shevtsova, Ulrike Herzschuh, Birgit Heim, Luise Schulte, Simone Stünzi, Luidmila A. Pestryakova, Evgeniy S. Zakharov, and Stefan Kruse
Biogeosciences, 18, 3343–3366, https://doi.org/10.5194/bg-18-3343-2021, https://doi.org/10.5194/bg-18-3343-2021, 2021
Short summary
Short summary
In the light of climate changes in subarctic regions, notable general increase in above-ground biomass for the past 15 years (2000 to 2017) was estimated along a tundra–taiga gradient of central Chukotka (Russian Far East). The greatest increase occurred in the northern taiga in the areas of larch closed-canopy forest expansion with Cajander larch as a main contributor. For the estimations, we used field data (taxa-separated plant biomass, 2018) and upscaled it based on Landsat satellite data.
Ingeborg Bussmann, Irina Fedorova, Bennet Juhls, Pier Paul Overduin, and Matthias Winkel
Biogeosciences, 18, 2047–2061, https://doi.org/10.5194/bg-18-2047-2021, https://doi.org/10.5194/bg-18-2047-2021, 2021
Short summary
Short summary
Arctic rivers, lakes, and bays are affected by a warming climate. We measured the amount and consumption of methane in waters from Siberia under ice cover and in open water. In the lake, methane concentrations under ice cover were much higher than in summer, and methane consumption was highest. The ice cover leads to higher methane concentration under ice. In a warmer Arctic, there will be more time with open water when methane is consumed by bacteria, and less methane will escape into the air.
H. Jakob Belter, Thomas Krumpen, Stefan Hendricks, Jens Hoelemann, Markus A. Janout, Robert Ricker, and Christian Haas
The Cryosphere, 14, 2189–2203, https://doi.org/10.5194/tc-14-2189-2020, https://doi.org/10.5194/tc-14-2189-2020, 2020
Short summary
Short summary
The validation of satellite sea ice thickness (SIT) climate data records with newly acquired moored sonar SIT data shows that satellite products provide modal rather than mean SIT in the Laptev Sea region. This tendency of satellite-based SIT products to underestimate mean SIT needs to be considered for investigations of sea ice volume transports. Validation of satellite SIT in the first-year-ice-dominated Laptev Sea will support algorithm development for more reliable SIT records in the Arctic.
Thomas Krumpen, Florent Birrien, Frank Kauker, Thomas Rackow, Luisa von Albedyll, Michael Angelopoulos, H. Jakob Belter, Vladimir Bessonov, Ellen Damm, Klaus Dethloff, Jari Haapala, Christian Haas, Carolynn Harris, Stefan Hendricks, Jens Hoelemann, Mario Hoppmann, Lars Kaleschke, Michael Karcher, Nikolai Kolabutin, Ruibo Lei, Josefine Lenz, Anne Morgenstern, Marcel Nicolaus, Uwe Nixdorf, Tomash Petrovsky, Benjamin Rabe, Lasse Rabenstein, Markus Rex, Robert Ricker, Jan Rohde, Egor Shimanchuk, Suman Singha, Vasily Smolyanitsky, Vladimir Sokolov, Tim Stanton, Anna Timofeeva, Michel Tsamados, and Daniel Watkins
The Cryosphere, 14, 2173–2187, https://doi.org/10.5194/tc-14-2173-2020, https://doi.org/10.5194/tc-14-2173-2020, 2020
Short summary
Short summary
In October 2019 the research vessel Polarstern was moored to an ice floe in order to travel with it on the 1-year-long MOSAiC journey through the Arctic. Here we provide historical context of the floe's evolution and initial state for upcoming studies. We show that the ice encountered on site was exceptionally thin and was formed on the shallow Siberian shelf. The analyses presented provide the initial state for the analysis and interpretation of upcoming biogeochemical and ecological studies.
Caroline Coch, Bennet Juhls, Scott F. Lamoureux, Melissa J. Lafrenière, Michael Fritz, Birgit Heim, and Hugues Lantuit
Biogeosciences, 16, 4535–4553, https://doi.org/10.5194/bg-16-4535-2019, https://doi.org/10.5194/bg-16-4535-2019, 2019
Short summary
Short summary
Climate change affects Arctic ecosystems. This includes thawing of permafrost (ground below 0 °C) and an increase in rainfall. Both have substantial impacts on the chemical composition of river water. We compared the composition of small rivers in the low and high Arctic with the large Arctic rivers. In comparison, dissolved organic matter in the small rivers is more susceptible to degradation; thus, it could potentially increase carbon dioxide emissions. Rainfall events have a similar effect.
Sinikka T. Lennartz, Marc von Hobe, Dennis Booge, Henry C. Bittig, Tim Fischer, Rafael Gonçalves-Araujo, Kerstin B. Ksionzek, Boris P. Koch, Astrid Bracher, Rüdiger Röttgers, Birgit Quack, and Christa A. Marandino
Ocean Sci., 15, 1071–1090, https://doi.org/10.5194/os-15-1071-2019, https://doi.org/10.5194/os-15-1071-2019, 2019
Short summary
Short summary
The ocean emits the gases carbonyl sulfide (OCS) and carbon disulfide (CS2), which affect our climate. The goal of this study was to quantify the rates at which both gases are produced in the eastern tropical South Pacific (ETSP), one of the most productive oceanic regions worldwide. Both gases are produced by reactions triggered by sunlight, but we found that the amount produced depends on different factors. Our results improve numerical models to predict oceanic concentrations of both gases.
Bennet Juhls, Pier Paul Overduin, Jens Hölemann, Martin Hieronymi, Atsushi Matsuoka, Birgit Heim, and Jürgen Fischer
Biogeosciences, 16, 2693–2713, https://doi.org/10.5194/bg-16-2693-2019, https://doi.org/10.5194/bg-16-2693-2019, 2019
Short summary
Short summary
In this article, we present the variability and characteristics of dissolved organic matter at the fluvial–marine transition in the Laptev Sea from a unique dataset collected during 11 Arctic expeditions. We develop a new relationship between dissolved organic carbon (DOC) and coloured dissolved organic matter absorption, which is used to estimate surface water DOC concentration from space. We believe that our findings help current efforts to monitor ongoing changes in the Arctic carbon cycle.
Sophia Walther, Luis Guanter, Birgit Heim, Martin Jung, Gregory Duveiller, Aleksandra Wolanin, and Torsten Sachs
Biogeosciences, 15, 6221–6256, https://doi.org/10.5194/bg-15-6221-2018, https://doi.org/10.5194/bg-15-6221-2018, 2018
Short summary
Short summary
We explored the timing of the peak of the short annual growing season in tundra ecosystems as indicated by an extensive suite of satellite indicators of vegetation productivity. Delayed peak greenness compared to peak photosynthesis is consistently found across years and land-cover classes. Plants also experience growth after optimal conditions for assimilation regarding light and temperature have passed. Our results have implications for the modelling of the circumpolar carbon balance.
Amelie Driemel, Eberhard Fahrbach, Gerd Rohardt, Agnieszka Beszczynska-Möller, Antje Boetius, Gereon Budéus, Boris Cisewski, Ralph Engbrodt, Steffen Gauger, Walter Geibert, Patrizia Geprägs, Dieter Gerdes, Rainer Gersonde, Arnold L. Gordon, Hannes Grobe, Hartmut H. Hellmer, Enrique Isla, Stanley S. Jacobs, Markus Janout, Wilfried Jokat, Michael Klages, Gerhard Kuhn, Jens Meincke, Sven Ober, Svein Østerhus, Ray G. Peterson, Benjamin Rabe, Bert Rudels, Ursula Schauer, Michael Schröder, Stefanie Schumacher, Rainer Sieger, Jüri Sildam, Thomas Soltwedel, Elena Stangeew, Manfred Stein, Volker H Strass, Jörn Thiede, Sandra Tippenhauer, Cornelis Veth, Wilken-Jon von Appen, Marie-France Weirig, Andreas Wisotzki, Dieter A. Wolf-Gladrow, and Torsten Kanzow
Earth Syst. Sci. Data, 9, 211–220, https://doi.org/10.5194/essd-9-211-2017, https://doi.org/10.5194/essd-9-211-2017, 2017
Short summary
Short summary
Our oceans are always in motion – huge water masses are circulated by winds and by global seawater density gradients resulting from different water temperatures and salinities. Measuring temperature and salinity of the world's oceans is crucial e.g. to understand our climate. Since 1983, the research icebreaker Polarstern has been the basis of numerous water profile measurements in the Arctic and the Antarctic. We report on a unique collection of 33 years of polar salinity and temperature data.
Urban Johannes Wünsch, Boris Peter Koch, Matthias Witt, and Joseph Andrew Needoba
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-263, https://doi.org/10.5194/bg-2016-263, 2016
Revised manuscript not accepted
Short summary
Short summary
We used a combination of continuously measuring water chemistry sensors and periodic sampling efforts to assess the seasonal variability of dissolved organic matter (DOM) in the Columbia River in spring and summer 2013.
We found that our sensors can provide detailed data on carbon export that far exceed usual monitoring efforts. The detailed data help to understand the impact of short-lived events, such as rainstorms, on the overall terrestrial carbon flux in the Columbia River.
T. Pados, R. F. Spielhagen, D. Bauch, H. Meyer, and M. Segl
Biogeosciences, 12, 1733–1752, https://doi.org/10.5194/bg-12-1733-2015, https://doi.org/10.5194/bg-12-1733-2015, 2015
Short summary
Short summary
Fossil planktic foraminifera and their geochemical composition are commonly used proxies in palaeoceanography. Our study with living specimens revealed that in the Fram Strait both Neogloboquadrina pachyderma and Turborotalita quinqueloba from the water column have lower δ18O and δ13C values than inorganically precipitated calcite/fossil tests from the sediment surface. These offsets indicate biological influence during calcification and a change of water column properties in the recent past.
I. Fedorova, A. Chetverova, D. Bolshiyanov, A. Makarov, J. Boike, B. Heim, A. Morgenstern, P. P. Overduin, C. Wegner, V. Kashina, A. Eulenburg, E. Dobrotina, and I. Sidorina
Biogeosciences, 12, 345–363, https://doi.org/10.5194/bg-12-345-2015, https://doi.org/10.5194/bg-12-345-2015, 2015
N. Jiao, C. Robinson, F. Azam, H. Thomas, F. Baltar, H. Dang, N. J. Hardman-Mountford, M. Johnson, D. L. Kirchman, B. P. Koch, L. Legendre, C. Li, J. Liu, T. Luo, Y.-W. Luo, A. Mitra, A. Romanou, K. Tang, X. Wang, C. Zhang, and R. Zhang
Biogeosciences, 11, 5285–5306, https://doi.org/10.5194/bg-11-5285-2014, https://doi.org/10.5194/bg-11-5285-2014, 2014
I. A. Dmitrenko, S. A. Kirillov, N. Serra, N. V. Koldunov, V. V. Ivanov, U. Schauer, I. V. Polyakov, D. Barber, M. Janout, V. S. Lien, M. Makhotin, and Y. Aksenov
Ocean Sci., 10, 719–730, https://doi.org/10.5194/os-10-719-2014, https://doi.org/10.5194/os-10-719-2014, 2014
B. Heim, E. Abramova, R. Doerffer, F. Günther, J. Hölemann, A. Kraberg, H. Lantuit, A. Loginova, F. Martynov, P. P. Overduin, and C. Wegner
Biogeosciences, 11, 4191–4210, https://doi.org/10.5194/bg-11-4191-2014, https://doi.org/10.5194/bg-11-4191-2014, 2014
B. P. Koch, G. Kattner, M. Witt, and U. Passow
Biogeosciences, 11, 4173–4190, https://doi.org/10.5194/bg-11-4173-2014, https://doi.org/10.5194/bg-11-4173-2014, 2014
D. Bauch, S. Torres-Valdes, I. Polyakov, A. Novikhin, I. Dmitrenko, J. McKay, and A. Mix
Ocean Sci., 10, 141–154, https://doi.org/10.5194/os-10-141-2014, https://doi.org/10.5194/os-10-141-2014, 2014
A. C. Kraberg, E. Druzhkova, B. Heim, M. J. G. Loeder, and K. H. Wiltshire
Biogeosciences, 10, 7263–7277, https://doi.org/10.5194/bg-10-7263-2013, https://doi.org/10.5194/bg-10-7263-2013, 2013
L. Rabenstein, T. Krumpen, S. Hendricks, C. Koeberle, C. Haas, and J. A. Hoelemann
The Cryosphere, 7, 947–959, https://doi.org/10.5194/tc-7-947-2013, https://doi.org/10.5194/tc-7-947-2013, 2013
T. Krumpen, M. Janout, K. I. Hodges, R. Gerdes, F. Girard-Ardhuin, J. A. Hölemann, and S. Willmes
The Cryosphere, 7, 349–363, https://doi.org/10.5194/tc-7-349-2013, https://doi.org/10.5194/tc-7-349-2013, 2013
C. Wegner, D. Bauch, J. A. Hölemann, M. A. Janout, B. Heim, A. Novikhin, H. Kassens, and L. Timokhov
Biogeosciences, 10, 1117–1129, https://doi.org/10.5194/bg-10-1117-2013, https://doi.org/10.5194/bg-10-1117-2013, 2013
Related subject area
Biogeochemistry: Coastal Ocean
Investigating the effect of nickel concentration on phytoplankton growth to assess potential side-effects of ocean alkalinity enhancement
Unprecedented summer hypoxia in southern Cape Cod Bay: an ecological response to regional climate change?
