Articles | Volume 19, issue 4
https://doi.org/10.5194/bg-19-1277-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-1277-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Marine CO2 system variability along the northeast Pacific Inside Passage determined from an Alaskan ferry
Hakai Institute, Heriot Bay, BC, V0P 1H0, Canada
Geoffrey T. Lebon
Pacific Marine Environmental Laboratory, National Oceanic and
Atmospheric Administration, Seattle, 98115, USA
Cooperative Institute for Climate, Ocean, & Ecosystem Studies,
University of Washington, 98195, Seattle, Washington, USA
Christen D. Harrington
Alaska Marine Highway, Department of Transportation, Ketchikan, AK,
99901, USA
Yuichiro Takeshita
Monterey Bay Aquarium Research Institute, Moss Landing, 95039, USA
Allison Bidlack
Alaska Coastal Rainforest Center, University of Alaska Southeast,
Juneau, AK, 99801, USA
Related authors
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Kjetil Aas, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Nicolas Bellouin, Alice Benoit-Cattin, Carla F. Berghoff, Raffaele Bernardello, Laurent Bopp, Ida B. M. Brasika, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Nathan O. Collier, Thomas H. Colligan, Margot Cronin, Laique Djeutchouang, Xinyu Dou, Matt P. Enright, Kazutaka Enyo, Michael Erb, Wiley Evans, Richard A. Feely, Liang Feng, Daniel J. Ford, Adrianna Foster, Filippa Fransner, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Jefferson Goncalves De Souza, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Bertrand Guenet, Özgür Gürses, Kirsty Harrington, Ian Harris, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Akihiko Ito, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Steve D. Jones, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Yawen Kong, Jan Ivar Korsbakken, Charles Koven, Taro Kunimitsu, Xin Lan, Junjie Liu, Zhiqiang Liu, Zhu Liu, Claire Lo Monaco, Lei Ma, Gregg Marland, Patrick C. McGuire, Galen A. McKinley, Joe Melton, Natalie Monacci, Erwan Monier, Eric J. Morgan, David R. Munro, Jens D. Müller, Shin-Ichiro Nakaoka, Lorna R. Nayagam, Yosuke Niwa, Tobias Nutzel, Are Olsen, Abdirahman M. Omar, Naiqing Pan, Sudhanshu Pandey, Denis Pierrot, Zhangcai Qin, Pierre A. G. Regnier, Gregor Rehder, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, Ingunn Skjelvan, T. Luke Smallman, Victoria Spada, Mohanan G. Sreeush, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Didier Swingedouw, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Xiangjun Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Erik van Ooijen, Guido van der Werf, Sebastiaan J. van de Velde, Anthony Walker, Rik Wanninkhof, Xiaojuan Yang, Wenping Yuan, Xu Yue, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-659, https://doi.org/10.5194/essd-2025-659, 2025
Preprint under review for ESSD
Short summary
Short summary
The Global Carbon Budget 2025 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2025). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique M. Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda R. Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Xin Lan, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick C. McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data, 17, 965–1039, https://doi.org/10.5194/essd-17-965-2025, https://doi.org/10.5194/essd-17-965-2025, 2025
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Natalie M. Monacci, Jessica N. Cross, Wiley Evans, Jeremy T. Mathis, and Hongjie Wang
Earth Syst. Sci. Data, 16, 647–665, https://doi.org/10.5194/essd-16-647-2024, https://doi.org/10.5194/essd-16-647-2024, 2024
Short summary
Short summary
As carbon dioxide is released into the air through human-generated activity, about one third dissolves into the surface water of oceans, lowering pH and increasing acidity. This is known as ocean acidification. We merged 10 years of ocean carbon data and made them publicly available for adaptation planning during a time of change. The data confirmed that Alaska is already experiencing the effects of ocean acidification due to naturally cold water, high productivity, and circulation patterns.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Kjetil Aas, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Nicolas Bellouin, Alice Benoit-Cattin, Carla F. Berghoff, Raffaele Bernardello, Laurent Bopp, Ida B. M. Brasika, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Nathan O. Collier, Thomas H. Colligan, Margot Cronin, Laique Djeutchouang, Xinyu Dou, Matt P. Enright, Kazutaka Enyo, Michael Erb, Wiley Evans, Richard A. Feely, Liang Feng, Daniel J. Ford, Adrianna Foster, Filippa Fransner, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Jefferson Goncalves De Souza, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Bertrand Guenet, Özgür Gürses, Kirsty Harrington, Ian Harris, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Akihiko Ito, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Steve D. Jones, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Yawen Kong, Jan Ivar Korsbakken, Charles Koven, Taro Kunimitsu, Xin Lan, Junjie Liu, Zhiqiang Liu, Zhu Liu, Claire Lo Monaco, Lei Ma, Gregg Marland, Patrick C. McGuire, Galen A. McKinley, Joe Melton, Natalie Monacci, Erwan Monier, Eric J. Morgan, David R. Munro, Jens D. Müller, Shin-Ichiro Nakaoka, Lorna R. Nayagam, Yosuke Niwa, Tobias Nutzel, Are Olsen, Abdirahman M. Omar, Naiqing Pan, Sudhanshu Pandey, Denis Pierrot, Zhangcai Qin, Pierre A. G. Regnier, Gregor Rehder, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, Ingunn Skjelvan, T. Luke Smallman, Victoria Spada, Mohanan G. Sreeush, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Didier Swingedouw, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Xiangjun Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Erik van Ooijen, Guido van der Werf, Sebastiaan J. van de Velde, Anthony Walker, Rik Wanninkhof, Xiaojuan Yang, Wenping Yuan, Xu Yue, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-659, https://doi.org/10.5194/essd-2025-659, 2025
Preprint under review for ESSD
Short summary
Short summary
The Global Carbon Budget 2025 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2025). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Jann Paul Mattern, Yuichiro Takeshita, Carlos Rocha, and Christopher Edwards
EGUsphere, https://doi.org/10.5194/egusphere-2025-3560, https://doi.org/10.5194/egusphere-2025-3560, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We improve coastal ocean carbonate system estimates by assimilating glider pH and alkalinity data into a regional biogeochemical model. Joint assimilation with physical observations successfully improves pH estimates while maintaining physical estimates. A hybrid approach combining dynamical models with statistical methods produces accurate pH estimates without requiring biogeochemical models, offering an alternative solution for ocean acidification monitoring.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique M. Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda R. Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Xin Lan, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick C. McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data, 17, 965–1039, https://doi.org/10.5194/essd-17-965-2025, https://doi.org/10.5194/essd-17-965-2025, 2025
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Natalie M. Monacci, Jessica N. Cross, Wiley Evans, Jeremy T. Mathis, and Hongjie Wang
Earth Syst. Sci. Data, 16, 647–665, https://doi.org/10.5194/essd-16-647-2024, https://doi.org/10.5194/essd-16-647-2024, 2024
Short summary
Short summary
As carbon dioxide is released into the air through human-generated activity, about one third dissolves into the surface water of oceans, lowering pH and increasing acidity. This is known as ocean acidification. We merged 10 years of ocean carbon data and made them publicly available for adaptation planning during a time of change. The data confirmed that Alaska is already experiencing the effects of ocean acidification due to naturally cold water, high productivity, and circulation patterns.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Chiho Sukigara, Ryuichiro Inoue, Kanako Sato, Yoshihisa Mino, Takeyoshi Nagai, Andrea J. Fassbender, Yuichiro Takeshita, Stuart Bishop, and Eitarou Oka
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-9, https://doi.org/10.5194/bg-2022-9, 2022
Manuscript not accepted for further review
Short summary
Short summary
To investigate the physical changes in the ocean from winter to spring and the corresponding biological activities, two automated floats were used to conduct observations in the western North Pacific from January to April 2018. During the observation, repeated storms passed and mixed the ocean surface layer. Afterwards, active biological activity was observed. Using data from the float, we observed the formation, decomposition, and settling of particulate organic matter.
