Articles | Volume 18, issue 3
https://doi.org/10.5194/bg-18-849-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/bg-18-849-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A limited effect of sub-tropical typhoons on phytoplankton dynamics
State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
School of Marine Sciences, University of Maine, Orono, ME 04469, USA
State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
Xiaogang Xing
State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
Yunwei Yan
State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
Huijie Xue
School of Marine Sciences, University of Maine, Orono, ME 04469, USA
State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Mark Wells
School of Marine Sciences, University of Maine, Orono, ME 04469, USA
Emmanuel Boss
School of Marine Sciences, University of Maine, Orono, ME 04469, USA
Related authors
Qian Wang, Yang Zhang, Fei Chai, Y. Joseph Zhang, and Lorenzo Zampieri
Geosci. Model Dev., 17, 7067–7081, https://doi.org/10.5194/gmd-17-7067-2024, https://doi.org/10.5194/gmd-17-7067-2024, 2024
Short summary
Short summary
We coupled an unstructured hydro-model with an advanced column sea ice model to meet the growing demand for increased resolution and complexity in unstructured sea ice models. Additionally, we present a novel tracer transport scheme for the sea ice coupled model and demonstrate that this scheme fulfills the requirements for conservation, accuracy, efficiency, and monotonicity in an idealized test. Our new coupled model also has good performance in realistic tests.
Shuangling Chen, Mark L. Wells, Rui Xin Huang, Huijie Xue, Jingyuan Xi, and Fei Chai
Biogeosciences, 18, 5539–5554, https://doi.org/10.5194/bg-18-5539-2021, https://doi.org/10.5194/bg-18-5539-2021, 2021
Short summary
Short summary
Subduction transports surface waters to the oceanic interior, which can supply significant amounts of carbon and oxygen to the twilight zone. Using a novel BGC-Argo dataset covering the western North Pacific, we successfully identified the imprints of episodic shallow subduction patches. These subduction patches were observed mainly in spring and summer (70.6 %), and roughly half of them extended below ~ 450 m, injecting carbon- and oxygen-enriched waters into the ocean interior.
P. Xiu and F. Chai
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-12529-2013, https://doi.org/10.5194/bgd-10-12529-2013, 2013
Preprint withdrawn
Guillaume Bourdin, Lee Karp-Boss, Fabien Lombard, Gabriel Gorsky, and Emmanuel Boss
EGUsphere, https://doi.org/10.5194/egusphere-2024-2670, https://doi.org/10.5194/egusphere-2024-2670, 2024
Short summary
Short summary
Remote islands and atolls create unique oceanic processes that affect the surrounding waters, known as the Island Mass Effect (IME). These processes bring nutrients to the ocean surface, leading to increasing phytoplankton concentration near islands. We combine data from various satellites and modeled currents to better track these changes. This reveals a larger IME impact than previously thought, suggesting that islands play a more significant role in ocean food chains in subtropical regions.
Qian Wang, Yang Zhang, Fei Chai, Y. Joseph Zhang, and Lorenzo Zampieri
Geosci. Model Dev., 17, 7067–7081, https://doi.org/10.5194/gmd-17-7067-2024, https://doi.org/10.5194/gmd-17-7067-2024, 2024
Short summary
Short summary
We coupled an unstructured hydro-model with an advanced column sea ice model to meet the growing demand for increased resolution and complexity in unstructured sea ice models. Additionally, we present a novel tracer transport scheme for the sea ice coupled model and demonstrate that this scheme fulfills the requirements for conservation, accuracy, efficiency, and monotonicity in an idealized test. Our new coupled model also has good performance in realistic tests.
Viktor Gouretski, Lijing Cheng, Juan Du, Xiaogang Xing, and Fei Chai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-518, https://doi.org/10.5194/essd-2023-518, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
High-quality observations are crucial to understanding ocean oxygen changes and their impact on marine biota. We developed a quality control procedure to ensure the high quality of the heterogeneous ocean oxygen data archive and to prove data consistency. Oxygen data obtained by means of oxygen sensors on autonomous Argo floats were compared with reference data based on the chemical analysis and estimates of the residual offsets were obtained.
Aaron Chesler, Dominic Winski, Karl Kreutz, Bess Koffman, Erich Osterberg, David Ferris, Zayta Thundercloud, Joseph Mohan, Jihong Cole-Dai, Mark Wells, Michael Handley, Aaron Putnam, Katherine Anderson, and Natalie Harmon
Clim. Past, 19, 477–492, https://doi.org/10.5194/cp-19-477-2023, https://doi.org/10.5194/cp-19-477-2023, 2023
Short summary
Short summary
Ice core microparticle data typically use geometry assumptions to calculate particle mass and flux. We use dynamic particle imaging, a novel technique for ice core dust analyses, combined with traditional laser particle counting and Coulter counter techniques to assess particle shape in the South Pole Ice Core (SPC14) spanning 50–16 ka. Our results suggest that particles are dominantly ellipsoidal in shape and that spherical assumptions overestimate particle mass and flux.
Steve Widdicombe, Kirsten Isensee, Yuri Artioli, Juan Diego Gaitán-Espitia, Claudine Hauri, Janet A. Newton, Mark Wells, and Sam Dupont
Ocean Sci., 19, 101–119, https://doi.org/10.5194/os-19-101-2023, https://doi.org/10.5194/os-19-101-2023, 2023
Short summary
Short summary
Ocean acidification is a global perturbation of the ocean carbonate chemistry as a consequence of increased carbon dioxide concentration in the atmosphere. While great progress has been made over the last decade for chemical monitoring, ocean acidification biological monitoring remains anecdotal. This is a consequence of a lack of standards, general methodological framework, and overall methodology. This paper presents methodology focusing on sensitive traits and rates of change.
Darren C. McKee, Scott C. Doney, Alice Della Penna, Emmanuel S. Boss, Peter Gaube, Michael J. Behrenfeld, and David M. Glover
Biogeosciences, 19, 5927–5952, https://doi.org/10.5194/bg-19-5927-2022, https://doi.org/10.5194/bg-19-5927-2022, 2022
Short summary
Short summary
As phytoplankton (small, drifting photosynthetic organisms) drift with ocean currents, biomass accumulation rates should be evaluated in a Lagrangian (observer moves with a fluid parcel) as opposed to an Eulerian (observer is stationary) framework. Here, we use profiling floats and surface drifters combined with satellite data to analyse time and length scales of chlorophyll concentrations (a proxy for biomass) and of velocity to quantify how phytoplankton variability is related to water motion.
Rainer Kiko, Marc Picheral, David Antoine, Marcel Babin, Léo Berline, Tristan Biard, Emmanuel Boss, Peter Brandt, Francois Carlotti, Svenja Christiansen, Laurent Coppola, Leandro de la Cruz, Emilie Diamond-Riquier, Xavier Durrieu de Madron, Amanda Elineau, Gabriel Gorsky, Lionel Guidi, Helena Hauss, Jean-Olivier Irisson, Lee Karp-Boss, Johannes Karstensen, Dong-gyun Kim, Rachel M. Lekanoff, Fabien Lombard, Rubens M. Lopes, Claudie Marec, Andrew M. P. McDonnell, Daniela Niemeyer, Margaux Noyon, Stephanie H. O'Daly, Mark D. Ohman, Jessica L. Pretty, Andreas Rogge, Sarah Searson, Masashi Shibata, Yuji Tanaka, Toste Tanhua, Jan Taucher, Emilia Trudnowska, Jessica S. Turner, Anya Waite, and Lars Stemmann
Earth Syst. Sci. Data, 14, 4315–4337, https://doi.org/10.5194/essd-14-4315-2022, https://doi.org/10.5194/essd-14-4315-2022, 2022
Short summary
Short summary
The term
marine particlescomprises detrital aggregates; fecal pellets; bacterioplankton, phytoplankton and zooplankton; and even fish. Here, we present a global dataset that contains 8805 vertical particle size distribution profiles obtained with Underwater Vision Profiler 5 (UVP5) camera systems. These data are valuable to the scientific community, as they can be used to constrain important biogeochemical processes in the ocean, such as the flux of carbon to the deep sea.