Interannual variabilities, long-term trends, and regulating factors of low-oxygen conditions in the coastal waters off Hong Kong
Causes of the extensive hypoxia in the Gulf of Riga in 2018
Trawling effects on biogeochemical processes are mediated by fauna in high-energy biogenic-reef-inhabited coastal sediments
Drought recorded by Ba∕Ca in coastal benthic foraminifera
A nitrate budget of the Bohai Sea based on an isotope mass balance model
Suspended particulate matter drives the spatial segregation of nitrogen turnover along the hyper-turbid Ems estuary
Benthic Alkalinity fluxes from coastal sediments of the Baltic and North Seas: Comparing approaches and identifying knowledge gaps
Marine CO2 system variability along the northeast Pacific Inside Passage determined from an Alaskan ferry
Reviews and syntheses: Spatial and temporal patterns in seagrass metabolic fluxes
Mixed layer depth dominates over upwelling in regulating the seasonality of ecosystem functioning in the Peruvian upwelling system
Temporal dynamics of surface ocean carbonate chemistry in response to natural and simulated upwelling events during the 2017 coastal El Niño near Callao, Peru
Pelagic primary production in the coastal Mediterranean Sea: variability, trends, and contribution to basin-scale budgets
Contrasting patterns of carbon cycling and dissolved organic matter processing in two phytoplankton–bacteria communities
Biophysical controls on seasonal changes in the structure, growth, and grazing of the size-fractionated phytoplankton community in the northern South China Sea
Seasonal dispersal of fjord meltwaters as an important source of iron and manganese to coastal Antarctic phytoplankton
Modeling cyanobacteria life cycle dynamics and historical nitrogen fixation in the Baltic Proper
Simultaneous assessment of oxygen- and nitrate-based net community production in a temperate shelf sea from a single ocean glider
Reviews and syntheses: Physical and biogeochemical processes associated with upwelling in the Indian Ocean
Particulate organic carbon dynamics in the Gulf of Lion shelf (NW Mediterranean) using a coupled hydrodynamic–biogeochemical model
Technical note: Novel triple O2 sensor aquatic eddy covariance instrument with improved time shift correction reveals central role of microphytobenthos for carbon cycling in coral reef sands
Long-term spatiotemporal variations in and expansion of low-oxygen conditions in the Pearl River estuary: a study synthesizing observations during 1976–2017
Fe-binding organic ligands in coastal and frontal regions of the western Antarctic Peninsula
Temporal variability and driving factors of the carbonate system in the Aransas Ship Channel, TX, USA: a time series study
Nitrogen loss processes in response to upwelling in a Peruvian coastal setting dominated by denitrification – a mesocosm approach
Retracing hypoxia in Eckernförde Bight (Baltic Sea)
The fate of upwelled nitrate off Peru shaped by submesoscale filaments and fronts
Coastal processes modify projections of some climate-driven stressors in the California Current System
Upwelling-induced trace gas dynamics in the Baltic Sea inferred from 8 years of autonomous measurements on a ship of opportunity
Destruction and reinstatement of coastal hypoxia in the South China Sea off the Pearl River estuary
Hypersaline tidal flats as important “blue carbon” systems: a case study from three ecosystems
Drivers and impact of the seasonal variability of the organic carbon offshore transport in the Canary upwelling system
Organic carbon densities and accumulation rates in surface sediments of the North Sea and Skagerrak
An observation-based evaluation and ranking of historical Earth system model simulations in the northwest North Atlantic Ocean
Characterizing the origins of dissolved organic carbon in coastal seawater using stable carbon isotope and light absorption characteristics
Warming and ocean acidification may decrease estuarine dissolved organic carbon export to the ocean
Chemical characterization of the Punta de Fuencaliente CO2-enriched system (La Palma, NE Atlantic Ocean): a new natural laboratory for ocean acidification studies
The seasonal phases of an Arctic lagoon reveal the discontinuities of pH variability and CO2 flux at the air–sea interface
The northern European shelf as an increasing net sink for CO2
Impacts of biogenic polyunsaturated aldehydes on metabolism and community composition of particle-attached bacteria in coastal hypoxia
A Lagrangian study of the contribution of the Canary coastal upwelling to the nitrogen budget of the open North Atlantic
Denitrification by benthic foraminifera and their contribution to N-loss from a fjord environment
A numerical model study of the main factors contributing to hypoxia and its interannual and short-term variability in the East China Sea
The effects of decomposing invasive jellyfish on biogeochemical fluxes and microbial dynamics in an ultra-oligotrophic sea
Using 226Ra and 228Ra isotopes to distinguish water mass distribution in the Canadian Arctic Archipelago
Factors controlling plankton community production, export flux, and particulate matter stoichiometry in the coastal upwelling system off Peru
Reconstructing extreme climatic and geochemical conditions during the largest natural mangrove dieback on record
Technical note: Measurements and data analysis of sediment–water oxygen flux using a new dual-optode eddy covariance instrument
The impact of intertidal areas on the carbonate system of the southern North Sea
Jiaying Abby Guo, Robert Strzepek, Anusuya Willis, Aaron Ferderer, and Lennart Thomas Bach
Biogeosciences, 19, 3683–3697, https://doi.org/10.5194/bg-19-3683-2022, https://doi.org/10.5194/bg-19-3683-2022, 2022
Short summary
Short summary
Ocean alkalinity enhancement is a CO2 removal method with significant potential, but it can lead to a perturbation of the ocean with trace metals such as nickel. This study tested the effect of increasing nickel concentrations on phytoplankton growth and photosynthesis. We found that the response to nickel varied across the 11 phytoplankton species tested here, but the majority were rather insensitive. We note, however, that responses may be different under other experimental conditions.
Malcolm E. Scully, W. Rockwell Geyer, David Borkman, Tracy L. Pugh, Amy Costa, and Owen C. Nichols
Biogeosciences, 19, 3523–3536, https://doi.org/10.5194/bg-19-3523-2022, https://doi.org/10.5194/bg-19-3523-2022, 2022
Short summary
Short summary
For two consecutive summers, the bottom waters in southern Cape Cod Bay became severely depleted of dissolved oxygen. Low oxygen levels in bottom waters have never been reported in this area before, and this unprecedented occurrence is likely the result of a new algae species that recently began blooming during the late-summer months. We present data suggesting that blooms of this new species are the result of regional climate change including warmer waters and changes in summer winds.
Zheng Chen, Bin Wang, Chuang Xu, Zhongren Zhang, Shiyu Li, and Jiatang Hu
Biogeosciences, 19, 3469–3490, https://doi.org/10.5194/bg-19-3469-2022, https://doi.org/10.5194/bg-19-3469-2022, 2022
Short summary
Short summary
Deterioration of low-oxygen conditions in the coastal waters off Hong Kong was revealed by monitoring data over two decades. The declining wind forcing and the increasing nutrient input contributed significantly to the areal expansion and intense deterioration of low-oxygen conditions. Also, the exacerbated eutrophication drove a shift in the dominant source of organic matter from terrestrial inputs to in situ primary production, which has probably led to an earlier onset of hypoxia in summer.
Stella-Theresa Stoicescu, Jaan Laanemets, Taavi Liblik, Māris Skudra, Oliver Samlas, Inga Lips, and Urmas Lips
Biogeosciences, 19, 2903–2920, https://doi.org/10.5194/bg-19-2903-2022, https://doi.org/10.5194/bg-19-2903-2022, 2022
Short summary
Short summary
Coastal basins with high input of nutrients often suffer from oxygen deficiency. In summer 2018, the extent of oxygen depletion was exceptional in the Gulf of Riga. We analyzed observational data and found that extensive oxygen deficiency appeared since the water layer close to the seabed, where oxygen is consumed, was separated from the surface layer. The problem worsens if similar conditions restricting vertical transport of oxygen occur more frequently in the future.
Justin C. Tiano, Jochen Depestele, Gert Van Hoey, João Fernandes, Pieter van Rijswijk, and Karline Soetaert
Biogeosciences, 19, 2583–2598, https://doi.org/10.5194/bg-19-2583-2022, https://doi.org/10.5194/bg-19-2583-2022, 2022
Short summary
Short summary
This study gives an assessment of bottom trawling on physical, chemical, and biological characteristics in a location known for its strong currents and variable habitats. Although trawl gears only removed the top 1 cm of the seabed surface, impacts on reef-building tubeworms significantly decreased carbon and nutrient cycling. Lighter trawls slightly reduced the impact on fauna and nutrients. Tubeworms were strongly linked to biogeochemical and faunal aspects before but not after trawling.
Inda Brinkmann, Christine Barras, Tom Jilbert, Tomas Næraa, K. Mareike Paul, Magali Schweizer, and Helena L. Filipsson
Biogeosciences, 19, 2523–2535, https://doi.org/10.5194/bg-19-2523-2022, https://doi.org/10.5194/bg-19-2523-2022, 2022
Short summary
Short summary
The concentration of the trace metal barium (Ba) in coastal seawater is a function of continental input, such as riverine discharge. Our geochemical records of the severely hot and dry year 2018, and following wet year 2019, reveal that prolonged drought imprints with exceptionally low Ba concentrations in benthic foraminiferal calcium carbonates of coastal sediments. This highlights the potential of benthic Ba / Ca to trace past climate extremes and variability in coastal marine records.
Shichao Tian, Birgit Gaye, Jianhui Tang, Yongming Luo, Wenguo Li, Niko Lahajnar, Kirstin Dähnke, Tina Sanders, Tianqi Xiong, Weidong Zhai, and Kay-Christian Emeis
Biogeosciences, 19, 2397–2415, https://doi.org/10.5194/bg-19-2397-2022, https://doi.org/10.5194/bg-19-2397-2022, 2022
Short summary
Short summary
We constrain the nitrogen budget and in particular the internal sources and sinks of nitrate in the Bohai Sea by using a mass-based and dual stable isotope approach based on δ15N and δ18O of nitrate. Based on available mass fluxes and isotope data an updated nitrogen budget is proposed. Compared to previous estimates, it is more complete and includes the impact of the interior cycle (nitrification) on the nitrate pool. The main external nitrogen sources are rivers contributing 19.2 %–25.6 %.
Gesa Schulz, Tina Sanders, Justus E. E. van Beusekom, Yoana G. Voynova, Andreas Schöl, and Kirstin Dähnke
Biogeosciences, 19, 2007–2024, https://doi.org/10.5194/bg-19-2007-2022, https://doi.org/10.5194/bg-19-2007-2022, 2022
Short summary
Short summary
Estuaries can significantly alter nutrient loads before reaching coastal waters. Our study of the heavily managed Ems estuary (Northern Germany) reveals three zones of nitrogen turnover along the estuary with water-column denitrification in the most upstream hyper-turbid part, nitrate production in the middle reaches and mixing/nitrate uptake in the North Sea. Suspended particulate matter was the overarching control on nitrogen cycling in the hyper-turbid estuary.