Wiley H. Wolfe, Kenisha M. Shipley, Philip J. Bresnahan, Yuichiro Takeshita, Taylor Wirth, and Todd R. Martz
Ocean Sci., 17, 819–831, https://doi.org/10.5194/os-17-819-2021, https://doi.org/10.5194/os-17-819-2021, 2021
Short summary
Short summary
We tested the stability of a well-characterized seawater pH buffer, tris, during long-term storage in gas-impermeable bags. Tris is used to validate pH measurements; it is critical that we understand how its chemistry changes over time. Correspondingly, we prepared multiple batches of tris buffer in artificial seawater, stored the buffer in multiple types of gas impermeable bags, and analyzed its pH over the course of 300 d, discovering an average change of −0.006 yr−1.
Chiho Sukigara, Ryuichiro Inoue, Kanako Sato, Yoshihisa Mino, Takeyoshi Nagai, Andrea J. Fassbender, Yuichiro Takeshita, and Eitarou Oka
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-116, https://doi.org/10.5194/bg-2021-116, 2021
Manuscript not accepted for further review
Short summary
Short summary
We combined ship-borne water sampling with the use of two Argo floats equipped with biogeochemical sensors to determine the changes in primary productivity associated with the passage of storms and resultant disturbance in the subtropical western North Pacific. We found that the episodic influx of carbon to the surface facilitated by storms played a key role in promoting primary production. Particulate carbon transported to the twilight layer were not the major substrate for the respiration.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Cited articles
Amaya, D. J., Miller, A. J., Xie, S.-P., and Kosaka, Y.: Physical drivers
of the summer 2019 North Pacific marine heatwave, Nat. Commun., 11, 1903,
https://doi.org/10.1038/s41467-41020-15820-w, 2020.
Asplund, M. E., Baden, S. P., Russ, S., Ellis, R. P., Gong, N., and
Hernroth, B. E.: Ocean acidification and host-pathogen interactions: blue
mussels, Mytilus edulis, encountering Vibrio tubiashii, Environ. Microbiol., 16, 1029–1039, 2013.
Barton, A., Hales, B., Waldbusser, G., Langdon, C., and Feely, R. A.: The
Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon
dioxide levels: Implications for near-term ocean acidification effects,
Limnol. Oceanogr., 57, 698–710, 2012.
Barton, A., Waldbusser, G. G., Feely, R. A., Weisberg, S. B., Newton, J. A.,
Hales, B., Cudd, S., Eudeline, B., Langdon, C. J., Jefferds, I., King, T.,
Suhrbier, A., and McLaughlin, K.: Impacts of coastal acidification on the
Pacific Northwest shellfish industry and adaptation strategies implemented
in response, Oceanography, 28, 146–159, 2015.
Bates, N. R., Astor, Y. M., Church, M. J., Currie, K., Dore, J. E.,
Gonzalez-Davila, M., Lorenzoni, L., Muller-Karger, F., Olafsson, J., and
Santana-Casiano, J. M.: A time-series view of changing ocean chemistry due
to ocean uptake of anthropogenic CO2 and ocean acidification,
Oceanography, 27, 126–141,
https://doi.org/10.5670/oceanog.2014.16, 2014.
Beamer, J. P., Hill, D. F., Arendt, A., and Liston, G. E.: High-resolution
modeling of coastal freshwater discharge and glacier mass balance in the
Gulf of Alaska watershed, Water Resour. Res., 52, 3888–3909, https://doi.org/10.1002/2015WR018457, 2016.
Beckwith, S. T., Byrne, R. H., and Hallock, P.: Riverine Calcium End-Members
Improve Coastal Saturation State Calculations and Reveal Regionally Variable
Calcification Potential, Front. Mar. Sci., 6, 169, https://doi.org/10.3389/fmars.2019.00169, 2019.
Bednarsek, N., Feely, R. A., Tolimieri, N., Hermann, A. J., Siedlecki, S.
A., Waldbusser, G. G., McElhany, P., Alin, S. R., Klinger, T., Moore-Maley,
B., and Pörtner, H. O.: Exposure history determines pteropod
vulnerability to ocean acidification along the US West Coast, Sci. Rep., 7, 4526, https://doi.org/10.1038/s41598-41017-03934-z, 2017.
Bednarsek, N., Feely, R. A., Beck, M. W., Alin, S., Siedlecki, S., Calosi,
P., Norton, E. C., Saenger, C., Štrus, J., Greeley, D., Nezlin, N. P.,
Roethler, M., and Spicer, J. I.: Exoskeleton dissolution with
mechanoreceptor damage in larval Dungeness crab related to severity of
present-day ocean acidification vertical gradients, Sci. Total
Environ., 716, 136610, https://doi.org/10.1016/j.scitotenv.2020.136610, 2020.
Bednarsek, N., Newton, J. A., Beck, M. W., Alin, S. R., Feely, R. A.,
Christman, N. R., and Klinger, T.: Severe biological effects under
present-day estuarine acidification in the seasonally variable Salish Sea,
Sci. Total Environ., 765, 142689, https://doi.org/10.1016/j.scitotenv.2020.142689, 2021.
Berger, H. M., Siedlecki, S. A., Matassa, C. M., Alin, S. R., Kaplan, I. C.,
Hodgson, E. E., Pilcher, D. J., Norton, E. C., and Newton, J. A.:
Seasonality and Life History Complexity Determine Vulnerability of Dungeness
Crab to Multiple Climate Stressors, AGU Adv., 2, e2021AV000456, https://doi.org/10.1029/2021AV000456, 2021.