Ruili Sun, Peiliang Li, Yanzhen Gu, Fangguo Zhai, Yunwei Yan, Bo Li, and Yang Zhang
Ocean Sci., 18, 717–728, https://doi.org/10.5194/os-18-717-2022, https://doi.org/10.5194/os-18-717-2022, 2022
Short summary
Short summary
Previous studies show that only when water flows into and out of the Luzon Strait (LS), material and energy exchange between the South China Sea (SCS) and the Northwest Pacific (NWP) will take place. However, our studies demonstrate that mesoscale eddies in the NWP can transfer vorticity to mesoscale eddies in the SCS, without water exchange in the LS. This provides a new perspective for the study of material and energy exchange between the SCS and NWP.
Shuangling Chen, Mark L. Wells, Rui Xin Huang, Huijie Xue, Jingyuan Xi, and Fei Chai
Biogeosciences, 18, 5539–5554, https://doi.org/10.5194/bg-18-5539-2021, https://doi.org/10.5194/bg-18-5539-2021, 2021
Short summary
Short summary
Subduction transports surface waters to the oceanic interior, which can supply significant amounts of carbon and oxygen to the twilight zone. Using a novel BGC-Argo dataset covering the western North Pacific, we successfully identified the imprints of episodic shallow subduction patches. These subduction patches were observed mainly in spring and summer (70.6 %), and roughly half of them extended below ~ 450 m, injecting carbon- and oxygen-enriched waters into the ocean interior.
Yang Feng, Dimitris Menemenlis, Huijie Xue, Hong Zhang, Dustin Carroll, Yan Du, and Hui Wu
Geosci. Model Dev., 14, 1801–1819, https://doi.org/10.5194/gmd-14-1801-2021, https://doi.org/10.5194/gmd-14-1801-2021, 2021
Short summary
Short summary
Simulation of coastal plume regions was improved in global ECCOv4 with a series of sensitivity tests. We find modeled SSS is closer to SMAP when using daily point-source runoff as well as increasing the resolution from coarse to intermediate. The plume characteristics, freshwater transport, and critical water properties are modified greatly. But this may not happen with a further increase to high resolution. The study will advance the seamless modeling of land–ocean–atmosphere feedback in ESMs.
Emilio Marañón, France Van Wambeke, Julia Uitz, Emmanuel S. Boss, Céline Dimier, Julie Dinasquet, Anja Engel, Nils Haëntjens, María Pérez-Lorenzo, Vincent Taillandier, and Birthe Zäncker
Biogeosciences, 18, 1749–1767, https://doi.org/10.5194/bg-18-1749-2021, https://doi.org/10.5194/bg-18-1749-2021, 2021
Short summary
Short summary
The concentration of chlorophyll is commonly used as an indicator of the abundance of photosynthetic plankton (phytoplankton) in lakes and oceans. Our study investigates why a deep chlorophyll maximum, located near the bottom of the upper, illuminated layer develops in the Mediterranean Sea. We find that the acclimation of cells to low light is the main mechanism involved and that this deep maximum represents also a maximum in the biomass and carbon fixation activity of phytoplankton.
Kimberly A. Casey, Cecile S. Rousseaux, Watson W. Gregg, Emmanuel Boss, Alison P. Chase, Susanne E. Craig, Colleen B. Mouw, Rick A. Reynolds, Dariusz Stramski, Steven G. Ackleson, Annick Bricaud, Blake Schaeffer, Marlon R. Lewis, and Stéphane Maritorena
Earth Syst. Sci. Data, 12, 1123–1139, https://doi.org/10.5194/essd-12-1123-2020, https://doi.org/10.5194/essd-12-1123-2020, 2020
Short summary
Short summary
An increase in spectral resolution in forthcoming remote-sensing missions will improve our ability to understand and characterize aquatic ecosystems. We organize and provide a global compilation of high spectral resolution inherent and apparent optical property data from polar, midlatitude, and equatorial open-ocean, estuary, coastal, and inland waters. The data are intended to aid in development of remote-sensing data product algorithms and to perform calibration and validation activities.
Emanuele Organelli, Marie Barbieux, Hervé Claustre, Catherine Schmechtig, Antoine Poteau, Annick Bricaud, Emmanuel Boss, Nathan Briggs, Giorgio Dall'Olmo, Fabrizio D'Ortenzio, Edouard Leymarie, Antoine Mangin, Grigor Obolensky, Christophe Penkerc'h, Louis Prieur, Collin Roesler, Romain Serra, Julia Uitz, and Xiaogang Xing
Earth Syst. Sci. Data, 9, 861–880, https://doi.org/10.5194/essd-9-861-2017, https://doi.org/10.5194/essd-9-861-2017, 2017
Short summary
Short summary
Autonomous robotic platforms such as Biogeochemical-Argo floats allow observation of the ocean, from the surface to the interior, in a new and systematic way. A fleet of 105 of these platforms have collected several biological, biogeochemical, and optical variables in still unexplored regions. The quality-controlled databases presented here will enable scientists to improve knowledge on the functioning of marine ecosystems and investigate the climatic implications.
Xiang Gong, Wensheng Jiang, Linhui Wang, Huiwang Gao, Emmanuel Boss, Xiaohong Yao, Shuh-Ji Kao, and Jie Shi
Biogeosciences, 14, 2371–2386, https://doi.org/10.5194/bg-14-2371-2017, https://doi.org/10.5194/bg-14-2371-2017, 2017
Short summary
Short summary
The subsurface chlorophyll maximum layer (SCML) forms near the nitracline. By incorporating a piecewise function for the approximate Gaussian vertical profile of chlorophyll, we derive analytical solutions of a specified nutrient–phytoplankton model. Nitracline depth is deeper than SCML depth, and a thinner SCML corresponds to a steeper nitracline. A higher light attenuation coefficient leads to a shallower but steeper nitracline. Nitracline steepness is independent of surface light intensity.