Bryce Van Dam, Nele Lehmann, Mary Zeller, Andreas Neumann, Daniel Pröfrock, Marko Lipka, Helmuth Thomas, and Michael E. Böttcher
EGUsphere, https://doi.org/10.5194/egusphere-2022-161, https://doi.org/10.5194/egusphere-2022-161, 2022
Short summary
Short summary
We quantified sediment-water exchange at shallow sites in the North and Baltic Seas. We found that porewater irrigation rates in the former were approximately twice as high as previously estimated, likely driven by relatively high bio-irrigative activity. In contrast, we found small net fluxes of alkalinity, ranging from -35 µmol m-2 hr-1 (uptake) to 53 µmol m-2 hr-1 (release). We attribute this to low net denitrification, carbonate mineral (re)precipitation and sulfide (re)oxidation.
Wiley Evans, Geoffrey T. Lebon, Christen D. Harrington, Yuichiro Takeshita, and Allison Bidlack
Biogeosciences, 19, 1277–1301, https://doi.org/10.5194/bg-19-1277-2022, https://doi.org/10.5194/bg-19-1277-2022, 2022
Short summary
Short summary
Information on the marine carbon dioxide system along the northeast Pacific Inside Passage has been limited. To address this gap, we instrumented an Alaskan ferry in order to characterize the marine carbon dioxide system in this region. Data over a 2-year period were used to assess drivers of the observed variability, identify the timing of severe conditions, and assess the extent of contemporary ocean acidification as well as future levels consistent with a 1.5 °C warmer climate.
Melissa Ward, Tye L. Kindinger, Heidi K. Hirsh, Tessa M. Hill, Brittany M. Jellison, Sarah Lummis, Emily B. Rivest, George G. Waldbusser, Brian Gaylord, and Kristy J. Kroeker
Biogeosciences, 19, 689–699, https://doi.org/10.5194/bg-19-689-2022, https://doi.org/10.5194/bg-19-689-2022, 2022
Short summary
Short summary
Here, we synthesize the results from 62 studies reporting in situ rates of seagrass metabolism to highlight spatial and temporal variability in oxygen fluxes and inform efforts to use seagrass to mitigate ocean acidification. Our analyses suggest seagrass meadows are generally autotrophic and variable in space and time, and the effects on seawater oxygen are relatively small in magnitude.
Tianfei Xue, Ivy Frenger, A. E. Friederike Prowe, Yonss Saranga José, and Andreas Oschlies
Biogeosciences, 19, 455–475, https://doi.org/10.5194/bg-19-455-2022, https://doi.org/10.5194/bg-19-455-2022, 2022
Short summary
Short summary
The Peruvian system supports 10 % of the world's fishing yield. In the Peruvian system, wind and earth’s rotation bring cold, nutrient-rich water to the surface and allow phytoplankton to grow. But observations show that it grows worse at high upwelling. Using a model, we find that high upwelling happens when air mixes the water the most. Then phytoplankton is diluted and grows slowly due to low light and cool upwelled water. This study helps to estimate how it might change in a warming climate.
Shao-Min Chen, Ulf Riebesell, Kai G. Schulz, Elisabeth von der Esch, Eric P. Achterberg, and Lennart T. Bach
Biogeosciences, 19, 295–312, https://doi.org/10.5194/bg-19-295-2022, https://doi.org/10.5194/bg-19-295-2022, 2022
Short summary
Short summary
Oxygen minimum zones in the ocean are characterized by enhanced carbon dioxide (CO2) levels and are being further acidified by increasing anthropogenic atmospheric CO2. Here we report CO2 system measurements in a mesocosm study offshore Peru during a rare coastal El Niño event to investigate how CO2 dynamics may respond to ongoing ocean deoxygenation. Our observations show that nitrogen limitation, productivity, and plankton community shift play an important role in driving the CO2 dynamics.
Paula Maria Salgado-Hernanz, Aurore Regaudie-de-Gioux, David Antoine, and Gotzon Basterretxea
Biogeosciences, 19, 47–69, https://doi.org/10.5194/bg-19-47-2022, https://doi.org/10.5194/bg-19-47-2022, 2022
Short summary
Short summary
For the first time, this study presents the characteristics of primary production in coastal regions of the Mediterranean Sea based on satellite-borne observations for the period 2002–2016. The study concludes that there are significant spatial and temporal variations among different regions. Quantifying primary production is of special importance in the marine food web and in the sequestration of carbon dioxide from the atmosphere to the deep waters.
Samu Elovaara, Eeva Eronen-Rasimus, Eero Asmala, Tobias Tamelander, and Hermanni Kaartokallio
Biogeosciences, 18, 6589–6616, https://doi.org/10.5194/bg-18-6589-2021, https://doi.org/10.5194/bg-18-6589-2021, 2021
Short summary
Short summary
Dissolved organic matter (DOM) is a significant carbon pool in the marine environment. The composition of the DOM pool, as well as its interaction with microbes, is complex, yet understanding it is important for understanding global carbon cycling. This study shows that two phytoplankton species have different effects on the composition of the DOM pool and, through the DOM they produce, on the ensuing microbial community. These communities in turn have different effects on DOM composition.
Yuan Dong, Qian P. Li, Zhengchao Wu, Yiping Shuai, Zijia Liu, Zaiming Ge, Weiwen Zhou, and Yinchao Chen
Biogeosciences, 18, 6423–6434, https://doi.org/10.5194/bg-18-6423-2021, https://doi.org/10.5194/bg-18-6423-2021, 2021
Short summary
Short summary
Temporal change of plankton growth and grazing are less known in the coastal ocean, not to mention the relevant controlling mechanisms. Here, we performed monthly size-specific dilution experiments outside a eutrophic estuary over a 1-year cycle. Phytoplankton growth was correlated to nutrients and grazing mortality to total chlorophyll a. A selective grazing on small cells may be important for maintaining high abundance of large-chain-forming diatoms in this eutrophic system.
Kiefer O. Forsch, Lisa Hahn-Woernle, Robert M. Sherrell, Vincent J. Roccanova, Kaixuan Bu, David Burdige, Maria Vernet, and Katherine A. Barbeau
Biogeosciences, 18, 6349–6375, https://doi.org/10.5194/bg-18-6349-2021, https://doi.org/10.5194/bg-18-6349-2021, 2021
Short summary
Short summary
We show that for an unperturbed cold western Antarctic Peninsula fjord, the seasonality of iron and manganese is linked to the dispersal of metal-rich meltwater sources. Geochemical measurements of trace metals in meltwaters, porewaters, and seawater, collected during two expeditions, showed a seasonal cycle of distinct sources. Finally, model results revealed that the dispersal of surface meltwater and meltwater plumes originating from under the glacier is sensitive to katabatic wind events.
Jenny Hieronymus, Kari Eilola, Malin Olofsson, Inga Hense, H. E. Markus Meier, and Elin Almroth-Rosell
Biogeosciences, 18, 6213–6227, https://doi.org/10.5194/bg-18-6213-2021, https://doi.org/10.5194/bg-18-6213-2021, 2021
Short summary
Short summary
Dense blooms of cyanobacteria occur every summer in the Baltic Proper and can add to eutrophication by their ability to turn nitrogen gas into dissolved inorganic nitrogen. Being able to correctly estimate the size of this nitrogen fixation is important for management purposes. In this work, we find that the life cycle of cyanobacteria plays an important role in capturing the seasonality of the blooms as well as the size of nitrogen fixation in our ocean model.
Tom Hull, Naomi Greenwood, Antony Birchill, Alexander Beaton, Matthew Palmer, and Jan Kaiser
Biogeosciences, 18, 6167–6180, https://doi.org/10.5194/bg-18-6167-2021, https://doi.org/10.5194/bg-18-6167-2021, 2021
Short summary
Short summary
The shallow shelf seas play a large role in the global cycling of CO2 and also support large fisheries. We use an autonomous underwater vehicle in the central North Sea to measure the rates of change in oxygen and nutrients.
Using these data we determine the amount of carbon dioxide taken out of the atmosphere by the sea and measure how productive the region is.
These observations will be useful for improving our predictive models and help us predict and adapt to a changing ocean.
Puthenveettil Narayana Menon Vinayachandran, Yukio Masumoto, Michael J. Roberts, Jenny A. Huggett, Issufo Halo, Abhisek Chatterjee, Prakash Amol, Garuda V. M. Gupta, Arvind Singh, Arnab Mukherjee, Satya Prakash, Lynnath E. Beckley, Eric Jorden Raes, and Raleigh Hood
Biogeosciences, 18, 5967–6029, https://doi.org/10.5194/bg-18-5967-2021, https://doi.org/10.5194/bg-18-5967-2021, 2021
Short summary
Short summary
Upwelling in the coastal ocean triggers biological productivity and thus enhances fisheries. Therefore, understanding the phenomenon of upwelling and the underlying mechanisms is important. In this paper, the present understanding of the upwelling along the coastline of the Indian Ocean from the coast of Africa all the way up to the coast of Australia is reviewed. The review provides a synthesis of the physical processes associated with upwelling and its impact on the marine ecosystem.
Gaël Many, Caroline Ulses, Claude Estournel, and Patrick Marsaleix
Biogeosciences, 18, 5513–5538, https://doi.org/10.5194/bg-18-5513-2021, https://doi.org/10.5194/bg-18-5513-2021, 2021
Short summary
Short summary
The Gulf of Lion shelf is one of the most productive areas in the Mediterranean. A model is used to study the mechanisms that drive the particulate organic carbon (POC). The model reproduces the annual cycle of primary production well. The shelf appears as an autotrophic ecosystem with a high production and as a source of POC for the adjacent basin. The increase in temperature induced by climate change could impact the trophic status of the shelf.
Alireza Merikhi, Peter Berg, and Markus Huettel
Biogeosciences, 18, 5381–5395, https://doi.org/10.5194/bg-18-5381-2021, https://doi.org/10.5194/bg-18-5381-2021, 2021
Short summary
Short summary
The aquatic eddy covariance technique is a powerful method for measurements of solute fluxes across the sediment–water interface. Data measured by conventional eddy covariance instruments require a time shift correction that can result in substantial flux errors. We introduce a triple O2 sensor eddy covariance instrument that by design eliminates these errors. Deployments next to a conventional instrument in the Florida Keys demonstrate the improvements achieved through the new design.
Jiatang Hu, Zhongren Zhang, Bin Wang, and Jia Huang
Biogeosciences, 18, 5247–5264, https://doi.org/10.5194/bg-18-5247-2021, https://doi.org/10.5194/bg-18-5247-2021, 2021
Short summary
Short summary
In situ observations over 42 years were used to explore the long-term changes to low-oxygen conditions in the Pearl River estuary. Apparent expansion of the low-oxygen conditions in summer was identified, primarily due to the combined effects of increased anthropogenic inputs and decreased sediment load. Large areas of severe low-oxygen events were also observed in early autumn and were formed by distinct mechanisms. The estuary seems to be growing into a seasonal, estuary-wide hypoxic zone.
Indah Ardiningsih, Kyyas Seyitmuhammedov, Sylvia G. Sander, Claudine H. Stirling, Gert-Jan Reichart, Kevin R. Arrigo, Loes J. A. Gerringa, and Rob Middag
Biogeosciences, 18, 4587–4601, https://doi.org/10.5194/bg-18-4587-2021, https://doi.org/10.5194/bg-18-4587-2021, 2021
Short summary
Short summary
Organic Fe speciation is investigated along a natural gradient of the western Antarctic Peninsula from an ice-covered shelf to the open ocean. The two major fronts in the region affect the distribution of ligands. The excess ligands not bound to dissolved Fe (DFe) comprised up to 80 % of the total ligand concentrations, implying the potential to solubilize additional Fe input. The ligands on the shelf can increase the DFe residence time and fuel local primary production upon ice melt.