Bidlack, A. L., Bisbing, S. M., Buma, B. J., Diefenderfer, H. L., Fellman,
J. B., Floyd, W. C., Giesbrecht, I., Lally, A., Lertzman, K. P., Perakis, S.
S., Butman, D. E., D'Amore, D. V., Fleming, S. W., Hood, E. W., Hunt, B. P.
V., Kiffney, P. M., McNicol, G., Menounos, B., and Tank, S. E.:
Climate-Mediated Changes to Linked Terrestrial and Marine Ecosystems across
the Northeast Pacific Coastal Temperatre Rainforest Margin, BioScience, 71,
biaa171, doi.org/10.1093/biosci/biaa1171, 2021.
Bittig, H. C., Körtzinger, A., Neill, C., van Ooijen, E., Plant, J. N.,
Hahn, J., Johnson, K. S., Yang, B., and Emerson, S. R.: Oxygen Optode
Sensors: Principle, Characterization, Calibration, and Application in the
Ocean, Front. Mar. Sci., 4, 429, https://doi.org/10.3389/fmars.2017.00429, 2018.
Bond, N. A., Cronin, M. F., Freeland, H., and Mantua, N.: Causes and impacts
of the 2014 warm anomaly in the NE Pacific, Geophys. Res. Lett.,
42, 3414–3420, https://doi.org/10.1002/2015GL063306, 2015.
Cai, W. J., Xu, Y.-Y., Feely, R. A., Wanninkhof, R., Jönsson, B. F.,
Alin, S. R., Barbero, L., Cross, J. N., Azetsu-Scott, K., Fassbender, A. J.,
Carter, B. R., Jiang, L.-Q., Pepin, P., Chen, B., Hussain, N., Reimer, J.
J., Xue, L., Salisbury, J. E., Martín Hernández-Ayón, J.,
Langdon, C., Li, Q., Sutton, A. J., Chen, C.-T. A., and Gledhill, D. K.:
Controls on surface water carbonate chemistry along North American ocean
margins, Nat. Commun., 11, 2691, https://doi.org/10.1038/s41467-41020-16530-z,
2020.
Cai, W. J., Feely, R. A., Testa, J. M., Li, M., Evans, W., Alin, S. R., Xu,
Y.-Y., Pelletier, G., Ahmed, A., Greeley, D. J., Newton, J. A., and
Bednarsek, N.: Natural and Anthropogenic Drivers of Acidification in Large
Estuaries, Annu. Rev. Mar. Sci., 13, 11–33, 2021.
Caldeira, K. and Wickett, M. E.: Anthropogenic carbon and ocean pH, Nature,
425, 365, https://doi.org/10.1038/425365a, 2003.
Cantoni, C., Hopwood, M. J., Clarke, J. S., Chiggiato, J., Achterberg, E.
P., and Cozzi, S.: Glacial drivers of marine biogeochemistry indicate a
future shift to more corrosive conditions in an Arctic fjord, J. Geophys. Res.-Biogeo., 125, e2020JG005633, https://doi.org/10.1029/2020JG005633,
2020.
Carter, B. R., Feely, R. A., Wanninkhof, R., Kouketsu, S., Sonnerup, R. E.,
Pardo, P. C., Sabine, C. L., Johnson, G. C., Sloyan, B. M., Murata, A.,
Mecking, S., Tilbrook, B., Speer, K., Talley, L. D., Millero, F. J.,
Wijffels, S. E., Macdonald, A. M., Gruber, N., and Bullister, J. L.: Pacific
Anthropogenic Carbon Between 1991 and 2017, Global Biogeochem. Cy.,
33, 597–617, 2019a.
Carter, B. R., Williams, N. L., Evans, W., Fassbender, A. J., Barbero, L.,
Hauri, C., Feely, R. A., and Sutton, A. J.: Time-of-detection as a metric
for prioritizing between climate observation quality, frequency, and
duration, Geophys. Res. Lett., 46, 3853–3861, https://doi.org/10.1029/2018GL080773, 2019b.
Chan, F., Barth, J. A., Blanchette, C. A., Byrne, R. H., Chavez, F. P.,
Cheriton, O., Feely, R. A., Friederich, G., Gaylord, B., Gouchier, T.,
Hacker, S., Hill, T., Hofmann, G., McManus, M. A., Menge, B. A., Nielsen, K.
J., Russell, A., Sanford, E., Sevadjian, J., and Washburn, L.: Persistent
spatial structuring of coastal ocean acidification in the California Current
System, Sci. Rep., 7, 2526, https://doi.org/10.1038/s41598-41017-02777-y, 2017.
Dai, A. and Trenberth, K. E.: Estimates of Freshwater Discharge from
Continents: Latitudinal and Seasonal Variations, J. Hydrometeorol., 3, 660–687, 2002.
Dickson, A., Wesolowski, D. J., Palmer, D. A., and Mesmer, R. E.: Dissociation
constant of bisulfate ion in aqueous sodium chloride solutions at 250 ∘C,
J. Phys. Chem. 94, 7978–7985, https://doi.org/10.1021/j100383a042, 1990.
Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean
Acidification: The Other CO2 Problem, Annu. Rev. Mar. Sci.,
1, 169–192, 2009.
Doney, S. C., Busch, D. S., Cooley, S. R., and Kroeker, K. J.: The Impacts
of Ocean Acidification on Marine Ecosystems and Relient Human Communities
Annual Review of Environment and Resources, Annu. Rev., 45, 83–112,
https://doi.org/10.1146/annurev-environ-012320-083019, 2020.
Dosser, H. V., Waterman, S., Jackson, J. M., Hannah, C. G., Evans, W., and
Hunt, B. P. V.: Stark Physical and Biogeochemical Differences and
Implications for Ecosystem Stressors in the Northeast Pacific Coastal Ocean,
J. Geophys. Res.-Oceans, 126, e2020JC017033, 2021.
Edwards, R. T., D'Amore, D. V., Biles, F. E., Fellman, J. B., Hood, E.,
Trubilowicz, J. W., and Floyd, W. C.: Riverine Dissolved Organic Carbon and
Freshwater Export in the Eastern Gulf of Alaska, J. Geophys. Res.-Biogeo., 126, e2020JG005725, https://doi.org/10.1029/2020JG005725, 2020.
Ekstrom, J. A., Suatoni, L., Cooley, S. R., Pendleton, L. H., Waldbusser, G.
G., Cinner, J. E., Ritter, J., Langdon, C., van Hooidonk, R., Gledhill, D.,
Wellman, K., Beck, M. W., Brander, L. M., Rittschof, D., Doherty, C.,
Edwards, P. E. T., and Portela, R.: Vulnerability and adaptation of US
shellfisheries to ocean acidification, Nat. Clim. Change, 5, 207–214,
https://doi.org/10.1038/nclimate2508, 2015.