M. L. Estapa, K. Buesseler, E. Boss, and G. Gerbi
Biogeosciences, 10, 5517–5531, https://doi.org/10.5194/bg-10-5517-2013, https://doi.org/10.5194/bg-10-5517-2013, 2013
P. Xiu and F. Chai
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-12529-2013, https://doi.org/10.5194/bgd-10-12529-2013, 2013
Preprint withdrawn
Related subject area
Biogeochemistry: Bio-Optics
Chromophoric dissolved organic matter dynamics revealed through the optimization of an optical–biogeochemical model in the northwestern Mediterranean Sea
Estimating the seasonal impact of optically significant water constituents on surface heating rates in the western Baltic Sea
Variability of light absorption coefficients by different size fractions of suspensions in the southern Baltic Sea
Spatial and temporal dynamics of suspended sediment concentrations in coastal waters of the South China Sea, off Sarawak, Borneo: ocean colour remote sensing observations and analysis
Comment on “Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum” by K. Michaelian and A. Simeonov (2015)
The suspended small-particle layer in the oxygen-poor Black Sea: a proxy for delineating the effective N2-yielding section
Diel quenching of Southern Ocean phytoplankton fluorescence is related to iron limitation
A global end-member approach to derive aCDOM(440) from near-surface optical measurements
Floodwater impact on Galveston Bay phytoplankton taxonomy, pigment composition and photo-physiological state following Hurricane Harvey from field and ocean color (Sentinel-3A OLCI) observations
Diurnal regulation of photosynthetic light absorption, electron transport and carbon fixation in two contrasting oceanic environments
Bio-optical characterization of subsurface chlorophyll maxima in the Mediterranean Sea from a Biogeochemical-Argo float database
Carbon Flux Explorer optical assessment of C, N and P fluxes
Phytoplankton size class in the East China Sea derived from MODIS satellite data
An estuarine-tuned quasi-analytical algorithm (QAA-V): assessment and application to satellite estimates of SPM in Galveston Bay following Hurricane Harvey
Remote sensing of canopy nitrogen at regional scale in Mediterranean forests using the spaceborne MERIS Terrestrial Chlorophyll Index
Modelling ocean-colour-derived chlorophyll a
Optical properties of size fractions of suspended particulate matter in littoral waters of Québec
Methods to retrieve the complex refractive index of aquatic suspended particles: going beyond simple shapes
Changes in optical characteristics of surface microlayers hint to photochemically and microbially mediated DOM turnover in the upwelling region off the coast of Peru
Quantifying the biological impact of surface ocean light attenuation by colored detrital matter in an ESM using a new optical parameterization
Monitoring seasonal and diurnal changes in photosynthetic pigments with automated PRI and NDVI sensors
Autonomous profiling float observations of the high-biomass plume downstream of the Kerguelen Plateau in the Southern Ocean
A simple optical index shows spatial and temporal heterogeneity in phytoplankton community composition during the 2008 North Atlantic Bloom Experiment
Ocean colour remote sensing in the southern Laptev Sea: evaluation and applications
Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea
Absorption and fluorescence properties of chromophoric dissolved organic matter of the eastern Bering Sea in the summer with special reference to the influence of a cold pool
A synthesis of light absorption properties of the Arctic Ocean: application to semianalytical estimates of dissolved organic carbon concentrations from space
Influence of the Changjiang River on the light absorption properties of phytoplankton from the East China Sea
On the consistency of MODIS chlorophyll $a$ products in the northern South China Sea
Contribution to a bio-optical model for remote sensing of Lena River water
Light absorption and partitioning in Arctic Ocean surface waters: impact of multiyear ice melting
Biogeochemical origins of particles obtained from the inversion of the volume scattering function and spectral absorption in coastal waters
Apparent optical properties of the Canadian Beaufort Sea – Part 1: Observational overview and water column relationships
Apparent optical properties of the Canadian Beaufort Sea – Part 2: The 1% and 1 cm perspective in deriving and validating AOP data products
Increasing cloudiness in Arctic damps the increase in phytoplankton primary production due to sea ice receding
Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space
Variations of net primary productivity and phytoplankton community composition in the Indian sector of the Southern Ocean as estimated from ocean color remote sensing data
Spectroscopic detection of a ubiquitous dissolved pigment degradation product in subsurface waters of the global ocean
Remote sensing of coccolithophore blooms in selected oceanic regions using the PhytoDOAS method applied to hyper-spectral satellite data
Tracing the transport of colored dissolved organic matter in water masses of the Southern Beaufort Sea: relationship with hydrographic characteristics
Bio-optical provinces in the eastern Atlantic Ocean and their biogeographical relevance
Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient
Characterization of the bio-optical anomaly and diurnal variability of particulate matter, as seen from scattering and backscattering coefficients, in ultra-oligotrophic eddies of the Mediterranean Sea
MODIS observed phytoplankton dynamics in the Taiwan Strait: an absorption-based analysis
Global variability of phytoplankton functional types from space: assessment via the particle size distribution
Optical Characterization of an Eddy-induced Diatom Bloom West of the Island of Hawaii
The dissolved yellow substance and the shades of blue in the Mediterranean Sea
Eva Álvarez, Gianpiero Cossarini, Anna Teruzzi, Jorn Bruggeman, Karsten Bolding, Stefano Ciavatta, Vincenzo Vellucci, Fabrizio D'Ortenzio, David Antoine, and Paolo Lazzari
Biogeosciences, 20, 4591–4624, https://doi.org/10.5194/bg-20-4591-2023, https://doi.org/10.5194/bg-20-4591-2023, 2023
Short summary
Short summary
Chromophoric dissolved organic matter (CDOM) interacts with the ambient light and gives the waters of the Mediterranean Sea their colour. We propose a novel parameterization of the CDOM cycle, whose parameter values have been optimized by using the data of the monitoring site BOUSSOLE. Nutrient and light limitations for locally produced CDOM caused aCDOM(λ) to covary with chlorophyll, while the above-average CDOM concentrations observed at this site were maintained by allochthonous sources.
Bronwyn E. Cahill, Piotr Kowalczuk, Lena Kritten, Ulf Gräwe, John Wilkin, and Jürgen Fischer
Biogeosciences, 20, 2743–2768, https://doi.org/10.5194/bg-20-2743-2023, https://doi.org/10.5194/bg-20-2743-2023, 2023
Short summary
Short summary
We quantify the impact of optically significant water constituents on surface heating rates and thermal energy fluxes in the western Baltic Sea. During productive months in 2018 (April to September) we found that the combined effect of coloured
dissolved organic matter and particulate absorption contributes to sea surface heating of between 0.4 and 0.9 K m−1 d−1 and a mean loss of heat (ca. 5 W m−2) from the sea to the atmosphere. This may be important for regional heat balance budgets.
Justyna Meler, Dagmara Litwicka, and Monika Zabłocka
Biogeosciences, 20, 2525–2551, https://doi.org/10.5194/bg-20-2525-2023, https://doi.org/10.5194/bg-20-2525-2023, 2023
Short summary
Short summary
We present a variability of absorption properties by different size fractions of particles suspended in the Baltic Sea waters. The light absorption coefficient by all suspended particles (ap), detritus (ad) and phytoplankton (aph) was determined for four size fractions: pico-particles, ultra-particles, nano-particles and micro-particles. We have shown the proportions of particles from the size classes (micro-, nano-, ultra- and pico-particles) in the total ap, ad and aph.
Jenny Choo, Nagur Cherukuru, Eric Lehmann, Matt Paget, Aazani Mujahid, Patrick Martin, and Moritz Müller
Biogeosciences, 19, 5837–5857, https://doi.org/10.5194/bg-19-5837-2022, https://doi.org/10.5194/bg-19-5837-2022, 2022
Short summary
Short summary
This study presents the first observation of water quality changes over space and time in the coastal systems of Sarawak, Malaysian Borneo, using remote sensing technologies. While our findings demonstrate that the southwestern coast of Sarawak is within local water quality standards, historical patterns of water quality degradation that were detected can help to alert local authorities and enhance management and monitoring strategies of coastal waters in this region.