Melissa R. McCutcheon, Hongming Yao, Cory J. Staryk, and Xinping Hu
Biogeosciences, 18, 4571–4586, https://doi.org/10.5194/bg-18-4571-2021, https://doi.org/10.5194/bg-18-4571-2021, 2021
Short summary
Short summary
We used 5+ years of discrete samples and 10 months of hourly sensor measurements to explore temporal variability and environmental controls on pH and pCO2 at the Aransas Ship Channel. Seasonal and diel variability were both present but small compared to other regions in the literature. Despite the small tidal range, tidal control often surpassed biological control. In comparison with sensor data, discrete samples were generally representative of mean annual and seasonal carbonate chemistry.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Heiner Dietze and Ulrike Löptien
Biogeosciences, 18, 4243–4264, https://doi.org/10.5194/bg-18-4243-2021, https://doi.org/10.5194/bg-18-4243-2021, 2021
Short summary
Short summary
In recent years fish-kill events caused by oxygen deficit have been reported in Eckernförde Bight (Baltic Sea). This study sets out to understand the processes causing respective oxygen deficits by combining high-resolution coupled ocean circulation biogeochemical modeling, monitoring data, and artificial intelligence.
Jaard Hauschildt, Soeren Thomsen, Vincent Echevin, Andreas Oschlies, Yonss Saranga José, Gerd Krahmann, Laura A. Bristow, and Gaute Lavik
Biogeosciences, 18, 3605–3629, https://doi.org/10.5194/bg-18-3605-2021, https://doi.org/10.5194/bg-18-3605-2021, 2021
Short summary
Short summary
In this paper we quantify the subduction of upwelled nitrate due to physical processes on the order of several kilometers in the coastal upwelling off Peru and its effect on primary production. We also compare the prepresentation of these processes in a high-resolution simulation (~2.5 km) with a more coarsely resolved simulation (~12 km). To do this, we combine high-resolution shipboard observations of physical and biogeochemical parameters with a complex biogeochemical model configuration.
Samantha A. Siedlecki, Darren Pilcher, Evan M. Howard, Curtis Deutsch, Parker MacCready, Emily L. Norton, Hartmut Frenzel, Jan Newton, Richard A. Feely, Simone R. Alin, and Terrie Klinger
Biogeosciences, 18, 2871–2890, https://doi.org/10.5194/bg-18-2871-2021, https://doi.org/10.5194/bg-18-2871-2021, 2021
Short summary
Short summary
Future ocean conditions can be simulated using projected trends in fossil fuel use paired with Earth system models. Global models generally do not include local processes important to coastal ecosystems. These coastal processes can alter the degree of change projected. Higher-resolution models that include local processes predict modified changes in carbon stressors when compared to changes projected by global models in the California Current System.
Erik Jacobs, Henry C. Bittig, Ulf Gräwe, Carolyn A. Graves, Michael Glockzin, Jens D. Müller, Bernd Schneider, and Gregor Rehder
Biogeosciences, 18, 2679–2709, https://doi.org/10.5194/bg-18-2679-2021, https://doi.org/10.5194/bg-18-2679-2021, 2021
Short summary
Short summary
We use a unique data set of 8 years of continuous carbon dioxide (CO2) and methane (CH4) surface water measurements from a commercial ferry to study upwelling in the Baltic Sea. Its seasonality and regional and interannual variability are examined. Strong upwelling events drastically increase local surface CO2 and CH4 levels and are mostly detected in late summer after long periods of impaired mixing. We introduce an extrapolation method to estimate regional upwelling-induced trace gas fluxes.
Yangyang Zhao, Khanittha Uthaipan, Zhongming Lu, Yan Li, Jing Liu, Hongbin Liu, Jianping Gan, Feifei Meng, and Minhan Dai
Biogeosciences, 18, 2755–2775, https://doi.org/10.5194/bg-18-2755-2021, https://doi.org/10.5194/bg-18-2755-2021, 2021
Short summary
Short summary
In situ oxygen consumption rates were estimated for the first time during destruction of coastal hypoxia as disturbed by a typhoon and its reinstatement in the South China Sea off the Pearl River estuary. The reinstatement of summer hypoxia was rapid with a comparable timescale with that of its initial disturbance from frequent tropical cyclones, which has important implications for better understanding the intermittent nature of coastal hypoxia and its prediction in a changing climate.
Dylan R. Brown, Humberto Marotta, Roberta B. Peixoto, Alex Enrich-Prast, Glenda C. Barroso, Mario L. G. Soares, Wilson Machado, Alexander Pérez, Joseph M. Smoak, Luciana M. Sanders, Stephen Conrad, James Z. Sippo, Isaac R. Santos, Damien T. Maher, and Christian J. Sanders
Biogeosciences, 18, 2527–2538, https://doi.org/10.5194/bg-18-2527-2021, https://doi.org/10.5194/bg-18-2527-2021, 2021
Short summary
Short summary
Hypersaline tidal flats (HTFs) are coastal ecosystems with freshwater deficits often occurring in arid or semi-arid regions near mangrove supratidal zones with no major fluvial contributions. This study shows that HTFs are important carbon and nutrient sinks which may be significant given their extensive coverage. Our findings highlight a previously unquantified carbon as well as a nutrient sink and suggest that coastal HTF ecosystems could be included in the emerging blue carbon framework.
Giulia Bonino, Elisa Lovecchio, Nicolas Gruber, Matthias Münnich, Simona Masina, and Doroteaciro Iovino
Biogeosciences, 18, 2429–2448, https://doi.org/10.5194/bg-18-2429-2021, https://doi.org/10.5194/bg-18-2429-2021, 2021
Short summary
Short summary
Seasonal variations of processes such as upwelling and biological production that happen along the northwestern African coast can modulate the temporal variability of the biological activity of the adjacent open North Atlantic hundreds of kilometers away from the coast thanks to the lateral transport of coastal organic carbon. This happens with a temporal delay, which is smaller than a season up to roughly 500 km from the coast due to the intense transport by small-scale filaments.
Markus Diesing, Terje Thorsnes, and Lilja Rún Bjarnadóttir
Biogeosciences, 18, 2139–2160, https://doi.org/10.5194/bg-18-2139-2021, https://doi.org/10.5194/bg-18-2139-2021, 2021
Short summary
Short summary
The upper 10 cm of the seafloor of the North Sea and Skagerrak contain 231×106 t of carbon in organic form. The Norwegian Trough, the deepest sedimentary basin in the studied area, stands out as a zone of strong organic carbon accumulation with rates on par with neighbouring fjords. Conversely, large parts of the North Sea are characterised by rapid organic carbon degradation and negligible accumulation. This dual character is likely typical for continental shelf sediments worldwide.
Arnaud Laurent, Katja Fennel, and Angela Kuhn
Biogeosciences, 18, 1803–1822, https://doi.org/10.5194/bg-18-1803-2021, https://doi.org/10.5194/bg-18-1803-2021, 2021
Short summary
Short summary
CMIP5 and CMIP6 models, and a high-resolution regional model, were evaluated by comparing historical simulations with observations in the northwest North Atlantic, a climate-sensitive and biologically productive ocean margin region. Many of the CMIP models performed poorly for biological properties. There is no clear link between model resolution and skill in the global models, but there is an overall improvement in performance in CMIP6 from CMIP5. The regional model performed best.
Heejun Han, Jeomshik Hwang, and Guebuem Kim
Biogeosciences, 18, 1793–1801, https://doi.org/10.5194/bg-18-1793-2021, https://doi.org/10.5194/bg-18-1793-2021, 2021
Short summary
Short summary
The main source of excess DOC occurring in coastal seawater off an artificial lake, which is enclosed by a dike along the western coast of South Korea, was determined using a combination of various biogeochemical tools including DOC and nutrient concentrations, stable carbon isotope, and optical properties (absorbance and fluorescence) of dissolved organic matter in two different seasons (March 2017 and September 2018).
Michelle N. Simone, Kai G. Schulz, Joanne M. Oakes, and Bradley D. Eyre
Biogeosciences, 18, 1823–1838, https://doi.org/10.5194/bg-18-1823-2021, https://doi.org/10.5194/bg-18-1823-2021, 2021
Short summary
Short summary
Estuaries are responsible for a large contribution of dissolved organic carbon (DOC) to the global C cycle, but it is unknown how this will change in the future. DOC fluxes from unvegetated sediments were investigated ex situ subject to conditions of warming and ocean acidification. The future climate shifted sediment fluxes from a slight DOC source to a significant sink, with global coastal DOC export decreasing by 80 %. This has global implications for C cycling and long-term C storage.
Sara González-Delgado, David González-Santana, Magdalena Santana-Casiano, Melchor González-Dávila, Celso A. Hernández, Carlos Sangil, and José Carlos Hernández
Biogeosciences, 18, 1673–1687, https://doi.org/10.5194/bg-18-1673-2021, https://doi.org/10.5194/bg-18-1673-2021, 2021
Short summary
Short summary
We describe the carbon system dynamics of a new CO2 seep system located off the coast of La Palma. We explored for over a year, finding points with lower levels of pH and alkalinity; high levels of carbon; and poorer levels of aragonite and calcite, both essential for calcifying species. The seeps are a key feature for robust experimental designs, aimed at comprehending how life has persisted through past eras or at predicting the consequences of ocean acidification in the marine realm.
Cale A. Miller, Christina Bonsell, Nathan D. McTigue, and Amanda L. Kelley
Biogeosciences, 18, 1203–1221, https://doi.org/10.5194/bg-18-1203-2021, https://doi.org/10.5194/bg-18-1203-2021, 2021
Short summary
Short summary
We report here the first year-long high-frequency pH data set for an Arctic lagoon that captures ice-free and ice-covered seasons. pH and salinity correlation varies by year as we observed positive correlation and independence. Photosynthesis is found to drive high pH values, and small changes in underwater solar radiation can result in rapid decreases in pH. We estimate that arctic lagoons may act as sources of CO2 to the atmosphere, potentially offsetting the Arctic Ocean's CO2 sink capacity.
Meike Becker, Are Olsen, Peter Landschützer, Abdirhaman Omar, Gregor Rehder, Christian Rödenbeck, and Ingunn Skjelvan
Biogeosciences, 18, 1127–1147, https://doi.org/10.5194/bg-18-1127-2021, https://doi.org/10.5194/bg-18-1127-2021, 2021
Short summary
Short summary
We developed a simple method to refine existing open-ocean maps towards different coastal seas. Using a multi-linear regression, we produced monthly maps of surface ocean fCO2 in the northern European coastal seas (the North Sea, the Baltic Sea, the Norwegian Coast and the Barents Sea) covering a time period from 1998 to 2016. Based on this fCO2 map, we calculate trends in surface ocean fCO2, pH and the air–sea gas exchange.
Zhengchao Wu, Qian P. Li, Zaiming Ge, Bangqin Huang, and Chunming Dong
Biogeosciences, 18, 1049–1065, https://doi.org/10.5194/bg-18-1049-2021, https://doi.org/10.5194/bg-18-1049-2021, 2021
Short summary
Short summary
Seasonal hypoxia in the nearshore bottom waters frequently occurs in the Pearl River estuary. Aerobic respiration is the ultimate cause of local hypoxia. We found an elevated level of polyunsaturated aldehydes in the bottom water outside the estuary, which promoted the growth and metabolism of special groups of particle-attached bacteria and thus contributed to oxygen depletion in hypoxic waters. Our results may be important for understanding coastal hypoxia and its linkages to eutrophication.
Derara Hailegeorgis, Zouhair Lachkar, Christoph Rieper, and Nicolas Gruber
Biogeosciences, 18, 303–325, https://doi.org/10.5194/bg-18-303-2021, https://doi.org/10.5194/bg-18-303-2021, 2021
Short summary
Short summary
Using a Lagrangian modeling approach, this study provides a quantitative analysis of water and nitrogen offshore transport in the Canary Current System. We investigate the timescales, reach and structure of offshore transport and demonstrate that the Canary upwelling is a key source of nutrients to the open North Atlantic Ocean. Our findings stress the need for improving the representation of the Canary system and other eastern boundary upwelling systems in global coarse-resolution models.