Ericson, Y., Falck, E., Chierici, M., Fransson, A., and Kristiansen, S.:
Marine CO2 system variability in a high arctic tidewater-glacier fjord
system, Tempeljorden, Svalbard, Cont. Shelf Res., 181, 1–13, 2019.
Evans, W., Hales, B., Strutton, P. G., and Ianson, D.: Sea-air CO2
fluxes in the western Canadian coastal ocean, Prog. Oceanogr., 101, 78–91, https://doi.org/10.1016/j.pocean.2012.1001.1003, 2012.
Evans, W. and Mathis, J. T.: The Gulf of Alaska coastal ocean as an
atmospheric CO2 sink, Cont. Shelf Res., 65, 52–63, 2013.
Evans, W., Mathis, J. T., and Cross, J. N.: Calcium carbonate corrosivity in an Alaskan inland sea, Biogeosciences, 11, 365–379, https://doi.org/10.5194/bg-11-365-2014, 2014.
Evans, W., Mathis, J. T., Ramsay, J., and Hetrick, J.: On the Frontline:
Tracking Ocean Acidification in an Alaskan Shellfish Hatchery, PLoS One, 10,
e0130384, https://doi.org/10.1371/journal.pone.0130384, 2015.
Evans, W., Pocock, K., Hare, A., Weekes, C., Hales, B., Jackson, J.,
Gurney-Smith, H., Mathis, J. T., Alin, S. R., and Feely, R. A.: Marine
CO2 Patterns in the Northern Salish Sea, Front. Mar. Sci.,
5, 536, https://doi.org/10.3389/fmars.2018.00536, 2019.
Evans, W. and Lebon, G. T., Harrington, C. D., and Bidlack, A.: Surface underway measurements partial pressure of carbon dioxide (pCO2) in the water and atmosphere, sea surface salinity, sea surface temperature, oxygen and other parameters during the Alaska Marine Highway System M/V Columbia 135 service route transits along British Columbia coast, southeast Alaska coast, Gulf of Alaska and North Pacific Ocean from 2017-10-26 to 2019-10-04 (NCEI Accession 0209049), [indicate subset used], NOAA National Centers for Environmental Information, [data set] https://doi.org/10.25921/jq11-2268, 2020.
Evans, W., Lebon, G. T., Harrington, C. D., Takeshita, Y., and Bidlack, A.: Marine CO2 system variability along the Inside Passage of the Pacific Northwest coast of North America determined from an Alaskan ferry [data set], https://doi.org/10.21966/m0es-7520, 2021.
Fabry, V. J., McClintock, J. B., Mathis, J. T., and Grebmeier, J. M.: Ocean
Acidification at High Latitudes: The Bellwether, Oceanography, 22, 160–171,
2009.
Fassbender, A. J., Sabine, C. L., and Palevsky, H. I.: Nonuniform ocean
acidification and attenuation of the ocean carbon sink, Geophys. Res. Lett., 44, 8404–8413, https://doi.org/10.1002/2017GL074389, 2017.
Fassbender, A. J., Alin, S. R., Feely, R. A., Sutton, A. J., Newton, J. A., Krembs, C., Bos, J., Keyzers, M., Devol, A., Ruef, W., and Pelletier, G.: Seasonal carbonate chemistry variability in marine surface waters of the US Pacific Northwest, Earth Syst. Sci. Data, 10, 1367–1401, https://doi.org/10.5194/essd-10-1367-2018, 2018a.
Fassbender, A. J., Rodgers, K. B., Palevsky, H. I., and Sabine, C. L.:
Seasonal Asymmetry in the Evolution of Surface Ocean pCO2 and pH
Thermodynamic Drivers and the Influence of Sea-Air CO2 Flux, Global Biogeochem. Cy., 32, 1476–1497, 2018b.
Fassbender, A. J., Orr, J. C., and Dickson, A. G.: Technical note: Interpreting pH changes, Biogeosciences, 18, 1407–1415, https://doi.org/10.5194/bg-18-1407-2021, 2021.
Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V.
J., and Millero, F. J.: Impact of Anthropogenic CO2 on the CaCO3
System in the Oceans, Science, 305, 362–366, 2004a.
Feely, R. A., Sabine, C. L., Schlitzer, R., Bullister, J. L., Mecking, S.,
and Greeley, D.: Oxygen Utilization and Organic Carbon Remineralization in
the Upper Water Column of the Pacific Ocean, J. Oceanogr., 60,
45–52, 2004b.
Feely, R. A., Sabine, C. L., Hernandez-Ayon, M., Ianson, D., and Hales, B.:
Evidence for Upwelling of Corrosive “Acidified” Water onto the Continental
Shelf, Science, 320, 1490–1492, 2008.
Feely, R. A., Doney, S. C., and Cooley, S. R.: Ocean Acidification: Present
Conditions and Future Changes in a High-CO2 World, Oceanography, 22,
36–47, 2009.
Feely, R. A., Alin, S. R., Newton, J., Sabine, C. L., Warner, M., Devol, A.,
Krembs, C., and Maloy, C.: The combined effects of ocean acidification,
mixing, and respiration on pH and carbonate saturation in an urbanized
estuary, Eastuar. Coast. Shelf S., 88, 442–449, 2010.
Feely, R. A., Alin, S. R., Carter, B., Bednarsek, N., Hales, B., Chan, F.,
Hill, T. M., Gaylord, B., Sanford, E., Byrne, R. H., Sabine, C. L., Greeley,
D., and Juranek, L.: Chemical and biological impacts of ocean acidification
along the west coast of North America, Eastuar. Coast. Shelf S.,
183, 260–270, 2016.
Feely, R. A., Okazaki, R. R., Cai, W. J., Bednarsek, N., Alin, S. R., Byrne,
R. H., and Fassbender, A.: The combined effects of acidification and hypoxia
on pH and aragonite saturation in the coastal waters of the California
current ecosystem and the northern Gulf of Mexico, Cont. Shelf Res., 152, 50–60, https://doi.org/10/1016/j.csr.2017.11.002, 2018.
Franco, A. C., Ianson, D., Ross, T., Hamme, R. C., Monahan, A. H.,
Christian, J. R., Davelaar, M., Johnson, W. K., Miller, L. A., Robert, M.,
and Tortell, P. D.: Anthropogenic and Climatic Contributions to Observed
Carbon System Trends in the Northeast Pacific, Global Biogeochem. Cy.,
35, e2020GB006829, https://doi.org/10.1029/2020GB006829, 2021.