Lars Olof Björn
Biogeosciences, 19, 1013–1019, https://doi.org/10.5194/bg-19-1013-2022, https://doi.org/10.5194/bg-19-1013-2022, 2022
Short summary
Short summary
The origin and evolution of life do not contradict the laws of thermodynamics, but we have no proof that it is an inevitable consequence of these laws. We do not know if the first life arose under illumination or in darkness in the deep ocean or in the Earth's crust. We have no proof that it arose due to a
thermodynamic imperative of dissipating the prevailing solar spectrum, as there are other ways for entropy increase in solar radiation. The biosphere may instead delay entropy production.
Rafael Rasse, Hervé Claustre, and Antoine Poteau
Biogeosciences, 17, 6491–6505, https://doi.org/10.5194/bg-17-6491-2020, https://doi.org/10.5194/bg-17-6491-2020, 2020
Short summary
Short summary
Here, data collected by BGC-Argo floats are used to investigate the origin of the suspended small-particle layer inferred from optical sensors in the oxygen-poor Black Sea. Our results suggest that this layer is at least partially composed of the microbial communities that produce dinitrogen. We propose that oxygen and the optically derived small-particle layer can be used in combination to refine delineation of the effective N2-yielding section of the Black Sea and oxygen-deficient zones.
Christina Schallenberg, Robert F. Strzepek, Nina Schuback, Lesley A. Clementson, Philip W. Boyd, and Thomas W. Trull
Biogeosciences, 17, 793–812, https://doi.org/10.5194/bg-17-793-2020, https://doi.org/10.5194/bg-17-793-2020, 2020
Short summary
Short summary
Measurements of phytoplankton health still require the use of research vessels and are thus costly and sparse. In this paper we propose a new way to assess the health of phytoplankton using simple fluorescence measurements, which can be made autonomously. In the Southern Ocean, where the most limiting nutrient for phytoplankton is iron, we found a relationship between iron limitation and the depression of fluorescence under high light, the so-called non-photochemical quenching of fluorescence.
Stanford B. Hooker, Atsushi Matsuoka, Raphael M. Kudela, Youhei Yamashita, Koji Suzuki, and Henry F. Houskeeper
Biogeosciences, 17, 475–497, https://doi.org/10.5194/bg-17-475-2020, https://doi.org/10.5194/bg-17-475-2020, 2020
Short summary
Short summary
A Kd(λ) and aCDOM(440) data set spanned oceanic, coastal, and inland waters. The algorithmic approach, based on Kd end-member pairs, can be used globally. End-members with the largest spectral span had an accuracy of 1.2–2.4 % (RMSE). Validation was influenced by subjective
nonconservativewater masses. The influence of subcategories was confirmed with an objective cluster analysis.
Bingqing Liu, Eurico J. D'Sa, and Ishan D. Joshi
Biogeosciences, 16, 1975–2001, https://doi.org/10.5194/bg-16-1975-2019, https://doi.org/10.5194/bg-16-1975-2019, 2019
Short summary
Short summary
An approach using bio-optical field and ocean color (Sentinel-3A OLCI) data combined with inversion models allowed for the first time an assessment of phytoplankton response (changes in taxonomy, pigment composition and physiological state) to a large hurricane-related floodwater perturbation in a turbid estuary. The study revealed the transition in phytoplankton community species as well as the spatiotemporal distributions of phytoplankton diagnostic pigments in the floodwater-impacted bay.
Nina Schuback and Philippe D. Tortell
Biogeosciences, 16, 1381–1399, https://doi.org/10.5194/bg-16-1381-2019, https://doi.org/10.5194/bg-16-1381-2019, 2019
Short summary
Short summary
Understanding the dynamics of primary productivity requires mechanistic insight into the coupling of light absorption, electron transport and carbon fixation in response to environmental variability. Measuring such rates over diurnal timescales in contrasting regions allowed us to gain information on the regulation of photosynthetic efficiencies, with implications for the interpretation of bio-optical data, and the parameterization of models needed to monitor productivity over large scales.
Marie Barbieux, Julia Uitz, Bernard Gentili, Orens Pasqueron de Fommervault, Alexandre Mignot, Antoine Poteau, Catherine Schmechtig, Vincent Taillandier, Edouard Leymarie, Christophe Penkerc'h, Fabrizio D'Ortenzio, Hervé Claustre, and Annick Bricaud
Biogeosciences, 16, 1321–1342, https://doi.org/10.5194/bg-16-1321-2019, https://doi.org/10.5194/bg-16-1321-2019, 2019
Short summary
Short summary
As commonly observed in oligotrophic stratified waters, a subsurface (or deep) chlorophyll maximum (SCM) frequently characterizes the vertical distribution of phytoplankton chlorophyll in the Mediterranean Sea. SCMs often result from photoacclimation of the phytoplankton organisms. However they can also result from an actual increase in phytoplankton carbon biomass. Our results also suggest that a variety of intermediate types of SCMs are encountered between these two endmember situations.
Hannah L. Bourne, James K. B. Bishop, Todd J. Wood, Timothy J. Loew, and Yizhuang Liu
Biogeosciences, 16, 1249–1264, https://doi.org/10.5194/bg-16-1249-2019, https://doi.org/10.5194/bg-16-1249-2019, 2019
Short summary
Short summary
The biological carbon pump, the process by which carbon-laden particles sink out of the surface ocean, is dynamic and fast. The use of autonomous observations will better inform carbon export simulations. The Carbon Flux Explorer (CFE) was developed to optically measure hourly variations of particle flux. We calibrate the optical measurements of the CFE against C and N flux using samples collected during a coastal California cruise in June 2017. Our results yield well-correlated calibrations.
Hailong Zhang, Shengqiang Wang, Zhongfeng Qiu, Deyong Sun, Joji Ishizaka, Shaojie Sun, and Yijun He
Biogeosciences, 15, 4271–4289, https://doi.org/10.5194/bg-15-4271-2018, https://doi.org/10.5194/bg-15-4271-2018, 2018
Short summary
Short summary
The PSC model was re-tuned for regional application in the East China Sea, and successfully applied to MODIS data. We investigated previously unknown temporal–spatial patterns of the PSC in the ECS and analyzed their responses to environmental factors. The results show the PSC varied across both spatial and temporal scales, and was probably affected by the water column stability, upwelling, and Kuroshio. In addition, human activity and riverine discharge may impact the PSC dynamics.
Ishan D. Joshi and Eurico J. D'Sa
Biogeosciences, 15, 4065–4086, https://doi.org/10.5194/bg-15-4065-2018, https://doi.org/10.5194/bg-15-4065-2018, 2018
Short summary
Short summary
The standard quasi-analytical algorithm (QAA) was tuned for various ocean color sensors as QAA-V and optimized for and evaluated in a variety of waters from highly absorbing and turbid to relatively clear shelf waters. The QAA-V-derived optical properties of total absorption and backscattering coefficients showed an obvious improvement when compared to the standard QAA and were used to examine suspended particulate matter dynamics in Galveston Bay following flooding due to Hurricane Harvey.