Constance Choquel, Emmanuelle Geslin, Edouard Metzger, Helena L. Filipsson, Nils Risgaard-Petersen, Patrick Launeau, Manuel Giraud, Thierry Jauffrais, Bruno Jesus, and Aurélia Mouret
Biogeosciences, 18, 327–341, https://doi.org/10.5194/bg-18-327-2021, https://doi.org/10.5194/bg-18-327-2021, 2021
Short summary
Short summary
Marine microorganisms such as foraminifera are able to live temporarily without oxygen in sediments. In a Swedish fjord subjected to seasonal oxygen scarcity, a change in fauna linked to the decrease in oxygen and the increase in an invasive species was shown. The invasive species respire nitrate until 100 % of the nitrate porewater in the sediment and could be a major contributor to nitrogen balance in oxic coastal ecosystems. But prolonged hypoxia creates unfavorable conditions to survive.
Haiyan Zhang, Katja Fennel, Arnaud Laurent, and Changwei Bian
Biogeosciences, 17, 5745–5761, https://doi.org/10.5194/bg-17-5745-2020, https://doi.org/10.5194/bg-17-5745-2020, 2020
Short summary
Short summary
In coastal seas, low oxygen, which is detrimental to coastal ecosystems, is increasingly caused by man-made nutrients from land. This is especially so near mouths of major rivers, including the Changjiang in the East China Sea. Here a simulation model is used to identify the main factors determining low-oxygen conditions in the region. High river discharge is identified as the prime cause, while wind and intrusions of open-ocean water modulate the severity and extent of low-oxygen conditions.
Tamar Guy-Haim, Maxim Rubin-Blum, Eyal Rahav, Natalia Belkin, Jacob Silverman, and Guy Sisma-Ventura
Biogeosciences, 17, 5489–5511, https://doi.org/10.5194/bg-17-5489-2020, https://doi.org/10.5194/bg-17-5489-2020, 2020
Short summary
Short summary
The availability of nutrients in oligotrophic marine ecosystems is limited. Following jellyfish blooms, large die-off events result in the release of high amounts of nutrients to the water column and sediment. Our study assessed the decomposition effects of an infamous invasive jellyfish in the ultra-oligotrophic Eastern Mediterranean Sea. We found that jellyfish decomposition favored heterotrophic bacteria and altered biogeochemical fluxes, further impoverishing this nutrient-poor ecosystem.
Chantal Mears, Helmuth Thomas, Paul B. Henderson, Matthew A. Charette, Hugh MacIntyre, Frank Dehairs, Christophe Monnin, and Alfonso Mucci
Biogeosciences, 17, 4937–4959, https://doi.org/10.5194/bg-17-4937-2020, https://doi.org/10.5194/bg-17-4937-2020, 2020
Short summary
Short summary
Major research initiatives have been undertaken within the Arctic Ocean, highlighting this area's global importance and vulnerability to climate change. In 2015, the international GEOTRACES program addressed this importance by devoting intense research activities to the Arctic Ocean. Among various tracers, we used radium and carbonate system data to elucidate the functioning and vulnerability of the hydrographic regime of the Canadian Arctic Archipelago, bridging the Pacific and Atlantic oceans.
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
James Z. Sippo, Isaac R. Santos, Christian J. Sanders, Patricia Gadd, Quan Hua, Catherine E. Lovelock, Nadia S. Santini, Scott G. Johnston, Yota Harada, Gloria Reithmeir, and Damien T. Maher
Biogeosciences, 17, 4707–4726, https://doi.org/10.5194/bg-17-4707-2020, https://doi.org/10.5194/bg-17-4707-2020, 2020
Short summary
Short summary
In 2015–2016, a massive mangrove dieback event occurred along ~1000 km of coastline in Australia. Multiple lines of evidence from climate data, wood and sediment samples suggest low water availability within the dead mangrove forest. Wood and sediments also reveal a large increase in iron concentrations in mangrove sediments during the dieback. This study supports the hypothesis that the forest dieback was associated with low water availability driven by a climate-change-related ENSO event.
Markus Huettel, Peter Berg, and Alireza Merikhi
Biogeosciences, 17, 4459–4476, https://doi.org/10.5194/bg-17-4459-2020, https://doi.org/10.5194/bg-17-4459-2020, 2020
Short summary
Short summary
Oxygen fluxes are a valued proxy for organic carbon production and mineralization at the seafloor. These fluxes can be measured non-invasively with the aquatic eddy covariance instrument, but the fast, fragile oxygen sensor it uses often causes questionable flux data. We developed a dual-O2-optode instrument and data evaluation method that allow improved flux measurements. Deployments over carbonate sands in the shallow shelf demonstrate that the instrument can produce reliable oxygen flux data.
Fabian Schwichtenberg, Johannes Pätsch, Michael Ernst Böttcher, Helmuth Thomas, Vera Winde, and Kay-Christian Emeis
Biogeosciences, 17, 4223–4245, https://doi.org/10.5194/bg-17-4223-2020, https://doi.org/10.5194/bg-17-4223-2020, 2020
Short summary
Short summary
Ocean acidification has a range of potentially harmful consequences for marine organisms. It is related to total alkalinity (TA) mainly produced in oxygen-poor situations like sediments in tidal flats. TA reduces the sensitivity of a water body to acidification. The decomposition of organic material and subsequent TA release in the tidal areas of the North Sea (Wadden Sea) is responsible for reduced acidification in the southern North Sea. This is shown with the results of an ecosystem model.
Cited articles
Alling, V., Sanchez-Garcia, L., Porcelli, D., Pugach, S., Vonk, J. E., van
Dongen, B., Morth, C. M., Anderson, L. G., Sokolov, A., Andersson, P.,
Humborg, C., Semiletov, I., and Gustafsson, O.: Nonconservative behavior of
dissolved organic carbon across the Laptev and East Siberian seas, Global
Biogeochem. Cy., 24, Gb4033, https://doi.org/10.1029/2010gb003834, 2010.
Amon, R. M. W.: The role of dissolved organic matter for the organic carbon
cycle in the Arctic Ocean, in: The organic carbon cycle in the Arctic Ocean,
edited by: Stein, R. and MacDonald, R. W., Springer Verlag, Berlin, 83–99,
2004.
Amon, R. M. W. and Meon, B.: The biogeochemistry of dissolved organic
matter and nutrients in two large Arctic estuaries and potential
implications for our understanding of the Arctic Ocean system, Mar. Chem., 92,
311–330, https://doi.org/10.1016/j.marchem.2004.06.034, 2004.
Amon, R. M. W., Rinehart, A. J., Duan, S., Louchouarn, P., Prokushkin, A.,
Guggenberger, G., Bauch, D., Stedmon, C., Raymond, P. A., Holmes, R. M.,
McClelland, J. W., Peterson, B. J., Walker, S. A., and Zhulidov, A. V.:
Dissolved organic matter sources in large Arctic rivers, Geochim. Cosmochim.
Ac., 94, 217–237, https://doi.org/10.1016/j.gca.2012.07.015, 2012.
Anderson, L. G. and Amon, R. M. W.: DOM in the Arctic Ocean, chap. 14,
in: Biogeochemistry of Marine Dissolved Organic Matter (2nd Edn.),
edited by: Hansell, D. A. and Carlson, C. A., Academic Press, Boston,
609–633, 2015.
Anderson, L. G. and Macdonald, R. W.: Observing the Arctic Ocean carbon
cycle in a changing environment, Polar Res., 34, 26891,
https://doi.org/10.3402/polar.v34.26891, 2015.
Anderson, L. G., Bjork, G., Jutterstrom, S., Pipko, I., Shakhova, N.,
Semiletov, I., and Wahlstrom, I.: East Siberian Sea, an Arctic region of
very high biogeochemical activity, Biogeosciences, 8, 1745–1754,
https://doi.org/10.5194/bg-8-1745-2011, 2011.
Anderson, L. G., Bjork, G., Holby, O., Jutterstrom, S., Morth, C. M.,
O'Regan, M., Pearce, C., Semiletov, I., Stranne, C., Stoven, T., Tanhua, T.,
Ulfsbo, A., and Jakobsson, M.: Shelf-Basin interaction along the East
Siberian Sea, Ocean Sci., 13, 349–363,
https://doi.org/10.5194/os-13-349-2017, 2017.
Bareiss, J. and Görgen, K.: Spatial and temporal variability of sea ice
in the Laptev Sea: Analyses and review of satellite passive-microwave data
and model results, 1979 to 2002, Global Planet. Change, 48, 28–54,
https://doi.org/10.1016/j.gloplacha.2004.12.004, 2005.
Bauch, D. and Thibodeau, B.: Stable oxygen isotope analysis of water samples
during helicopter/ice camp TRANSDRIFT-XX, Laptev Sea, PANGAEA [Dataset],
https://doi.org/10.1594/PANGAEA.924538, 2020.
Bauch, D., Erlenkeuser, H., and Andersen, N.: Water mass processes on Arctic
shelves as revealed from delta O-18 of H2O, Global Planet. Change, 48,
165–174, https://doi.org/10.1016/j.gloplacha.2004.12.011, 2005.
Bauch, D., Dmitrenko, I. A., Wegner, C., Hölemann, J., Kirillov, S. A.,
Timokhov, L. A., and Kassens, H.: Exchange of Laptev Sea and Arctic Ocean
halocline waters in response to atmospheric forcing, J. Geophys. Res.-Ocean.,
114, C05008, https://doi.org/10.1029/2008jc005062, 2009a.
Bauch, D., Dmitrenko, I., Kirillov, S., Wegner, C., Hölemann, J.,
Pivovarov, S., Timokhov, L., and Kassens, H.: Eurasian Arctic shelf
hydrography: Exchange and residence time of southern Laptev Sea waters, Cont.
Shelf Res., 29, 1815, https://doi.org/10.1016/j.csr.2009.06.009, 2009b.
Bauch, D., Hölemann, J., Willmes, S., Groger, M., Novikhin, A.,
Nikulina, A., Kassens, H., and Timokhov, L.: Changes in distribution of
brine waters on the Laptev Sea shelf in 2007, J. Geophys. Res.-Ocean., 115,
C11008, https://doi.org/10.1029/2010jc006249, 2010.
Bauch, D., van der Loeff, M. R., Andersen, N., Torres-Valdes, S., Bakker,
K., and Abrahamsen, E. P.: Origin of freshwater and polynya water in the
Arctic Ocean halocline in summer 2007, Prog. Oceanogr., 91, 482–495,
https://doi.org/10.1016/j.pocean.2011.07.017, 2011.
Bauch, D., Hölemann, J. A., Dmitrenko, I. A., Janout, M. A., Nikulina,
A., Kirillov, S. A., Krumpen, T., Kassens, H., and Timokhov, L.: Impact of
Siberian coastal polynyas on shelf-derived Arctic Ocean halocline waters, J.
Geophys. Res.-Ocean., 117, C00g12, https://doi.org/10.1029/2011jc007282,
2012.
Bauch, D., Hölemann, J. A., Nikulina, A., Wegner, C., Janout, M. A.,
Timokhov, L. A., and Kassens, H.: Correlation of river water and local
sea-ice melting on the Laptev Sea shelf (Siberian Arctic), J. Geophys.
Res.-Ocean., 118, 550–561, https://doi.org/10.1002/jgrc.20076, 2013.
Bauch, D., Cherniavskaia, E., Novikhin, A., and Kassens, H.: Physical oceanography, nutrients, and δ18O measured on water bottle samples in the Laptev Sea, PANGAEA [Dataset], https://doi.org/10.1594/PANGAEA.885448, 2018.
Bélanger, S., Xie, H. X., Krotkov, N., Larouche, P., Vincent, W. F., and
Babin, M.: Photomineralization of terrigenous dissolved organic matter in
Arctic coastal waters from 1979 to 2003: Interannual variability and
implications of climate change, Global Biogeochem. Cy., 20, Gb4005,
https://doi.org/10.1029/2006gb002708, 2006.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G.,
Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H.,
Delaloye, R., Diekmann, B., Drozdov, D., Etzelmuller, B., Grosse, G.,
Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson,
M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P.,
Kroger, T., Lambiel, C., Lanckman, J. P., Luo, D. L., Malkova, G.,
Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel,
A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q. B.,
Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a
global scale, Nat. Commun., 10, 264, https://doi.org/:10.1038/s41467-018-08240-4, 2019.
