Articles | Volume 18, issue 18
https://doi.org/10.5194/bg-18-5247-2021
https://doi.org/10.5194/bg-18-5247-2021
Research article
 | 
28 Sep 2021
Research article |  | 28 Sep 2021

Long-term spatiotemporal variations in and expansion of low-oxygen conditions in the Pearl River estuary: a study synthesizing observations during 1976–2017

Jiatang Hu, Zhongren Zhang, Bin Wang, and Jia Huang

Related authors

Human Activities Caused Hypoxia Expansion in a Large Eutrophic Estuary: Non-negligible Role of Riverine Suspended Sediments
Yue Nan, Zheng Chen, Bin Wang, Bo Liang, and Jiatang Hu
EGUsphere, https://doi.org/10.5194/egusphere-2024-4013,https://doi.org/10.5194/egusphere-2024-4013, 2025
Short summary
Interannual variabilities, long-term trends, and regulating factors of low-oxygen conditions in the coastal waters off Hong Kong
Zheng Chen, Bin Wang, Chuang Xu, Zhongren Zhang, Shiyu Li, and Jiatang Hu
Biogeosciences, 19, 3469–3490, https://doi.org/10.5194/bg-19-3469-2022,https://doi.org/10.5194/bg-19-3469-2022, 2022
Short summary
Impacts of anthropogenic inputs on hypoxia and oxygen dynamics in the Pearl River estuary
Bin Wang, Jiatang Hu, Shiyu Li, Liuqian Yu, and Jia Huang
Biogeosciences, 15, 6105–6125, https://doi.org/10.5194/bg-15-6105-2018,https://doi.org/10.5194/bg-15-6105-2018, 2018
Short summary
A numerical analysis of biogeochemical controls with physical modulation on hypoxia during summer in the Pearl River estuary
Bin Wang, Jiatang Hu, Shiyu Li, and Dehong Liu
Biogeosciences, 14, 2979–2999, https://doi.org/10.5194/bg-14-2979-2017,https://doi.org/10.5194/bg-14-2979-2017, 2017
Short summary

Related subject area

Biogeochemistry: Coastal Ocean
Depositional controls and budget of organic carbon burial in fine-grained sediments of the North Sea – the Helgoland Mud Area as a natural laboratory
Daniel Müller, Bo Liu, Walter Geibert, Moritz Holtappels, Lasse Sander, Elda Miramontes, Heidi Taubner, Susann Henkel, Kai-Uwe Hinrichs, Denise Bethke, Ingrid Dohrmann, and Sabine Kasten
Biogeosciences, 22, 2541–2567, https://doi.org/10.5194/bg-22-2541-2025,https://doi.org/10.5194/bg-22-2541-2025, 2025
Short summary
Effects of submarine groundwater on nutrient concentration and primary production in a deep bay of the Japan Sea
Menghong Dong, Xinyu Guo, Takuya Matsuura, Taichi Tebakari, and Jing Zhang
Biogeosciences, 22, 2383–2402, https://doi.org/10.5194/bg-22-2383-2025,https://doi.org/10.5194/bg-22-2383-2025, 2025
Short summary
The bacteria–protist link as a main route of dissolved organic matter across contrasting productivity areas on the Patagonian Shelf
M. Celeste López-Abbate, John E. Garzón-Cardona, Ricardo Silva, Juan-Carlos Molinero, Laura A. Ruiz-Etcheverry, Ana M. Martínez, Azul S. Gilabert, and Rubén J. Lara
Biogeosciences, 22, 2309–2325, https://doi.org/10.5194/bg-22-2309-2025,https://doi.org/10.5194/bg-22-2309-2025, 2025
Short summary
Ocean alkalinity enhancement (OAE) does not cause cellular stress in a phytoplankton community of the subtropical Atlantic Ocean
Librada Ramírez, Leonardo J. Pozzo-Pirotta, Aja Trebec, Víctor Manzanares-Vázquez, José L. Díez, Javier Arístegui, Ulf Riebesell, Stephen D. Archer, and María Segovia
Biogeosciences, 22, 1865–1886, https://doi.org/10.5194/bg-22-1865-2025,https://doi.org/10.5194/bg-22-1865-2025, 2025
Short summary
Reviews and syntheses: On increasing hypoxia in eastern boundary upwelling systems – zooplankton under metabolic stress
Leissing Frederick, Mauricio A. Urbina, and Ruben Escribano
Biogeosciences, 22, 1839–1852, https://doi.org/10.5194/bg-22-1839-2025,https://doi.org/10.5194/bg-22-1839-2025, 2025
Short summary

Cited articles

Bianchi, T. S., DiMarco, S. F., Cowan, J. H., Hetland, R. D., Chapman, P., Day, J. W., and Allison, M. A.: The science of hypoxia in the Northern Gulf of Mexico: A review, Sci. Total Environ., 408, 1471–1484, https://doi.org/10.1016/j.scitotenv.2009.11.047, 2010. 
Cai, W. J., Hu, X., Huang, W. J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E., Chou, W. C., Zhai, W., Hollibaugh, J. T., Wang, Y., Zhao, P., Guo, X., Gundersen, K., Dai, M., and Gong, G. C.: Acidification of subsurface coastal waters enhanced by eutrophication, Nat. Geosci., 4, 766–770, https://doi.org/10.1038/ngeo1297, 2011. 
Chen, J. C., Heinke, G. W., and Zhou, M. J.: The Pearl River Estuary Pollution Project (PREPP), Cont. Shelf Res., 24, 1739–1744, https://doi.org/10.1016/j.csr.2004.06.004, 2004. 
Cui, Y., Wu, J., Ren, J., and Xu, J.: Physical dynamics structures and oxygen budget of summer hypoxia in the Pearl River Estuary, Limnol. Oceanogr., 64, 131–148, https://doi.org/10.1002/lno.11025, 2019. 
Download
Short summary
In situ observations over 42 years were used to explore the long-term changes to low-oxygen conditions in the Pearl River estuary. Apparent expansion of the low-oxygen conditions in summer was identified, primarily due to the combined effects of increased anthropogenic inputs and decreased sediment load. Large areas of severe low-oxygen events were also observed in early autumn and were formed by distinct mechanisms. The estuary seems to be growing into a seasonal, estuary-wide hypoxic zone.
Share
Altmetrics
Final-revised paper
Preprint