Yasmina Loozen, Karin T. Rebel, Derek Karssenberg, Martin J. Wassen, Jordi Sardans, Josep Peñuelas, and Steven M. De Jong
Biogeosciences, 15, 2723–2742, https://doi.org/10.5194/bg-15-2723-2018, https://doi.org/10.5194/bg-15-2723-2018, 2018
Short summary
Short summary
Nitrogen (N) is an essential nutrient for plant growth. It would be interesting to detect it using satellite data. The goal was to investigate if it is possible to remotely sense the canopy nitrogen concentration and content of Mediterranean trees using a product calculated from satellite reflectance data, the MERIS Terrestrial Chlorophyll Index (MTCI). The tree plots were located in Catalonia, NE Spain. The relationship between MTCI and canopy N was present but dependent on the type of trees.
Stephanie Dutkiewicz, Anna E. Hickman, and Oliver Jahn
Biogeosciences, 15, 613–630, https://doi.org/10.5194/bg-15-613-2018, https://doi.org/10.5194/bg-15-613-2018, 2018
Short summary
Short summary
This study provides a demonstration that a biogeochemical/ecosystem/optical computer model which explicitly captures how light is radiated at the surface of the ocean and can be used as a laboratory to explore products (such as Chl a) that are derived from satellite measurements of ocean colour. It explores uncertainties that arise from data input used to derive the algorithms for the products, and issues arising from the interplay between optically important constituents in the ocean.
Gholamreza Mohammadpour, Jean-Pierre Gagné, Pierre Larouche, and Martin A. Montes-Hugo
Biogeosciences, 14, 5297–5312, https://doi.org/10.5194/bg-14-5297-2017, https://doi.org/10.5194/bg-14-5297-2017, 2017
Short summary
Short summary
The mass-specific absorption coefficients of total suspended particulate matter (aSPM*) had relatively low (high) values in areas of of the St. Lawrence Estuary influenced by marine (freshwater) waters and dominated by large-sized (small-sized) and organic-rich (mineral-rich) particulates.
The inorganic content of particulates was correlated with size-fractionated aSPM* values at a wavelength of 440 nm and the spectral slope of aSPM* as computed within the spectral range 400–710 nm.
Albert-Miquel Sánchez and Jaume Piera
Biogeosciences, 13, 4081–4098, https://doi.org/10.5194/bg-13-4081-2016, https://doi.org/10.5194/bg-13-4081-2016, 2016
Short summary
Short summary
In this paper, several methods for the retrieval of the refractive indices are used in three different examples modeling different shapes and particle size distributions. The error associated with each method is discussed and analyzed. It is finally demonstrated that those inverse methods using a genetic algorithm provide optimal estimations relative to other techniques that, although faster, are less accurate.
Luisa Galgani and Anja Engel
Biogeosciences, 13, 2453–2473, https://doi.org/10.5194/bg-13-2453-2016, https://doi.org/10.5194/bg-13-2453-2016, 2016
G. E. Kim, M.-A. Pradal, and A. Gnanadesikan
Biogeosciences, 12, 5119–5132, https://doi.org/10.5194/bg-12-5119-2015, https://doi.org/10.5194/bg-12-5119-2015, 2015
Short summary
Short summary
Light absorption by colored detrital material (CDM) was included in a fully coupled Earth system model. Chlorophyll and biomass increased near the surface but decreased at greater depths when CDM was included. Concurrently, total biomass decreased leaving more nutrients in the water. Regional changes were analyzed by comparing the competing factors of diminished light availability and increased nutrient availability on phytoplankton growth.
J. A. Gamon, O. Kovalchuck, C. Y. S. Wong, A. Harris, and S. R. Garrity
Biogeosciences, 12, 4149–4159, https://doi.org/10.5194/bg-12-4149-2015, https://doi.org/10.5194/bg-12-4149-2015, 2015
Short summary
Short summary
NDVI and PRI sensors (SRS, Decagon Inc.) exhibited complementary responses during spring photosynthetic activation in evergreen and deciduous stands. In evergreens, PRI was most strongly influenced by changing chlorophyll:carotenoid pool sizes over the several weeks of the study, while it was most affected by xanthophyll cycle pigment activity at the diurnal timescale. These automated PRI and NDVI sensors offer new ways to explore environmental and physiological constraints on photosynthesis.
M. Grenier, A. Della Penna, and T. W. Trull
Biogeosciences, 12, 2707–2735, https://doi.org/10.5194/bg-12-2707-2015, https://doi.org/10.5194/bg-12-2707-2015, 2015
Short summary
Short summary
Four bio-profilers were deployed in the high-biomass plume downstream of the Kerguelen Plateau (KP; Southern Ocean) to examine the conditions favouring phytoplankton accumulation. Regions of very high Chla accumulation were mainly associated with surface waters from the northern KP. Light limitation seems to have a limited influence on production. A cyclonic eddy was associated with a significant export of organic matter and a subsequent dissolved inorganic carbon storage in the ocean interior.
I. Cetinić, M. J. Perry, E. D'Asaro, N. Briggs, N. Poulton, M. E. Sieracki, and C. M. Lee
Biogeosciences, 12, 2179–2194, https://doi.org/10.5194/bg-12-2179-2015, https://doi.org/10.5194/bg-12-2179-2015, 2015
Short summary
Short summary
The ratio of simple optical properties measured from underwater autonomous platforms, such as floats and gliders, is used as a new tool for studying phytoplankton distribution in the North Atlantic Ocean. The resolution that optical instruments carried by autonomous platforms provide allows us to study phytoplankton patchiness and its drivers in the oceanic systems.