Cauwet, G. and Sidorov, I.: The biogeochemistry of Lena River: Organic
carbon and nutrients distribution, Mar. Chem., 53, 211–227,
https://doi.org/10.1016/0304-4203(95)00090-9, 1996.
Charette, M. A., Kipp, L. E., Jensen, L. T., Dabrowski, J. S., Whitmore, L.
M., Fitzsimmons, J. N., Williford, T., Ulfsbo, A., Jones, E., Bundy, R. M.,
Vivancos, S. M., Pahnke, K., John, S. G., Xiang, Y., Hatta, M., Petrova, M.
V., Heimbürger-Boavida, L.-E., Bauch, D., Newton, R., Pasqualini, A.,
Agather, A. M., Amon, R. M. W., Anderson, R. F., Andersson, P. S., Benner,
R., Bowman, K. L., Edwards, R. L., Gdaniec, S., Gerringa, L. J. A.,
González, A. G., Granskog, M., Haley, B., Hammerschmidt, C. R., Hansell,
D. A., Henderson, P. B., Kadko, D. C., Kaiser, K., Laan, P., Lam, P. J.,
Lamborg, C. H., Levier, M., Li, X., Margolin, A. R., Measures, C., Middag,
R., Millero, F. J., Moore, W. S., Paffrath, R., Planquette, H., Rabe, B.,
Reader, H., Rember, R., Rijkenberg, M. J. A., Roy-Barman, M., Rutgers van
der Loeff, M., Saito, M., Schauer, U., Schlosser, P., Sherrell, R. M.,
Shiller, A. M., Slagter, H., Sonke, J. E., Stedmon, C., Woosley, R. J.,
Valk, O., van Ooijen, J., and Zhang, R.: The Transpolar Drift as a Source of
Riverine and Shelf-Derived Trace Elements to the Central Arctic Ocean,
J. Geophys. Res.-Ocean., 125, 1–34, https://doi.org/10.1029/2019jc015920, 2020.
Coble, P. G.: Marine optical biogeochemistry: The chemistry of ocean color,
Chem. Rev., 107, 402–418, https://doi.org/10.1021/cr050350+, 2007.
Cooper, L. W., Benner, R., McClelland, J. W., Peterson, B. J., Holmes, R.
M., Raymond, P. A., Hansell, D. A., Grebmeier, J. M., and Codispoti, L. A.:
Linkages among runoff, dissolved organic carbon, and the stable oxygen
isotope composition of seawater and other water mass indicators in the
Arctic Ocean, J. Geophys. Res.-Biogeo., 110, G02013,
https://doi.org/10.1029/2005jg000031, 2005.
Craig, H.: Standard for Reporting Concentrations of Deuterium and Oxygen-18
in Natural Waters, Science, 133, 1833–1834,
https://doi.org/10.1126/science.133.3467.1833, 1961.
Danhiez, F. P., Vantrepotte, V., Cauvin, A., Lebourg, E., and Loisel, H.:
Optical properties of chromophoric dissolved organic matter during a
phytoplankton bloom. Implication for DOC estimates from CDOM absorption,
Limnol. Oceanogr., 62, 1409–1425, https://doi.org/10.1002/lno.10507, 2017.
Dittmar, T. and Kattner, G.: The biogeochemistry of the river and shelf
ecosystem of the Arctic Ocean: a review, Mar. Chem., 83, 103–120,
https://doi.org/10.1016/S0304-4203(03)00105-1, 2003.
Eicken, H., Dmitrenko, I., Tyshko, K., Darovskikh, A., Dierking, W., Blahak,
U., Groves, J., and Kassens, H.: Zonation of the Laptev Sea landfast ice
cover and its importance in a frozen estuary, Global Planet. Change, 48,
55–83, https://doi.org/10.1016/j.gloplacha.2004.12.005, 2005.
Eulenburg, A., Juhls, B., and Hölemann, J. A.: Surface water dissolved
organic matter (DOC, CDOM) in the Lena River, PANGAEA [Dataset],
https://doi.org/10.1594/PANGAEA.898711, 2019.
Fichot, C. G. and Benner, R.: The spectral slope coefficient of
chromophoric dissolved organic matter (S275–295) as a tracer of terrigenous
dissolved organic carbon in river-influenced ocean margins, Limnol. Oceanogr.,
57, 1453–1466, https://doi.org/10.4319/lo.2012.57.5.1453, 2012.
Frey, K. E. and Smith, L. C.: Amplified carbon release from vast West
Siberian peatlands by 2100, Geophys. Res. Lett., 32, L09401,
https://doi.org/10.1029/2004gl022025, 2005.
Giannelli, V., Thomas, D. N., Haas, C., Kattner, G., Kennedy, H., and
Dieckmann, G. S.: Behaviour of dissolved organic matter and inorganic
nutrients during experimental sea-ice formation, Ann. Glaciol., 33, 317–321,
https://doi.org/10.3189/172756401781818572, 2001.
Gnanadesikan, A., Kim, G. E., and Pradal, M. A. S.: Impact of Colored
Dissolved Materials on the Annual Cycle of Sea Surface Temperature:
Potential Implications for Extreme Ocean Temperatures, Geophys. Res. Lett., 46,
861–869, https://doi.org/10.1029/2018gl080695, 2019.
Gonçalves-Araújo, R., Stedmon, C. A., Heim, B., Dubinenkov, I., Kraberg, A.,
Moiseev, D., and Bracher, A.: From Fresh to Marine Waters: Characterization
and Fate of Dissolved Organic Matter in the Lena River Delta Region,
Siberia, Front. Mar. Sci., 2, 108,
https://doi.org/10.3389/fmars.2015.00108, 2015.
Granskog, M. A.: Changes in spectral slopes of colored dissolved organic
matter absorption with mixing and removal in a terrestrially dominated
marine system (Hudson Bay, Canada), Mar. Chem., 134/135, 10–17,
https://doi.org/10.1016/j.marchem.2012.02.008, 2012.
Granskog, M. A., Macdonald, R. W., Kuzyk, Z. Z. A., Senneville, S., Mundy,
C.-J., Barber, D. G., Stern, G. A., and Saucier, F.: Coastal conduit in
southwestern Hudson Bay (Canada) in summer: Rapid transit of freshwater and
significant loss of colored dissolved organic matter, J. Geophys.
Res.-Ocean., 114, C08012, https://doi.org/10.1029/2009JC005270, 2009.
Granskog, M. A., Stedmon, C. A., Dodd, P. A., Amon, R. M. W., Pavlov, A. K.,
de Steur, L., and Hansen, E.: Characteristics of colored dissolved organic
matter (CDOM) in the Arctic outflow in the Fram Strait: Assessing the
changes and fate of terrigenous CDOM in the Arctic Ocean, J. Geophys.
Res.-Ocean., 117, C12021, https://doi.org/10.1029/2012jc008075, 2012.
Granskog, M. A., Nomura, D., Muller, S., Krell, A., Toyota, T., and Hattori,
H.: Evidence for significant protein-like dissolved organic matter
accumulation in Sea of Okhotsk sea ice, Ann. Glaciol., 56, 1–8,
10.3189/2015AoG69A002, 2015a.
Granskog, M. A., Pavlov, A. K., Sagan, S., Kowalczuk, P., Raczkowska, A.,
and Stedmon, C. A.: Effect of sea-ice melt on inherent optical properties
and vertical distribution of solar radiant heating in Arctic surface waters,
J. Geophys. Res.-Ocean., 120, 7028–7039, https://doi.org/10.1002/2015jc011087,
2015b.
Gueguen, C., Guo, L. D., and Tanaka, N.: Distributions and characteristics
of colored dissolved organic matter in the Western Arctic Ocean, Cont. Shelf
Res., 25, 1195–1207, https://doi.org/10.1016/j.csr.2005.01.005, 2005.
Guo, L. D., Ping, C. L., and Macdonald, R. W.: Mobilization pathways of
organic carbon from permafrost to arctic rivers in a changing climate,
Geophys. Res. Lett., 34, L13603, https://doi.org/10.1029/2007gl030689,
2007.
Haine, T. W. N., Curry, B., Gerdes, R., Hansen, E., Karcher, M., Lee, C.,
Rudels, B., Spreen, G., de Steur, L., Stewart, K. D., and Woodgate, R.:
Arctic freshwater export: Status, mechanisms, and prospects, Global Planet. Change, 125, 13–35, https://doi.org/10.1016/j.gloplacha.2014.11.013, 2015.
Heim, B., Abramova, E., Doerffer, R., Gunther, F., Hölemann, J.,
Kraberg, A., Lantuit, H., Loginova, A., Martynov, F., Overduin, P. P., and
Wegner, C.: Ocean colour remote sensing in the southern Laptev Sea:
evaluation and applications, Biogeosciences, 11, 4191–4210,
https://doi.org/10.5194/bg-11-4191-2014, 2014.
Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., and
Mopper, K.: Absorption spectral slopes and slope ratios as indicators of
molecular weight, source, and photobleaching of chromophoric dissolved
organic matter, Limnol. Oceanogr., 53, 955–969,
https://doi.org/10.4319/lo.2008.53.3.0955, 2008.
Hill, V. J.: Impacts of chromophoric dissolved organic material on surface
ocean heating in the Chukchi Sea, J. Geophys. Res.-Ocean., 113, C07024,
https://doi.org/10.1029/2007jc004119, 2008.
Hölemann, J. A., Schirmacher, M., and Prange, A.: Seasonal variability
of trace metals in the Lena River and the southeastern Laptev Sea: Impact of
the spring freshet, Global Planet. Change, 48, 112–125,
https://doi.org/10.1016/j.gloplacha.2004.12.008, 2005.
Hölemann, J. A., Juhls, B., and Timokhov, L. A.: Colored dissolved organic
matter (CDOM) measured during cruise TRANSDRIFT-XVII, Laptev Sea, PANGAEA [Dataset],
https://doi.org/10.1594/PANGAEA.924206, 2020a.
Hölemann, J., Koch, B. P., Juhls, B., and Timokhov, L. A.: Colored dissolved
organic matter (CDOM) and dissolved organic carbon (DOC) measured during
cruise TRANSDRIFT-XIX, Laptev Sea, PANGAEA [Dataset],
https://doi.org/10.1594/PANGAEA.924209, 2020b.
Hölemann, J. A., Koch, B. P., Juhls, B., and Timokhov, L. A.: Colored
dissolved organic matter (CDOM) and dissolved organic carbon (DOC) measured
during helicopter/ice camp TRANSDRIFT-XX, Laptev Sea, PANGAEA [Dataset],
https://doi.org/10.1594/PANGAEA.924228, 2020c.
Hölemann, J. A., Juhls, B., and Timokhov, L. A.: Colored dissolved organic
matter (CDOM) measured during cruise TRANSDRIFT-XXI, Laptev Sea, PANGAEA [Dataset],
https://doi.org/10.1594/PANGAEA.924203, 2020d.
Hölemann, J., Koch, B. P., Juhls, B., and Timokhov, L. A.: Colored dissolved
organic matter (CDOM) and dissolved organic carbon (DOC) measured during
cruise TRANSDRIFT-XXII, Laptev Sea, PANGAEA [Dataset],
https://doi.org/10.1594/PANGAEA.924202, 2020e.
Hölemann, J. A., Koch, B. P., Juhls, B., and Ivanov, V.: Colored dissolved
organic matter (CDOM) and dissolved organic carbon (DOC) measured during
cruise TRANSDRIFT-XXIV, Laptev Sea, PANGAEA [Dataset],
https://doi.org/10.1594/PANGAEA.924210, 2020f.
Hölemann, J. A., Chetverova, A., Juhls, B., and Kusse-Tiuz, N.: Colored
dissolved organic matter (CDOM) and dissolved organic carbon (DOC) measured
during cruise TRANSARKTIKA-2019 Leg4, Laptev Sea and East Siberian Sea,
PANGAEA [Dataset], https://doi.org/10.1594/PANGAEA.924211, 2020g.