Gobler, C. J. and Baumann, H.: Hypoxia and acidification in ocean
ecosystems: coupled dynamics and effects on marine life, Biol. Lett.,
12, 20150976, https://doi.org/10.1098/rsbl.2015.0976, 2016.
Gruber, N., Sarmiento, J. L., and Stocker, T. F.: An improved method for
detecting anthropogenic CO2 in the oceans, Global Biogeochem. Cy., 10, 809–837, 1996.
Haigh, R., Ianson, D., Holt, C. A., Neate, H. E., and Edwards, A. M.:
Effects of Ocean Acidification on Temperature Coastal Marine Ecosystems and
Fisheries in the Northeast Pacific, PLoS ONE, 10, e0117533, https://doi.org/10.1371/journal.pone.0117533, 2015.
Hales, B., Cai, W.-J., Mitchell, B. G., Sabine, C. L., and Schofield, O.:
North American Continental Margins: A Synthesis and Planning Workshop,
Report of the North American Continental Margins Working Group for the U.S.
Carbon Cycle Scientific Steering Group and Interagency Working Group, edited
by: Hales, B., Cai, W.-J., Mitchell, B. G., Sabine, C. L., and Schofield,
O., U.S. Carbon Cycle Science Program, Washington DC, 110 pp., 2008.
Hales, B., Suhrbier, A., Waldbusser, G. G., Feely, R. A., and Newton, J. A.:
The Carbonate Chemistry of the “Fattening Line”, Willapa Bay, 2011–2014,
Estuar. Coast. Shelf S., 40, 173–186, https://doi.org/10.1007/s12237-12016-10136-12237, 2016.
Hare, A., Evans, W., Pocock, K., Weekes, C., and Gimenez, I.: Contrasting
marine carbonate systems in two fjords in British Columbia, Canada: seawater
buffering capacity and the response to anthropogenic CO2 invasion, PLoS
ONE, 15, e0238432, https://doi.org/10.1371/journal.pone.0238432, 2020.
Hauri, C., Schultz, C., Hedstrom, K., Danielson, S., Irving, B., Doney, S. C., Dussin, R., Curchitser, E. N., Hill, D. F., and Stock, C. A.: A regional hindcast model simulating ecosystem dynamics, inorganic carbon chemistry, and ocean acidification in the Gulf of Alaska, Biogeosciences, 17, 3837–3857, https://doi.org/10.5194/bg-17-3837-2020, 2020.
Henson, S. A., Beaulieu, C., Ilyina, T., John, J. G., Long, M.,
Séférian, R., Tjiputra, J., and Sarmiento, J. L.: Rapid emergence of
climate change in environmetal drivers of marine ecosystems, Nat. Commun., 8, 14682 ,https://doi.org/10.1038/ncomms14682, 2017.
Holdsworth, A. M., Zhai, L., Lu, Y., and Christian, J. R.: Future Changes in
Oceanography and Biogeochemistry Along the Canadian Pacific Continental
Margin, Front. Mar. Sci., 8, 602991, https://doi.org/10.3389/fmars.2021.602991,
2021.
Ianson, D., Allen, S. E., Moore-Maley, B. L., Johannessen, S. C., and
Macdonald, R. W.: Vulnerability of a semienclosed estuarine sea to ocean
acidification in contrast with hypoxia, Geophys. Res. Lett., 43,
5793–5801, https://doi.org/10.1002/2016GL068996, 2016.
IPCC, 2018: Summary for Policymakers, in: Global Warming of 1.5 ∘C. An IPCC Special Report on the impacts of global warming of 1.5 ∘C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, edited by: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T., World Meteorological Organization, Geneva, Switzerland, 32 pp., 2018.
Jackson, J., Thomson, R. E., Brown, L. N., Willis, P. G., and Borstad, G.
A.: Satellite chlorophyll off the British Columbia Coast, 1997–2010, J. Geophys. Res.-Oceans, 120, 4709–4728, 2015.
Jackson, J., Johnson, G. C., Dosser, H. V., and Ross, T.: Warming From
Recent Marine Heatwave Lingers in Deep British Columbia Fjord, Geophys. Res. Lett., 45, 9757–9764, https://doi.org/10.1029/2018GL078971, 2018.
Jiang, L.-Q., Feely, R. A., Carter, B. R., Greeley, D., Gledhill, D. K., and
Arzayus, K. M.: Climatological distribution of aragonite saturation state in
the global oceans, Global Biogeochem. Cy., 29, 1656–1673, 2015.
Jiang, L.-Q., Carter, B. R., Feely, R. A., Lauvset, S. K., and Olsen, A.:
Surface ocean pH and buffer capacity: past, present and future, Sci. Rep., 9, 18624, https://doi.org/10.1038/s41598-019-55039-4, 2019.
Jin, P., Hutchins, D. A., and Gao, K.: The Impacts of Ocean Acidification on
Marine Food Quality and Its Potential Food Chain Consequences, Front. Mar. Sci., 7, 543979, https://doi.org/10.3389/fmars.2020.543979, 2020.
Johannessen, S. C., Macdonald, R. W., and Paton, D. W.: A sediment and
organic carbon budget for the greater Strait of Georgai, Estuar. Coast. Shelf S., 56, 845–860, 2003.
Johannessen, S. C., Masson, D., and Macdonald, R. W.: Oxygen in the deep
Strait of Georgia, 1951–2009: The roles of mixing, deep-water renewal, and
remineralization of organic carbon, Limnol. Oceanogr., 59, 211–222,
2014.
Johnson, K. S., Jannasch, H. W., Coletti, L. J., Elrod, V. A., Martz, T. R.,
Takeshita, Y., Carlson, R. J., and Connery, J. G.: Deep-Sea DuraFET: A
Pressure Tolerant pH Sensor Designed for Global Sensor Networks, Anal. Chem., 88, 3249–3256, 2016.
Juranek, L., Takahashi, T., Mathis, J., and Pickart, R.: Significant
Biologically Mediated CO2 Uptake in the Pacific Arctic During the Late
Open Water Season, J. Geophys. Res.-Oceans, 124, 821–843,
doi.org/10.1029/2018JC014568, 2019.
Kapsenberg, L. and Cyronak, T.: Ocean Acidification refugia in variable
environments, Glob. Change Biol., 25, 3201–3214, https://doi.org/10.1111/gcb.14730, 2019.
Kroeker, K. J., Kordas, R., L., Crim, R., Hendriks, I. E., Ramajo, L.,
Singh, G. S., Duarte, C. M., and Gattuso, J. P.: Impacts of ocean
acidification on marine organisms: quantifying sensitivities and
interactions with warming, Glob. Change Biol., 19, 1884–1896, 2013.