B. Heim, E. Abramova, R. Doerffer, F. Günther, J. Hölemann, A. Kraberg, H. Lantuit, A. Loginova, F. Martynov, P. P. Overduin, and C. Wegner
Biogeosciences, 11, 4191–4210, https://doi.org/10.5194/bg-11-4191-2014, https://doi.org/10.5194/bg-11-4191-2014, 2014
M. Kahru and R. Elmgren
Biogeosciences, 11, 3619–3633, https://doi.org/10.5194/bg-11-3619-2014, https://doi.org/10.5194/bg-11-3619-2014, 2014
E. J. D'Sa, J. I. Goes, H. Gomes, and C. Mouw
Biogeosciences, 11, 3225–3244, https://doi.org/10.5194/bg-11-3225-2014, https://doi.org/10.5194/bg-11-3225-2014, 2014
A. Matsuoka, M. Babin, D. Doxaran, S. B. Hooker, B. G. Mitchell, S. Bélanger, and A. Bricaud
Biogeosciences, 11, 3131–3147, https://doi.org/10.5194/bg-11-3131-2014, https://doi.org/10.5194/bg-11-3131-2014, 2014
S. Q. Wang, J. Ishizaka, H. Yamaguchi, S. C. Tripathy, M. Hayashi, Y. J. Xu, Y. Mino, T. Matsuno, Y. Watanabe, and S. J. Yoo
Biogeosciences, 11, 1759–1773, https://doi.org/10.5194/bg-11-1759-2014, https://doi.org/10.5194/bg-11-1759-2014, 2014
S. L. Shang, Q. Dong, C. M. Hu, G. Lin, Y. H. Li, and S. P. Shang
Biogeosciences, 11, 269–280, https://doi.org/10.5194/bg-11-269-2014, https://doi.org/10.5194/bg-11-269-2014, 2014
H. Örek, R. Doerffer, R. Röttgers, M. Boersma, and K. H. Wiltshire
Biogeosciences, 10, 7081–7094, https://doi.org/10.5194/bg-10-7081-2013, https://doi.org/10.5194/bg-10-7081-2013, 2013
S. Bélanger, S. A. Cizmeli, J. Ehn, A. Matsuoka, D. Doxaran, S. Hooker, and M. Babin
Biogeosciences, 10, 6433–6452, https://doi.org/10.5194/bg-10-6433-2013, https://doi.org/10.5194/bg-10-6433-2013, 2013
X. Zhang, Y. Huot, D. J. Gray, A. Weidemann, and W. J. Rhea
Biogeosciences, 10, 6029–6043, https://doi.org/10.5194/bg-10-6029-2013, https://doi.org/10.5194/bg-10-6029-2013, 2013
D. Antoine, S. B. Hooker, S. Bélanger, A. Matsuoka, and M. Babin
Biogeosciences, 10, 4493–4509, https://doi.org/10.5194/bg-10-4493-2013, https://doi.org/10.5194/bg-10-4493-2013, 2013
S. B. Hooker, J. H. Morrow, and A. Matsuoka
Biogeosciences, 10, 4511–4527, https://doi.org/10.5194/bg-10-4511-2013, https://doi.org/10.5194/bg-10-4511-2013, 2013
S. Bélanger, M. Babin, and J.-É. Tremblay
Biogeosciences, 10, 4087–4101, https://doi.org/10.5194/bg-10-4087-2013, https://doi.org/10.5194/bg-10-4087-2013, 2013
A. Matsuoka, S. B. Hooker, A. Bricaud, B. Gentili, and M. Babin
Biogeosciences, 10, 917–927, https://doi.org/10.5194/bg-10-917-2013, https://doi.org/10.5194/bg-10-917-2013, 2013
S. Takao, T. Hirawake, S. W. Wright, and K. Suzuki
Biogeosciences, 9, 3875–3890, https://doi.org/10.5194/bg-9-3875-2012, https://doi.org/10.5194/bg-9-3875-2012, 2012
R. Röttgers and B. P. Koch
Biogeosciences, 9, 2585–2596, https://doi.org/10.5194/bg-9-2585-2012, https://doi.org/10.5194/bg-9-2585-2012, 2012
A. Sadeghi, T. Dinter, M. Vountas, B. Taylor, M. Altenburg-Soppa, and A. Bracher
Biogeosciences, 9, 2127–2143, https://doi.org/10.5194/bg-9-2127-2012, https://doi.org/10.5194/bg-9-2127-2012, 2012
A. Matsuoka, A. Bricaud, R. Benner, J. Para, R. Sempéré, L. Prieur, S. Bélanger, and M. Babin
Biogeosciences, 9, 925–940, https://doi.org/10.5194/bg-9-925-2012, https://doi.org/10.5194/bg-9-925-2012, 2012
B. B. Taylor, E. Torrecilla, A. Bernhardt, M. H. Taylor, I. Peeken, R. Röttgers, J. Piera, and A. Bracher
Biogeosciences, 8, 3609–3629, https://doi.org/10.5194/bg-8-3609-2011, https://doi.org/10.5194/bg-8-3609-2011, 2011
G. Dall'Olmo, E. Boss, M. J. Behrenfeld, T. K. Westberry, C. Courties, L. Prieur, M. Pujo-Pay, N. Hardman-Mountford, and T. Moutin
Biogeosciences, 8, 3423–3439, https://doi.org/10.5194/bg-8-3423-2011, https://doi.org/10.5194/bg-8-3423-2011, 2011
H. Loisel, V. Vantrepotte, K. Norkvist, X. Mériaux, M. Kheireddine, J. Ras, M. Pujo-Pay, Y. Combet, K. Leblanc, G. Dall'Olmo, R. Mauriac, D. Dessailly, and T. Moutin
Biogeosciences, 8, 3295–3317, https://doi.org/10.5194/bg-8-3295-2011, https://doi.org/10.5194/bg-8-3295-2011, 2011
S. Shang, Q. Dong, Z. Lee, Y. Li, Y. Xie, and M. Behrenfeld
Biogeosciences, 8, 841–850, https://doi.org/10.5194/bg-8-841-2011, https://doi.org/10.5194/bg-8-841-2011, 2011
T. S. Kostadinov, D. A. Siegel, and S. Maritorena
Biogeosciences, 7, 3239–3257, https://doi.org/10.5194/bg-7-3239-2010, https://doi.org/10.5194/bg-7-3239-2010, 2010
F. Nencioli, G. Chang, M. Twardowski, and T. D. Dickey
Biogeosciences, 7, 151–162, https://doi.org/10.5194/bg-7-151-2010, https://doi.org/10.5194/bg-7-151-2010, 2010
A. Morel and B. Gentili
Biogeosciences, 6, 2625–2636, https://doi.org/10.5194/bg-6-2625-2009, https://doi.org/10.5194/bg-6-2625-2009, 2009
Cited articles
Argo:
Argo float data and metadata from Global Data Assembly Centre (Argo GDAC),
SEANOE,
https://doi.org/10.17882/42182, 2020.
Babin, S. M., Carton, J. A., Dickey. T. D., and Wiggert, J. D.:
Satellite evidence of hurricane induced phytoplankton blooms in an oceanic desert,
J. Geophys. Res.,
109, C03043, 2004.
Balaguru, K., Foltz, G. R., Leung, L. R., and Emanuel, K. A.:
Global warming-induced upper-ocean freshening and the intensification of super typhoons,
Nat. Commun.,
7, 13670, 2016.
Bauer, A. and Waniek, J. J.:
Factors affecting chlorophyll a concentration in the central Beibu Gulf, South China Sea,
Mar. Ecol. Prog. Ser.,
474, 67–88, 2013.
Bishop, J. K. B., Davis, R. E., and Sherman, J. T.:
Robotic observations of dust storm enhancement of carbon biomass in the North Pacific,
Science,
298, 817–821, 2002.
Boss, E., Swift, D., Taylor, L., Brickley, P., Zaneveld, R., Riser, S., Perry, M. J., and Strutton, P. G.:
Observations of pigment and particle distributions in the western North Atlantic from an autonomous float and ocean color satellite,
Limnol. Oceanogr.,
53, 2112–2122, 2008.
Boyce, D. G., Lewis, M. R., and Worm, B.:
Global phytoplankton decline over the past century,
Nature,
466, 591–96, 2010.
Chacko, N.:
Chlorophyll bloom in response to tropical cyclone Hudhud in the Bay of Bengal: Bio-Argo subsurface observations,
Deep-Sea Res. Pt. I,
124, 66–72, 2017.
Chai, F., Johnson, K. S., Claustre, H., Xing, X., Wang, Y., Boss, E., Riser, S., Fennel, K., Oscar Schofield, O., and Sutton, A.:
Monitoring ocean biogeochemistry with autonomous platforms,
Nature Reviews Earth & Environment,
1, 315–326, 2020.
Chang, Y., Liao, H. T., Lee, M. A., Chan, J. W., Shieh, W. J., Lee, K. T., Wang, G. H., and Lan, Y. C.:
Multisatellite observation on upwelling after the passage of Typhoon Hai-Tang in the southern East China Sea,
Geophys. Res. Lett.,
35, L03612, 2008.
Chen, C. and Tang, D.:
Eddy-feature phytoplankton bloom induced by a tropical cyclone in the South China Sea,
Int. J. Remote Sens.,
33, 7444–7457, 2012.
Chen, G, Xiu, P., and Chai, F.:
Physical and biological controls on the summer chlorophyll bloom to the east of Vietnam,
J. Oceanogr.,
70, 323–328, 2014.