Holmes, R. M., McClelland, J. W., Peterson, B. J., Tank, S. E., Bulygina,
E., Eglinton, T. I., Gordeev, V. V., Gurtovaya, T. Y., Raymond, P. A.,
Repeta, D. J., Staples, R., Striegl, R. G., Zhulidov, A. V., and Zimov, S.
A.: Seasonal and Annual Fluxes of Nutrients and Organic Matter from Large
Rivers to the Arctic Ocean and Surrounding Seas, Estuar. Coast., 35, 369–382,
https://doi.org/10.1007/s12237-011-9386-6, 2012.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G.,
Ping, C. L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D.,
O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag,
J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with
quantified uncertainty ranges and identified data gaps, Biogeosciences, 11,
6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
Itkin, P. and Krumpen, T.: Winter sea ice export from the Laptev Sea
preconditions the local summer sea ice cover and fast ice decay, The Cryosphere,
11, 2383–2391, https://doi.org/10.5194/tc-11-2383-2017, 2017.
Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J. A., Forbes, S.,
Fridman, B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M.,
Schenke, H. W., Zarayskaya, Y., Accettella, D., Armstrong, A., Anderson, R.
M., Bienhoff, P., Camerlenghi, A., Church, I., Edwards, M., Gardner, J. V.,
Hall, J. K., Hell, B., Hestvik, O., Kristoffersen, Y., Marcussen, C.,
Mohammad, R., Mosher, D., Nghiem, S. V., Pedrosa, M. T., Travaglini, P. G.,
and Weatherall, P.: The International Bathymetric Chart of the Arctic Ocean
(IBCAO) Version 3.0, Geophys. Res. Lett., 39, L12609,
https://doi.org/10.1029/2012GL052219, 2012.
Janout, M. A., Hölemann, J., and Krumpen, T.: Cross-shelf transport of
warm and saline water in response to sea ice drift on the Laptev Sea shelf,
J. Geophys. Res.-Ocean., 118, 563–576, https://doi.org/10.1029/2011jc007731,
2013.
Janout, M. A., Aksenov, Y., Hölemann, J. A., Rabe, B., Schauer, U.,
Polyakov, I. V., Bacon, S., Coward, A. C., Karcher, M., Lenn, Y. D.,
Kassens, H., and Timokhov, L.: Kara Sea freshwater transport through
Vilkitsky Strait: Variability, forcing, and further pathways toward the
western Arctic Ocean from a model and observations, J. Geophys. Res.-Ocean.,
120, 4925–4944, https://doi.org/10.1002/2014jc010635, 2015.
Janout, M. A., Hölemann, J., Waite, A. M., Krumpen, T., von Appen, W.
J., and Martynov, F.: Sea-ice retreat controls timing of summer plankton
blooms in the Eastern Arctic Ocean, Geophys. Res. Lett., 43, 12493–12501,
https://doi.org/10.1002/2016gl071232, 2016a.
Janout, M. A., Holemann, J., Juhls, B., Krumpen, T., Rabe, B., Bauch, D.,
Wegner, C., Kassens, H., and Timokhov, L.: Episodic warming of near-bottom
waters under the Arctic sea ice on the central Laptev Sea shelf, Geophys. Res.
Lett., 43, 264–272, https://doi.org/10.1002/2015gl066565, 2016b.
Janout, M. A., Hölemann, J., Timokhov, L., Gutjahr, O., and Heinemann,
G.: Circulation in the northwest Laptev Sea in the eastern Arctic Ocean:
Crossroads between Siberian River water, Atlantic water and polynya-formed
dense water, J. Geophys. Res.-Ocean., 122, 6630–6647,
https://doi.org/10.1002/2017jc013159, 2017.
Janout, M.A., Hölemann, J., Smirnov, A., Krumpen, T., Bauch, D.,
Laukert, G., and Timokhov, L.: On the variability of stratification in the
freshwater influenced Laptev Sea region, Front Mar. Sci., 7, 543489,
https://doi.org/10.3389/fmars.2020.543489, 2020.
Jørgensen, L., Stedmon, C. A., Kaartokallio, H., Middelboe, M., and
Thomas, D. N.: Changes in the composition and bioavailability of dissolved
organic matter during sea ice formation, Limnol. Oceanogr., 60, 817–830,
https://doi.org/10.1002/lno.10058, 2015.
Juhls, B., Overduin, P. P., Hölemann, J., Hieronymi, M., Matsuoka, A.,
Heim, B., and Fischer, J.: Dissolved organic matter at the fluvial-marine
transition in the Laptev Sea using in situ data and ocean colour remote
sensing, Biogeosciences, 16, 2693–2713,
https://doi.org/10.5194/bg-16-2693-2019, 2019.
Juhls, B., Stedmon, C. A., Morgenstern, A., Meyer, H., Hölemann, J.,
Heim, B., Povazhnyi, V., and Overduin, P. P.: Identifying Drivers of
Seasonality in Lena River Biogeochemistry and Dissolved Organic Matter
Fluxes, Front. Environ. Sci., 8, 1–15,
https://doi.org/10.3389/fenvs.2020.00053, 2020.
Kaiser, K., Benner, R., and Amon, R. M. W.: The fate of terrigenous
dissolved organic carbon on the Eurasian shelves and export to the North
Atlantic, J. Geophys. Res.-Ocean., 122, 4–22,
https://doi.org/10.1002/2016jc012380, 2017a.
Kaiser, K., Canedo-Oropeza, M., McMahon, R., and Amon, R. M. W.: Origins and
transformations of dissolved organic matter in large Arctic rivers, Sci.
Rep.-UK, 7, 13064, https://doi.org/10.1038/s41598-017-12729-1, 2017b.
Kattner, G., Juhls, B., and Heim, B.: Surface water dissolved organic matter
(DOC, CDOM) in the Lena River, PANGAEA [Dataset],
https://doi.org/10.1594/PANGAEA.898705, 2010.
Kattner, G., Lobbes, J. M., Fitznar, H. P., Engbrodt, R., Nothig, E. M., and
Lara, R. J.: Tracing dissolved organic substances and nutrients from the
Lena River through Laptev Sea (Arctic), Mar. Chem., 65, 25–39,
https://doi.org/10.1016/S0304-4203(99)00008-0, 1999.
Köhler, H., Meon, B., Gordeev, V. V., Spitzy, A., and Amon, R. M. W.:
Dissolved organic matter (DOM) in the estuaries of Ob and Yenisei and the
adjacent Kara Sea, Russia, in: Siberian river run-off in the Kara Sea,
edited by: Stein, R., Fahl, K., Fütterer, D. K., Galimov, E. M., and
Stepanets, O. V.: Proceedings in Marine Science, 6, Elsevier Science B. V.,
Amsterdam, 281–308, 2003.
Kotchetov, S. V., Kulakov, I. Y., Kurajov, V. K., Timokhov, L. A., and
Vanda, Y. A.: Hydrometeorological regime of the Laptev Sea, Federal Service
of Russia for Hydrometeorology and Monitoring of the Environment, Arct.
Antarct. Res. Inst., St. Petersburg, Russia, 85, 1–34, 1994.
Kowalczuk, P., Meler, J., Kauko, H. M., Pavlov, A. K., Zablocka, M., Peeken,
I., Dybwad, C., Castellani, G., and Granskog, M. A.: Bio-optical properties
of Arctic drift ice and surface waters north of Svalbard from winter to
spring, J. Geophys. Res.-Ocean., 122, 4634–4660,
https://doi.org/10.1002/2016jc012589, 2017.
Krumpen, T., Hölemann, J. A., Willmes, S., Maqueda, M. A. M., Busche,
T., Dmitrenko, I. A., Gerdes, R., Haas, C., Heinemann, G., Hendricks, S.,
Kassens, H., Rabenstein, L., and Schroder, D.: Sea ice production and water
mass modification in the eastern Laptev Sea, J. Geophys. Res.-Ocean., 116,
C05014, https://doi.org/10.1029/2010jc006545, 2011.
Kwok, R. and Morison, J.: Dynamic topography of the ice-covered Arctic
Ocean from ICESat, Geophys. Res. Lett., 38, L02501,
https://doi.org/10.1029/2010gl046063, 2011.
Lara, R. J., Rachold, V., Kattner, G., Hubberten, H. W., Guggenberger, G.,
Skoog, A., and Thomas, D. N.: Dissolved organic matter and nutrients in the
Lena River, Siberian Arctic: Characteristics and distribution, Mar. Chem., 59,
301–309, https://doi.org/10.1016/S0304-4203(97)00076-5, 1998.
Letscher, R. T., Hansell, D. A., and Kadko, D.: Rapid removal of terrigenous
dissolved organic carbon over the Eurasian shelves of the Arctic Ocean, Mar.
Chem., 123, 78–87, https://doi.org/10.1016/j.marchem.2010.10.002, 2011.
Li, Z., Zhao, J., Su, J., Li, C., Cheng, B., Hui, F., Yang, Q., and Shi, L.:
Spatial and Temporal Variations in the Extent and Thickness of Arctic
Landfast Ice, Remote Sens-Basel, 12, 1–20, https://doi.org/10.3390/rs12010064,
2020.
Logvinova, C. L., Frey, K. E., and Cooper, L. W.: The potential role of sea
ice melt in the distribution of chromophoric dissolved organic matter in the
Chukchi and Beaufort Seas, Deep-Sea Res. Pt. II, 130, 28–42,
https://doi.org/10.1016/j.dsr2.2016.04.017, 2016.
Macdonald, R. W., Paton, D. W., Carmack, E. C., and Omstedt, A.: The
Fresh-Water Budget and under-Ice Spreading of Mackenzie River Water in the
Canadian Beaufort Sea Based on Salinity and O-18 O-16 Measurements in Water
and Ice, J. Geophys. Res.-Ocean., 100, 895–919,
https://doi.org/10.1029/94jc02700, 1995.
Manizza, M., Follows, M. J., Dutkiewicz, S., McClelland, J. W., Menemenlis,
D., Hill, C. N., Townsend-Small, A., and Peterson, B. J.: Modeling transport
and fate of riverine dissolved organic carbon in the Arctic Ocean, Global
Biogeochem. Cy., 23, Gb4006, https://doi.org/10.1029/2008gb003396, 2009.
Mann, P. J., Davydova, A., Zimov, N., Spencer, R. G. M., Davydov, S.,
Bulygina, E., Zimov, S., and Holmes, R. M.: Controls on the composition and
lability of dissolved organic matter in Siberia's Kolyma River basin, J.
Geophys. Res.-Biogeo., 117, G01028, https://doi.org/10.1029/2011jg001798,
2012.
Mann, P. J., Spencer, R. G. M., Hernes, P. J., Six, J., Aiken, G. R., Tank,
S. E., McClelland, J. W., Butler, K. D., Dyda, R. Y., and Holmes, R. M.:
Pan-Arctic Trends in Terrestrial Dissolved Organic Matter from Optical
Measurements, Front Earth Sc-Switz, 4, 1–18,
https://doi.org/10.3389/feart.2016.00025, 2016.
Mathis, J. T., Hansell, D. A., and Bates, N. R.: Strong hydrographic
controls on spatial and seasonal variability of dissolved organic carbon in
the Chukchi Sea, Deep-Sea Res. Pt. II, 52, 3245–3258,
https://doi.org/10.1016/j.dsr2.2005.10.002, 2005.
Matsuoka, A., Bricaud, A., Benner, R., Para, J., Sempere, R., Prieur, L.,
Belanger, S., and Babin, M.: Tracing the transport of colored dissolved
organic matter in water masses of the Southern Beaufort Sea: relationship
with hydrographic characteristics, Biogeosciences, 9, 925–940,
https://doi.org/10.5194/bg-9-925-2012, 2012.
Matsuoka, A., Boss, E., Babin, M., Karp-Boss, L., Hafez, M., Chekalyuk, A.,
Proctor, C. W., Werdell, P. J., and Bricaud, A.: Pan-Arctic optical
characteristics of colored dissolved organic matter: Tracing dissolved
organic carbon in changing Arctic waters using satellite ocean color data,
Remote Sens. Environ., 200, 89–101, https://doi.org/10.1016/j.rse.2017.08.009,
2017.