Kroeker, K., Kindinger, T., Hirsh, H., Ward, M., Hill, T., Jellison, B., Koweek, D., Lummis, S., Rivest, E., Waldbusser, G., and Gaylord, B.: Reviews and Syntheses: Spatial and temporal patterns in metabolic fluxes inform potential for seagrass to locally mitigate ocean acidification, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2021-137, in review, 2021.
Kwiatkowski, L. and Orr, J. C.: Diverging seasonal extremes for ocean
acidification during the twenty-first century, Nat. Clim. Change, 8,
141–145, doi.org/10.1038/s41558-017-0054-0, 2018.
Landschützer, P., Gruber, N., Bakker, D. C. E., Stemmler, I., and Six,
K. D.: Strengthening seasonal marine CO2 variations due to increasing
atmospheric CO2, Nat. Clim. Change, 8, 146–150, https://doi.org/10.1038/s41558-017-0057-x,
2018.
Laruelle, G. G., Cai, W. J., Hu, X., Gruber, N., Mackenzie, F. T., and
Regnier, P.: Continental shelves as a variable but increasing global sink
for atmospheric carbon dioxide, Nat. Commun., 9, 454,
https://doi.org/10.1038/s41467-41017-02738-z, 2018.
Lauvset, S. K., Carter, B. R., Perez, F. F., Jiang, L.-Q., Feely, R. A.,
Velo, A., and Olsen, A.: Processes Driving Global Interior Ocean pH
Distribution, Global Biogeochem. Cy., 34, e2019GB006229,
https://doi.org/10.1029/2019GB006229, 2020.
Lowe, A., Bos, J., and Ruesink, J.: Ecosystem metabolism drives pH
variability and modulates long-term ocean acidification in the Northeast
Pacific coastal ocean, Sci. Rep., 9, 963,
https://doi.org/10.1038/s41598-41018-37764-41594, 2019.
Marshall, K. N., Kaplan, I. C., Hodgson, E. E., Hermann, A., Busch, D. S.,
McElhany, P., Essington, T. E., Harvey, C. J., and Fulton, E. A.: Risks of
ocean acidification in the California Current food web and fisheries:
ecosystem model projections, Glob. Change Biol., 23, 1525–1539, https://doi.org/10.1111/gcb.13594,
2017.
Mathis, J. T., Cooley, S. R., Lucey, N., Colt, S., Ekstrom, J., Hurst, T.,
Hauri, C., Evans, W., Cross, J. N., and Feely, R. A.: Ocean acidification
risk assessment for Alaska's fishery sector, Prog. Oceanogr., 136,
71–91, https://doi.org/10.1016/j.pocean.2014.07.001, 2015.
Matsumoto, K. and Gruber, N.: How accurate is the estimation of
anthropogenic carbon in the ocean?, An evaluation of the ΔC* method, Global Biogeochem. Cy., 19, GB3014, https://doi.org/10.1029/2004GB002397, 2005.
Matthews, H. D., Tokarska, K. B., Rogelj, J., Smith, C. J., MacDougall, A.
H., Haustein, K., Mengis, N., Sippel, S., Forster, P. M., and Knutti, R.: An
integrated approach to quantifying uncertainties in the remaining carbon
budget, Commun. Earth Environ., 7, https://doi.org/10.1038/s43247-020-00064-9,
2021.
Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J. G., Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N., Montzka, S. A., Rayner, P. J., Reimann, S., Smith, S. J., van den Berg, M., Velders, G. J. M., Vollmer, M. K., and Wang, R. H. J.: The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500, Geosci. Model Dev., 13, 3571–3605, https://doi.org/10.5194/gmd-13-3571-2020, 2020.
Meire, L., Søgaard, D. H., Mortensen, J., Meysman, F. J. R., Soetaert, K., Arendt, K. E., Juul-Pedersen, T., Blicher, M. E., and Rysgaard, S.: Glacial meltwater and primary production are drivers of strong CO2 uptake in fjord and coastal waters adjacent to the Greenland Ice Sheet, Biogeosciences, 12, 2347–2363, https://doi.org/10.5194/bg-12-2347-2015, 2015.
Mekkes, L., Renema, W., Bednaršek, N., Alin, S. R., Feely, R. A.,
Huisman, J., Roessingh, P., and Peijnenburg, K. T. C. A.: Pteropods make
thinner shellfs in the upwelling region of the California Current Ecosystem,
Sci. Rep., 11, 1731, https://doi.org/10.1038/s41598-41021-81131-41599, 2021.
Morrison, J., Foreman, M. G. G., and Masson, D.: A Method for Estimating
Monthly Freshwater Discharge Affecting British Columbia Coastal Waters,
Atmos. Ocean, 50, 1–8, https://doi.org/10.1080/07055900.2011.637667, 2012.
Murray, J. W., Roberts, E., Howard, E., O'Donnell, M., Bantam, C.,
Carrington, E., Foy, M., Paul, B., and Fay, A.: An inland sea high
nitrate-low chlorophyll (HNLC) region with naturally high pCO2,
Limnol. Oceanogr., 60, 957–966, https://doi.org/10.1002/lno.10062, 2015.
Neal, E. G., Hood, E., and Smikrud, K.: Contribution of glacier runoff to
freshwater discharge into the Gulf of Alaska, Geophys. Res. Lett.,
37, L06404, https://doi.org/10.1029/2010GL042385, 2010.
Newton, J. A., Feely, R. A., Jewett, E. B., Williamson, P., and Mathis, J.:
Global Ocean Acidification Observing Network: Requirements and Governance
Plan, http://goa-on.org/docs/GOA-ON_2nd_edition_final.pdf (last access: May 2021), 2015.
O'Neel, S., Hood, E., Bidlack, A. L., Fleming, S. W., Arimitsu, M. L.,
Arendt, A., Burgess, E., Sergeant, C. J., Beaudreau, A. H., Timm, K.,
Hayward, G. D., Reynolds, J. H., and Pyare, S.: Icefield-to-Ocean Linkages
across the Northern Pacific Coastal Temperate Rainforest Ecosystem,
BioScience, 65, 499–512, 2015.
Oliver, A. A., Tank, S. E., Giesbrecht, I., Korver, M. C., Floyd, W. C., Sanborn, P., Bulmer, C., and Lertzman, K. P.: A global hotspot for dissolved organic carbon in hypermaritime watersheds of coastal British Columbia, Biogeosciences, 14, 3743–3762, https://doi.org/10.5194/bg-14-3743-2017, 2017.
Orr, J. C., Epitalon, J.-M., Dickson, A. G., and Gattuso, J.-P.: Routine
uncertainty propagation for the marine carbon dioxide system, Mar. Chem., 207, 84–107, https://doi.org/10.1016/j.marchem.2018.10.006, 2018.