Chung, C., Gong, G., and Hung, C.:
Effect of Typhoon Morakot on microphytoplankton population dynamics in the subtropical Northwest Pacific,
Mar. Ecol. Prog. Ser.,
448, 39–49, 2012.
Claustre, H., Bishop, J., Boss, E., Stewart, B., Berthon, J.-F., Coatanoan, C., Johnson, K., Lotiker, A., Ulloa, O., Perry, M. J., D'Ortenzio, F., D'andon, O. H. F., and Uitz, J.:
Bio-optical profiling floats as new observational tools for biogeochemical and ecosystem studies,
in: Proceedings of the “OceanObs'09: Sustained Ocean Observations and Information for Society” Conference, Venice, Italy, 21–25 September 2009,
edited by: Hall, J., Harrison, D. E., and Stammer, D.,
ESA Publication WPP-306, 2010.
Cullen, J. J.:
Subsurface Chlorophyll Maximum Layers: Enduring Enigma or Mystery Solved?,
Annu. Rev. Mar. Sci.,
7, 207–239, 2015.
Du, C., Liu, Z., Kao, S. J., and Dai, M.:
Diapycnal fluxes of nutrients in an oligotrophic oceanic regime: the South China Sea,
Geophys. Res. Lett.,
44, 11510–11518, 2017.
Dunnavan, G. M. and Diercks, J. W.:
An analysis of Super Typhoon Tip (October 1979),
Mon. Weather Rev.,
108, 1915–1923, 1980.
Elsner, J. B., Kossin, J. P., and Jagger, T. H.:
The increasing intensity of the strongest tropical cyclones,
Nature,
455, 92–95, 2008.
Emanuel, K. A.:
Thermodynamic control of hurricane intensity,
Nature,
401, 665–669, 1999.
Emanuel, K. A.:
Increasing destructiveness of tropical cyclones over the past 30 years,
Nature,
436, 686–688, 2005.
Frank, N. L. and Husain, S. A.:
Deadliest tropical cyclone in history,
B. Am. Meteorol. Soc.,
52, 438–444, 1971.
Gierach, M. M., and Subrahmanyam, B.:
Biophysical responses of the upper ocean to major Gulf of Mexico hurricanes in 2005,
J. Geophys. Res.,
113, C04029, 2008.
Glenn, S., Miles, T., Seroka, G., Xu, Y., Forney, R., Yu, F., Roarty, H., Schofield, O., and Kohut, J.:
Stratified coastal ocean interactions with tropical cyclones,
Nat. Commun.,
7, 10887, 2016.
Gong, X., Jiang, W., Wang, L., Gao, H., Boss, E., Yao, X., Kao, S.-J., and Shi, J.: Analytical solution of the nitracline with the evolution of subsurface chlorophyll maximum in stratified water columns, Biogeosciences, 14, 2371–2386, https://doi.org/10.5194/bg-14-2371-2017, 2017.
Graff, J. R., Westberry, T. K., Milligan, A. J., Brown, M. B., Dall'Olmo, G., Van Dongen-Vogels, V., Reifela, K. M., and Behrenfelda, M. J:
Analytical phytoplankton carbon measurements spanning diverse ecosystems,
Deep-Sea Res. Pt. I,
102, 16–25, 2015.
Gray, W. M.:
Global view of the origin of tropical disturbances and storms,
Mon. Weather Rev.,
96, 669–700, 1968.
Han, G., Ma, Z., and Chen, N.:
Hurricane Igor impacts on the stratification and phytoplankton bloom over the Grand Banks,
J. Marine Syst.,
100–101, 19–25, 2012.
He, J. and Soden, B. J.:
Anthropogenic weakening of the tropical circulation: the relative roles of direct CO2 forcing and sea surface temperature change,
J. Climate,
28, 8728–8742, 2015.
Huang, S. M. and Oey, L. Y.:
Right-side cooling and phytoplankton bloom in the wake of a tropical cyclone,
J. Geophys. Res.,
120, 5735–5748, 2015.
Jacob, S. D., Shay, L. K., Mariano, A. J., and Black, P. G.:
The 3D oceanic mixed layer response to Hurricane Gilbert,
J. Phys. Oceanogr.,
30, 1407–1429, 2000.
Johnson, K. S. and Claustre, H.:
Bringing Biogeochemistry into the Argo Age,
Eos,
97, 11–15, 2016.
Kang, S.-W., Jun, K.-C., Park, K.-S., and Han, S.-D.:
Storm surge hindcasting of Typhoon Maemi in Masan Bay, Korea,
Mar. Geod.,
32, 218–232, 2009.
Kara, A. B., Rochford, P. A., and Hurlburt, H. E.:
An optimal definition for ocean mixed layer depth,
J. Geophys. Res.,
105, 16803, 2000.
Kossin, J. P.:
A global slowdown of tropical-cyclone translation speed,
Nature,
558, 104–107, 2018.
Letelier, R. M., Karl, D. M., Abbott, M. R., and Bidigare, R. R.:
Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre,
Limnol. Oceanogr.,
49, 508–519, 2004.
Lin, I. I.:
Typhoon-induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean,
J. Geophys. Res.,
117, C03039, 2012.
Lin, I. I. and Chan, J. C.:
Recent decrease in typhoon destructive potential and global warming implications,
Nat. Commun.,
6, 7182–7182, 2015.
Lin, I. I., Pun, I. F., and Wu, C. C.:
Upper-ocean thermal structure and the western North Pacific category-5 typhoons. Part II: Dependence on translation speed,
Mon. Weather Rev.,
137, 3744–3757, 2009.
Lin, S., Zhang, W. Z., Shang, S. P., and Hong, H. S.:
Ocean response to typhoons in the western North Pacific: Composite results from Argo data,
Deep-Sea Res. Pt. I,
123, 62–74, 2017.
Liu, H., Hu, Z., Huang, L., Huang, H., Chen, Z., Song, X., Ke, Z., and Zhou, L.:
Biological response to typhoon in northern South China Sea: A case study of “Koppu”,
Cont. Shelf Res.,
68, 123–132, 2013.
Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Boyer, T. P., Zweng, M. M., Garcia, H. E., Reagan, J. R., Seidov, D., Weathers, K., Paver, C. R., and Smolyar, I.: World Ocean Atlas 2018, Vol. 1, Temperature, edited by: Mishonov, A., Technical Ed., NOAA Atlas NESDIS 81, 52 pp., 2018.
Mei, M., Lien, C. C., Lin, I. I., and Xie, S. P.:
Tropical cyclone-induced ocean response: a comparative study of the South China Sea and Tropical Northwest Pacific,
J. Climate,
28, 5952–5968, 2015.
Menkes, C. E., Lengaigne, M., Leìvy, M., Etheì, C., Bopp, L., Aumont, O., Vincent, E., Vialard, J., and Jullien, S.:
Global impact of tropical cyclones on primary production,
Global Biogeochem. Cy.,
30, 767–786, 2016.
Mignot, A., Claustre, H., Uitz, J., Poteau, A., D'Ortenzio, F., and Xing, X.:
Understanding the seasonal dynamics of phytoplankton biomass and the deep chlorophyll maximum in oligotrophic environments: A Bio-Argo float investigation,
Global Biogeochem. Cy.,
28, 856–876, 2014.