McClelland, J. W., Holmes, R. M., Peterson, B. J., and Stieglitz, M.:
Increasing river discharge in the Eurasian Arctic: Consideration of dams,
permafrost thaw, and fires as potential agents of change, J. Geophys.
Res.-Atmos., 109, D18102, https://doi.org/10.1029/2004jd004583, 2004.
Morison, J., Kwok, R., Peralta-Ferriz, C., Alkire, M., Rigor, I., Andersen,
R., and Steele, M.: Changing Arctic Ocean freshwater pathways, Nature, 481,
66–70, https://doi.org/10.1038/nature10705, 2012.
Müller, S., Vahatalo, A. V., Stedmon, C. A., Granskog, M. A., Norman,
L., Aslam, S. N., Underwood, G. J. C., Dieckmann, G. S., and Thomas, D. N.:
Selective incorporation of dissolved organic matter (DOM) during sea ice
formation, Mar. Chem., 155, 148–157,
https://doi.org/10.1016/j.marchem.2013.06.008, 2013.
Opsahl, S., Benner, R., and Amon, R. M. W.: Major flux of terrigenous
dissolved organic matter through the Arctic Ocean, Limnol. Oceanogr., 44,
2017–2023, https://doi.org/10.4319/lo.1999.44.8.2017, 1999.
Osburn, C. L., Retamal, L., and Vincent, W. F.: Photoreactivity of
chromophoric dissolved organic matter transported by the Mackenzie River to
the Beaufort Sea, Mar. Chem., 115, 10–20,
https://doi.org/10.1016/j.marchem.2009.05.003, 2009.
Overland, J. E., Wang, M. Y., and Box, J. E.: An integrated index of recent
pan-Arctic climate change, Environ. Res. Lett., 14, 035006,
https://doi.org/10.1088/1748-9326/aaf665, 2019.
Pavlov, A. K., Stedmon, C. A., Semushin, A. V., Martma, T., Ivanov, B. V.,
Kowalczuk, P., and Granskog, M. A.: Linkages between the circulation and
distribution of dissolved organic matter in the White Sea, Arctic Ocean,
Cont. Shelf Res., 119, 1–13, https://doi.org/10.1016/j.csr.2016.03.004, 2016.
Pegau, W. S.: Inherent optical properties of the central Arctic surface
waters, J. Geophys. Res.-Ocean., 107, 8035
https://doi.org/10.1029/2000jc000382, 2002.
Petrich, C. and Eicken, H.: Growth, Structure and Properties of Sea Ice,
in: Sea Ice, 2nd Edn., edited by: Thomas, D. N. and Dieckmann, G.
S., Wiley-Blackwell, Oxford, UK, 23–77, 2010.
Plaza, C., Pegoraro, E., Bracho, R., Celis, G., Crummer, K. G., Hutchings,
J. A., Pries, C. E. H., Mauritz, M., Natali, S. M., Salmon, V. G., Schadel,
C., Webb, E. E., and Schuur, E. A. G.: Direct observation of permafrost
degradation and rapid soil carbon loss in tundra, Nat. Geosci., 12, 627–631,
https://doi.org/10.1038/s41561-019-0387-6, 2019.
Prokushkin, A. S., Pokrovsky, O. S., Shirokova, L. S., Korets, M. A., Viers,
J., Prokushkin, S. G., Amon, R. M. W., Guggenberger, G., and McDowell, W.
H.: Sources and the flux pattern of dissolved carbon in rivers of the
Yenisey basin draining the Central Siberian Plateau, Environ. Res. Lett., 6,
045212, https://doi.org/10.1088/1748-9326/6/4/045212, 2011.
Pugach, S. P. and Pipko, I. I.: Dynamics of colored dissolved matter on the
East Siberian sea shelf, Dokl. Earth Sci., 448, 153–156,
https://doi.org/10.1134/S1028334x12120173, 2013.
Pugach, S. P., Pipko, I. I., Shakhova, N. E., Shirshin, E. A., Perminova, I.
V., Gustafsson, O., Bondur, V. G., Ruban, A. S., and Semiletov, I. P.:
Dissolved organic matter and its optical characteristics in the Laptev and
East Siberian seas: spatial distribution and interannual variability
(2003–2011), Ocean Sci., 14, 87–103, https://doi.org/10.5194/os-14-87-2018,
2018.
Retelletti-Brogi, S., Ha, S.-Y., Kim, K., Derrien, M., Lee, Y. K., and Hur,
J.: Optical and molecular characterization of dissolved organic matter (DOM)
in the Arctic ice core and the underlying seawater (Cambridge Bay, Canada):
Implication for increased autochthonous DOM during ice melting, Sci. Total
Environ., 627, 802–811, https://doi.org/10.1016/j.scitotenv.2018.01.251,
2018.
Rawlins, M. A., Steele, M., Holland, M. M., Adam, J. C., Cherry, J. E.,
Francis, J. A., Groisman, P. Y., Hinzman, L. D., Huntington, T. G., Kane, D.
L., Kimball, J. S., Kwok, R., Lammers, R. B., Lee, C. M., Lettenmaier, D.
P., McDonald, K. C., Podest, E., Pundsack, J. W., Rudels, B., Serreze, M.
C., Shiklomanov, A., Skagseth, O., Troy, T. J., Vorosmarty, C. J.,
Wensnahan, M., Wood, E. F., Woodgate, R., Yang, D. Q., Zhang, K., and Zhang,
T. J.: Analysis of the Arctic System for Freshwater Cycle Intensification:
Observations and Expectations, J. Clim., 23, 5715–5737,
https://doi.org/10.1175/2010jcli3421.1, 2010.
Raymond, P. A., McClelland, J. W., Holmes, R. M., Zhulidov, A. V., Mull, K.,
Peterson, B. J., Striegl, R. G., Aiken, G. R., and Gurtovaya, T. Y.: Flux
and age of dissolved organic carbon exported to the Arctic Ocean: A carbon
isotopic study of the five largest arctic rivers, Global Biogeochem. Cy., 21,
Gb4011, https://doi.org/10.1029/2007gb002934, 2007.
Schlitzer, R.: Interactive analysis and visualization of geoscience data
with Ocean Data View, Comput. Geosci.-UK, 28, 1211–1218, https://doi.org/10.1016/S0098-3004(02)00040-7, 2002.
Selyuzhenok, V., Krumpen, T., Mahoney, A., Janout, M., and Gerdes, R.:
Seasonal and interannual variability of fast ice extent in the southeastern
Laptev Sea between 1999 and 2013, J. Geophys. Res.-Ocean., 120, 7791–7806,
https://doi.org/10.1002/2015jc011135, 2015.
Semiletov, I., Pipko, I., Gustafsson, O., Anderson, L. G., Sergienko, V.,
Pugach, S., Dudarev, O., Charkin, A., Gukov, A., Broder, L., Andersson, A.,
Spivak, E., and Shakhova, N.: Acidification of East Siberian Arctic Shelf
waters through addition of freshwater and terrestrial carbon, Nat. Geosci., 9,
361–365, https://doi.org/10.1038/ngeo2695, 2016.
Shin, K. H. and Tanaka, N.: Distribution of dissolved organic matter in the
eastern Bering Sea, Chukchi Sea (Barrow Canyon) and Beaufort Sea, Geophys.
Res. Lett., 31, L24304, https://doi.org/10.1029/2004gl021039, 2004.
Shiklomanov, A. I., Holmes, R. M., McClelland, J. W., Tank, S. E., and
Spencer, R. G. M.: ArcticGRO Discharge Dataset, Version 2020-01-23,
available at: https://www.arcticgreatrivers.org/data (last access: 25 February 2020), 2020.
Soppa, M. A., Pefanis, V., Hellmann, S., Losa, S. N., Hölemann, J.,
Martynov, F., Heim, B., Janout, M. A., Dinter, T., Rozanov, V., and Bracher,
A.: Assessing the Influence of Water Constituents on the Radiative Heating
of Laptev Sea Shelf Waters, Front Mar. Sci., 6, 221,
https://doi.org/10.3389/fmars.2019.00221, 2019.
Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using
AMSR-E 89-GHz channels, J. Geophys. Res.-Ocean., 113, C02s03,
https://doi.org/10.1029/2005jc003384, 2008.
Stedmon, C. A. and Markager, S.: The optics of chromophoric dissolved
organic matter (CDOM) in the Greenland Sea: An algorithm for differentiation
between marine and terrestrially derived organic matter, Limnol. Oceanogr.,
46, 2087–2093, https://doi.org/10.4319/lo.2001.46.8.2087, 2001.
Stedmon, C. A., Amon, R. M. W., Rinehart, A. J., and Walker, S. A.: The
supply and characteristics of colored dissolved organic matter (CDOM) in the
Arctic Ocean: Pan Arctic trends and differences, Mar. Chem., 124, 108–118,
https://doi.org/10.1016/j.marchem.2010.12.007, 2011.
Stroeve, J. and Notz, D.: Changing state of Arctic sea ice across all
seasons, Environ. Res. Lett., 13, 103001,
https://doi.org/10.1088/1748-9326/aade56, 2018.
Tanaka, K., Takesue, N., Nishioka, J., Kondo, Y., Ooki, A., Kuma, K.,
Hirawake, T., and Yamashita, Y.: The conservative behavior of dissolved
organic carbon in surface waters of the southern Chukchi Sea, Arctic Ocean,
during early summer, Sci. Rep.-UK, 6, 34123,
https://doi.org/10.1038/srep34123, 2016.
Tank, S. E., Striegl, R. G., McClelland, J. W., and Kokelj, S. V.:
Multi-decadal increases in dissolved organic carbon and alkalinity flux from
the Mackenzie drainage basin to the Arctic Ocean, Environ. Res. Lett., 11,
054015, https://doi.org/10.1088/1748-9326/11/5/054015, 2016.
Terhaar, J., Lauerwald, R., Regnier, P., Gruber, N., and Bopp, L.: Around
one third of current Arctic Ocean primary production sustained by rivers and
coastal erosion, Nat. Commun., 12, 169,
https://doi.org/10.1038/s41467-020-20470-z, 2021.
Timmermans, M.-L. and Marshall, J.: Understanding Arctic Ocean Circulation:
A Review of Ocean Dynamics in a Changing Climate, J. Geophys.
Res.-Ocean., 125, 1–35, https://doi.org/10.1029/2018jc014378, 2020.
Wegner, C., Wittbrodt, K., Hölemann, J. A., Janout, M. A., Krumpen, T.,
Selyuzhenok, V., Novikhin, A., Polyakova, Y., Krykova, I., Kassens, H., and
Timokhov, L.: Sediment entrainment into sea ice and transport in the
Transpolar Drift: A case study from the Laptev Sea in winter 2011/2012, Cont.
Shelf Res., 141, 1–10, https://doi.org/10.1016/j.csr.2017.04.010, 2017.
Xie, H., Aubry, C., Zhang, Y., and Song, G.: Chromophoric dissolved organic
matter (CDOM) in first-year sea ice in the western Canadian Arctic, Mar.
Chem., 165, 25–35, https://doi.org/10.1016/j.marchem.2014.07.007, 2014.
Zabłocka, M., Kowalczuk, P., Meler, J., Peeken, I., Dragańska-Deja,
K., and Winogradow, A.: Compositional differences of fluorescent dissolved
organic matter in Arctic Ocean spring sea ice and surface waters north of
Svalbard, Mar. Chem., 227, 103893,
https://doi.org/10.1016/j.marchem.2020.103893, 2020.
Short summary
The Arctic Ocean receives large amounts of river water rich in terrestrial dissolved organic matter (tDOM), which is an important component of the Arctic carbon cycle. Our analysis shows that mixing of three major freshwater sources is the main factor that regulates the distribution of tDOM concentrations in the Siberian shelf seas. In this context, the formation and melting of the land-fast ice in the Laptev Sea and the peak spring discharge of the Lena River are of particular importance.
The Arctic Ocean receives large amounts of river water rich in terrestrial dissolved organic...
Altmetrics
Final-revised paper
Preprint