Osborne, E. B., Thunell, R. C., Gruber, N., Feely, R. A., and
Benitez-Nelson, C. R.: Decadal variability in twentieth-century ocean
acidification in the California Current Ecosystem, Nat. Geosci., 13, 43–49,
https://doi.org/10.1038/s41561-41019-40499-z, 2020.
Pacella, S. R., Brown, C. A., Waldbusser, G. G., Labiosa, R. G., and Hales,
B.: Seagrass habitat metabolism increases short-term extremes and long-term
offset of CO2 under future ocean acidification, P. Natl. Acad. Sci. USA, 15, 3870–3875, https://doi.org/10.1073/pnas.1703445115, 2018.
Pawlowicz, R., Riche, O., and Halverson, M.: The Circulation and Residence
Time of the Strait of Georgia using a Simple Mixing-box Approach,
Atmos. Ocean, 45, 1730-193, 2007.
Peck, V. L., Oakes, R. L., Harper, E. M., Manno, C., and Tarling, G. A.:
Pteropods counter mechanical damage and dissolution through extensive shell
repair, Nat. Commun., 9, 264, https://doi.org/10.1038/s41467-41017-026692-w, 2018.
Perez, F. F. and Fraga, F.: Association constant of fluoride and hydrogen
ions in seawater, Mar. Chem., 21, 161–168, 1987.
Pierrot, D., Neill, C., Sullivan, K., Castle, R., Wanninkhof, R., Lüger,
H., Johannessen, T., Olsen, A., Feely, R. A., and Cosca, C. E.:
Recommendations for autonomous underway pCO2 measuring systems and
data-reduction routines, Deep Sea Res. Pt. II, 56, 512–522, https://doi.org/10.1016/j.dsr2.2008.12.005, 2009.
Pilcher, D. J., Siedlecki, S. A., Hermann, A. J., Coyle, K. O., Mathis, J.
T., and Evans, W.: Simulated impact of high alkalinity glacial runoff on
CO2 uptake in the coastal Gulf of Alaska, Geophys. Res. Lett., 45, Pages 880–890, https://doi.org/10.1002/2017GL075910, 2016.
Raven, J. A., Gobler, C. J., and Juel Hansen, P.: Dynamic CO2 and pH
levels in coastal, estuarine, and inland waters: Theoretical and observed
effects on harmful algal blooms, Harmful Algae, 91, 101594,
doi/l10.1016/j.hal.2019.1003.1012, 2020.
Reisdorph, S. C. and Mathis, J. T.: The dynamic controls on carbonate
mineral saturation states and ocean acidification in a glacially dominated
estuary, Estuar. Coast. Shelf S., 144, 8–18, 2013.
Ricart, A. M., Ward, M., Hill, T. M., Sanford, E., Kroeker, K. J.,
Takeshita, Y., Merolla, S., Shukla, P., Ninokawa, A. T., Elsmore, K., and
Gaylord, B.: Coast-wide evidence of low pH amelioration by seagrass
ecosystems, Glob. Change Biol., 27, 2580–2591, https://doi.org/10.1111/gcb.15594, 2021.
Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Foster, P., Ginzburg, V., Handa, C., Kheshgi, H., Kobayashi, S., Kriegler, E., Mundaca, L., Séférian, R., and Vilariño, M.: Mitigation pathways compatible with 1.5 ∘C in the context of sustainable development, in: Global Warming of 1.5 ∘C, An IPCC Special Report on the impacts of global warming of 1.5 ∘C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (93–174), edited by: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T., IPCC/WMO, https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_Chapter2_Low_Res.pdf (last acces: May 2021), 2018.
Sabine, C. L., Feely, R. A., Key, R. M., Bullister, J. L., Millero, F. J.,
Lee, K., Peng, T.-H., Tilbrook, B., Ono, T., and Wong, C. S.: Distribution
of anthropogenic CO2 in the Pacific Ocean, Global Biogeochem. Cy., 16, 1083, https://doi.org/10.1029/2001GB001639, 2002.
Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J.
L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero,
F. J., Peng, T.-H., Kozyr, A., Ono, T., and Rios, A. F.: The Oceanic Sink
for Anthropogenic CO2, Science, 305, 367–371, 2004.
Salisbury, J. E., and Jönsson, B. F.: Rapid warming and salinity changes
in the Gulf of Maine alter surface ocean carbonate parameters and hide ocean
acidification, Biogeochemistry, 141, 401–418, https://doi.org/10.1007/s10533-10018-10505-10533, 2018.
Sarmiento, J. L. and Gruber, N.: Ocean Biogeochemical Dynamics, Princeton
University Press, Princeton, ISBN: 9780691017075, 2006.
Sharp, J. D. and Byrne, R. H.: Interpreting measurements of total
alkalinity in marine and estuarine waters in the presence of proton-binding
organic matter, Deep Sea Res. Pt. I, 165,
103338, https://doi.org/10.1016/j.dsr.2020.103338, 2020.
Sharp, J. D., Pierrot, D., Humphreys, M. P., Epitalon, J.-M., Orr, J. C.,
Lewis, E. R., and Wallace, D. W. R.: CO2SYSv3 for MATLAB (Version v3.2.0),
Zenodo, https://doi.org/10.5281/zenodo.3950562, 2021.
Siedlecki, S. A., Pilcher, D. J., Hermann, A. J., Coyle, K., and Mathis, J.:
The Importance of Freshwater to Spatial Variability of Aragonite Saturation
State in the Gulf of Alaska, J. Geophys. Res.-Oceans, 122,
8482–8502, 2017.
St. Pierre, K. A., Oliver, A. A., Tank, S. E., Hunt, B. P. V., Giesbrecht,
I., Kellogg, C. T. E., Jackson, J. M., Lertzman, K. P., Floyd, W. C., and
Korver, M. C.: Terrestrial exports of dissolved and particulate organic
carbon affect nearshore ecosystems of the Pacific coastal temperate
rainforest, Limnol. Oceanogr., 65, 2657–2675, https://doi.org/10.1002/lno.11538, 2020.
St. Pierre, K. A., Hunt, B. P. V., Tank, S. E., Giesbrecht, I., Korver, M. C., Floyd, W. C., Oliver, A. A., and Lertzman, K. P.: Rain-fed streams dilute inorganic nutrients but subsidise organic-matter-associated nutrients in coastal waters of the northeast Pacific Ocean, Biogeosciences, 18, 3029–3052, https://doi.org/10.5194/bg-18-3029-2021, 2021.
Stabeno, P. J., Bond, N. A., Hermann, A. J., Kachel, N. B., Mordy, C. W.,
and Overland, J. E.: Meteorology and oceanography of the Northern Gulf of
Alaska, Cont. Shelf Res., 24, 859–897, 2004.