NASA Goddard Space Flight Center: Ocean Ecology Laboratory, Ocean Biology Processing Group, MODIS Aqua Chlorophyll Data, 2018 Reprocessing, NASA OB.DAAC, USA, https://doi.org/10.5067/AQUA/MODIS/L3B/CHL/2018 (last access: 31 March 2019), 2018.
NASA OBPG: MODIS Aqua Global Level 3 Mapped SST, Ver. 2019.0, PO.DAAC, CA, USA, https://doi.org/10.5067/MODSA-1D4D9, last access: 31 March 2019.
Needham, H. F., Keim, B. D., and Sathiaraj, D.:
A review of tropical cyclone-generated storm surges: global data sources, observations, and impacts,
Rev. Geophys.,
53, 545–591, 2015.
Pan, S., Shi, J., Gao, H., Guo, X., Yao, X., and Gong, X.:
Contributions of physical and biogeochemical processes to phytoplankton biomass enhancement in the surface and subsurface layers during the passage of typhoon Damrey,
J Geophys. Res.-Biogeo.,
122, 212–229, 2017.
Platt, T.:
Primary production of the ocean water column as a function of surface light intensity: algorithms for remote sensing,
Deep-Sea Res. Pt. I,
33, 149–163, 1986.
Pothapakula, P. K., Osuri, K. K., Pattanayak, S., Mohanty, U. C., Sil, S., and Nadimpalli, R.:
Observational perspective of SST changes during life cycle of tropical cyclones over Bay of Bengal,
Nat. Hazards,
88, 1769–1787, 2017.
Price, J. F.:
Upper ocean response to a hurricane,
J. Phys. Oceanogr.,
11, 153–175, 1981.
Price, J. F., Sanford, J. B., and Forristall, G. Z.:
Forced stage responses to a moving hurricane,
J. Phys. Oceanogr.,
24, 233–260, 1994.
Sanford, T. B., Price, J. F., and Girton, J. B.:
Upper ocean response to Hurricane Frances (2004) observed by profiling EM-APEX floats,
J. Phys. Oceanogr.,
41, 1041–1056, 2011.
Schmechtig, C., Thierry, V., and The Bio Argo Team:
Argo quality control manual for biogeochemical data,
https://doi.org/10.13155/40879, 2016.
Shang, S., Li, L., Sun, F., Wu, J., Hu, C., Chen, D., Ning, X., Qiu, Y., Zhang, C., and Shang, S.:
Changes of temperature and bio-optical properties in the South China Sea in response to Typhoon Lingling, 2001,
Geophys. Res. Lett.,
35, L10602, 2008.
Shibano, R., S., Yamanaka, Y., Okada, N., Chuda, T., Suzuki, S., and Niino, H.:
Responses of marine ecosystem to typhoon passages in the western subtropical North Pacific,
Geophys. Res. Lett.,
38, L18608, 2011.
Sobel, A. H., Camargo, S. J., Hall, T. M., Lee, C. Y., Tippett, M. K., and Wing, A. A.:
Human Influence on Tropical Cyclone Intensity,
Science,
353, 242–246, 2016.
Sriver, R. L. and Huber, M.:
Observational evidence for an ocean heat pump induced by tropical cyclones,
Nature,
447, 577–580, 2007.
Sun, L., Yang, Y., Xian, T., Lu, Z., and Fu, Y.:
Strong enhancement of chlorophyll a concentration by a weak typhoon,
Mar. Ecol. Prog. Ser.,
404, 39–50, 2010.
Terzić, E., Lazzari, P., Organelli, E., Solidoro, C., Salon, S., D'Ortenzio, F., and Conan, P.: Merging bio-optical data from Biogeochemical-Argo floats and models in marine biogeochemistry, Biogeosciences, 16, 2527–2542, https://doi.org/10.5194/bg-16-2527-2019, 2019.
Vecchi, G. A. and Soden, B. J.:
Effect of remote sea surface temperature change on tropical cyclone potential intensity,
Nature,
450, 1066–1070, 2007.
Wang, Y.:
Composite of typhoon induced sea surface temperature and chlorophyll-a responses in the South China Sea,
J. Geophys. Res.-Oceans,
125, e2020JC016243, 2020.
Webster, P. J., Holland, G. J., Curry, J. A., and Chang, H.:
Changes in Tropical Cyclone Number, Duration, and Intensity in a Warming Environment,
Science,
309, 1844–1846, 2005.
Wu, R. and Li, C.:
Upper ocean responses to the passage of two sequential typhoons,
Deep-Sea Res. Pt. I,
132, 68–79, 2018.
Xing, X., Wells, M. L., Chen, S., Lin, S., and Chai, F.:
Enhanced Winter Carbon Export Observed by BGC-Argo in the Northwest Pacific Ocean,
Geophys. Res. Lett.,
47, e2020GL089847, 2020.
Yang, Y. J., Sun, L., Liu, Q., Xian, T., and Fu, Y.:
The biophysical responses of the upper ocean to the typhoons Namtheun and Malou in 2004,
Int. J. Remote Sens.,
31, 4559–4568, 2010.
Ye, H. J., Sui, Y., Tang, D. L., and Afanasyev, Y. D.:
A Subsurface Chlorophyll a Bloom Induced by Typhoon in the South China Sea,
J. Marine Syst.,
128, 138–145, 2013.
Zhao, H., Tang, D., and Wang, Y.:
Comparison of phytoplankton blooms triggered by two typhoons with different intensities and translation speeds in the South China Sea,
Mar. Ecol. Prog. Ser.,
365, 57–65, 2008.
Zhao, H., Pan, J., Han, G., Devlin, A. T., Zhang, S., and Hou, Y.:
Effect of a fast-moving tropical storm Washi on phytoplankton in the northwestern South China Sea,
J. Geophys. Res.,
122, 3404–3416, 2017.
Zhang, H., Wu, R., Chen, D., Liu, X., He, H., Tang, Y., Ke, D., Shen, Z., Li, J., Xie, J., Tian, D., Meng, J., Liu, F., Zhang, D., and Zhang, W.:
Net modulation of upper ocean thermal structure by Typhoon Kalmaegi (2014),
J. Geophys. Res.,
122, 7154–7171, 2018.
Zheng, G. and Tang, D.:
Offshore and nearshore chlorophyll increases induced by typhoon winds and subsequent terrestrial rainwater runoff,
Mar. Ecol. Prog. Ser.,
333, 61–74, 2007.
Zheng, Z.-W., Ho, C.-R., and Kuo, N.-J.:
Importance of pre-existing oceanic conditions to upper ocean response induced by Super Typhoon Hai-Tang,
Geophys. Res. Lett.,
35, L20603, 2008.
Zhou, L., Tan, Y., Huang, L., Huang, J., Liu, H., and Lian, X.:
Phytoplankton growth and microzooplankton grazing in the continental shelf area of northeastern South China Sea after Typhoon Fengshen,
Cont. Shelf Res.,
31, 1663–1671, 2011.
Short summary
The unique observations by a Biogeochemical Argo float in the NW Pacific Ocean captured the impact of a super typhoon on upper-ocean physical and biological processes. Our result reveals typhoons can increase the surface chlorophyll through strong vertical mixing without bringing nutrients upward from the depth. The vertical redistribution of chlorophyll contributes little to enhance the primary production, which is contradictory to many former satellite-based studies related to this topic.
The unique observations by a Biogeochemical Argo float in the NW Pacific Ocean captured the...
Altmetrics
Final-revised paper
Preprint