Sutton, A. J., Feely, R. A., Maenner-Jones, S., Musielwicz, S., Osborne, J., Dietrich, C., Monacci, N., Cross, J., Bott, R., Kozyr, A., Andersson, A. J., Bates, N. R., Cai, W.-J., Cronin, M. F., De Carlo, E. H., Hales, B., Howden, S. D., Lee, C. M., Manzello, D. P., McPhaden, M. J., Meléndez, M., Mickett, J. B., Newton, J. A., Noakes, S. E., Noh, J. H., Olafsdottir, S. R., Salisbury, J. E., Send, U., Trull, T. W., Vandemark, D. C., and Weller, R. A.: Autonomous seawater pCO2 and pH time series from 40 surface buoys and the emergence of anthropogenic trends, Earth Syst. Sci. Data, 11, 421–439, https://doi.org/10.5194/essd-11-421-2019, 2019.
Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N.,
Tilbrook, B., Bates, N. R., Wanninkhof, R., Feely, R. A., Sabine, C. L.,
Olafsson, J., and Nojiri, Y.: Global sea-air CO2 flux based on
climatological surface ocean pCO2, and seasonal biological and
temperature effects, Deep-Sea Res. Pt. II, 49, 1601–1622, 2002.
Takeshita, Y., Frieder, C. A., Martz, T. R., Ballard, J. R., Feely, R. A., Kram, S., Nam, S., Navarro, M. O., Price, N. N., and Smith, J. E.: Including high-frequency variability in coastal ocean acidification projections, Biogeosciences, 12, 5853–5870, https://doi.org/10.5194/bg-12-5853-2015, 2015.
Takeshita, Y., Johnson, K. S., Martz, T., Plant, J. N., and Sarmiento, J.
L.: Assessment of Autonomous pH Measurements for Determining Surface
Seawater Partial Pressure of CO2, J. Geophys. Res.-Oceans, 123, 4003–4013, 2018.
Thomson, R. E.: Oceanography of the British Columbia coast, Canadian Special
Publication of Fisheries and Aquatic Sciences 56, Department of Fisheries
and Oceans, Ottawa, ISBN: 0-660-10978-6, 1981.
Tilbrook, B., Jewett, E. B., DeGrandpre, M. D., Hernandez-Ayon, J. M.,
Feely, R. A., Gledhill, D. K., Hansson, L., Isenee, K., Kurz, M. L., Newton,
J. A., Siedlecki, S. A., Chai, F., Dupont, S., Graco, M., Calvo, E.,
Greeley, D., Kapsenberg, L., Lebrec, M., Pelejero, C., Schoo, K., and
Telszewski, M.: An Enhanced Ocean Acidification Observing Network: From
People to Technology to Data Synthesis and Information Exchange, Front. Mar. Sci., 6, 337, https://doi.org/10.3389/fmars.2019.00337, 2019.
Tortell, P. D., Merzouk, A., Ianson, D., Pawlowicz, R., and Yelland, D. R.:
Influence of regional climate forcing on surface water pCO2, ΔO2/Ar
and dimethylsulfide (DMS) along the southern British Columbia coast,
Cont. Shelf Res., 47, 119–132, https://doi.org/10.1016/j.csr.2012.07.007, 2012.
Turk, D., Wang, H., Hu, X., Gledhill, D., Wang, Z. A., Jiang, L., and Cai,
W. J.: Time of Emergence of Surface Ocean Carbon Dioxide Trends in the North
American Coastal Margins in Support of Ocean Acidification Observing System
Design, Front. Mar. Sci., 6, 91, https://doi.org/10.3389/fmars.2019.00091, 2019.
UNFCC: Adoption of the Paris Agreement FCCC/CP/2015/L.2019/Rev.2011.
2011–2032 (UNFCCC, Paris, France, 2015), https://unfccc.int/sites/default/files/resource/docs/2015/cop21/eng/l09r01.pdf (last access: May 2021), 2015.
Uppström, L. R.: The boron/chlorinity ratio of deep-sea water from the
Pacific Ocean, Deep-Sea Res., 21, 161–162,
https://doi.org/10.1016/0011-7471(74)90074-6, 1974.
Waldbusser, G. G., Hales, B., Langdon, C. J., Haley, B. A., Schrader, P.,
Brunner, E. L., Gray, M. W., Miller, C. A., and Gimenez, I.:
Saturation-state sensitivity of marine bivalve larvae to ocean
acidification, Nat. Clim. Change, 5, 273–280, https://doi.org/10.1038/nclimate2479, 2014.
Wanninkhof, R. and Thoning, K.: Measurement of fugacity of CO2 in
surface water using continuous and discrete sampling methods, Mar. Chem., 44, 189–204, 1993.
Wanninkhof, R., Bakker, D., Bates, N., Olsen, A., Steinhoff, T., and Sutton,
A.: Incorporation of Alternative Sensors in the SOCAT Database and
Adjustments to Dataset Quality Control Flags, https://www.ncei.noaa.gov/access/ocean-carbon-data-system/oceans/Recommendationnewsensors.pdf (last access: May 2021),
2013.
Ward, N. D., Bianchi, T. S., Medeiros, P. M., Seidel, M., Richey, J. E.,
Keil, R. G., and Sawakuchi, H. O.: Where Carbon Goes When Water Flows:
Carbon Cycling across the Aquatic Continuum, Front. Mar. Sci., 4, 7,
https://doi.org/10.3389/fmars.2017.00007, 2017.
Ware, D. M. and Thomson, R. E.: Bottom-Up Ecosystem Trophic Dynamics
Determine Fish Production in the Northeast Pacific, Science, 308, 1280–1284,
2005.
Waters, J., Millero, F. J., and Woosley, R. J.: Corrigendum to “The free
proton concentration scale for seawater pH”, [MARCHE: 149(2013) 8-22],
Mar. Chem., 165, 66–67, 2014.
Weingartner, T. J., Eisner, L., Eckert, G. L., and Danielson, S. L.:
Southeast Alaska: oceanographic habitats and linkages, J. Biogeogr., 36, 387–400, 2009.
Whitney, F. A., Crawford, W. R., and Harrison, P. J.: Physical processes
that enhance nutrient transport and primary productivity in the coastal and
open ocean of the subartic NE Pacific, Deep-Sea Res. Pt. II, 52, 681–706,
2005.
Short summary
Information on the marine carbon dioxide system along the northeast Pacific Inside Passage has been limited. To address this gap, we instrumented an Alaskan ferry in order to characterize the marine carbon dioxide system in this region. Data over a 2-year period were used to assess drivers of the observed variability, identify the timing of severe conditions, and assess the extent of contemporary ocean acidification as well as future levels consistent with a 1.5 °C warmer climate.
Information on the marine carbon dioxide system along the northeast Pacific Inside Passage has...
Altmetrics
Final-revised paper
Preprint