Articles | Volume 19, issue 1
https://doi.org/10.5194/bg-19-137-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-137-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Partitioning carbon sources between wetland and well-drained ecosystems to a tropical first-order stream – implications for carbon cycling at the watershed scale (Nyong, Cameroon)
Moussa Moustapha
Département des Sciences de la Terre, Faculté des Sciences, Université de Ngaoundéré, Ngaoundéré, Cameroon
Loris Deirmendjian
Géosciences Environnement Toulouse (GET-Université de
Toulouse, CNRS, IRD), Université de Toulouse Paul Sabatier, 14 Avenue
Edouard-Belin, 31400 Toulouse, France
IRD, UR 234, GET, 14 Avenue E. Belin, 31400, Toulouse, France
David Sebag
Normandie Univ, UNIROUEN, UNICAEN, CNRS, M2C, 76000 Rouen, France
HSM, IRD, CNRS, Université de Montpellier, Montpellier,
France
IFPEN, Geosciences Dept, Rueil-Malmaison, France
Jean-Jacques Braun
Géosciences Environnement Toulouse (GET-Université de
Toulouse, CNRS, IRD), Université de Toulouse Paul Sabatier, 14 Avenue
Edouard-Belin, 31400 Toulouse, France
IRD, UR 234, GET, 14 Avenue E. Belin, 31400, Toulouse, France
Institut de Recherches Géologiques et Minières/Centre de
Recherches Hydrologiques, BP 4110, Yaoundé, Cameroon
International Joint Laboratory DYCOFAC, IRGM-UY1-IRD, Rue Joseph
Essono Balla, Quartier Elig Essono, BP 1857, Yaoundé, Cameroon
Stéphane Audry
Géosciences Environnement Toulouse (GET-Université de
Toulouse, CNRS, IRD), Université de Toulouse Paul Sabatier, 14 Avenue
Edouard-Belin, 31400 Toulouse, France
Henriette Ateba Bessa
Institut de Recherches Géologiques et Minières/Centre de
Recherches Hydrologiques, BP 4110, Yaoundé, Cameroon
Thierry Adatte
Institut des Sciences de la Terre (ISTE), Université de Lausanne,
GEOPOLIS, 1015 Lausanne, Switzerland
Carole Causserand
Géosciences Environnement Toulouse (GET-Université de
Toulouse, CNRS, IRD), Université de Toulouse Paul Sabatier, 14 Avenue
Edouard-Belin, 31400 Toulouse, France
Ibrahima Adamou
Département des Sciences de la Terre, Faculté des Sciences, Université de Ngaoundéré, Ngaoundéré, Cameroon
Benjamin Ngounou Ngatcha
Département des Sciences de la Terre, Faculté des Sciences, Université de Ngaoundéré, Ngaoundéré, Cameroon
Géosciences Environnement Toulouse (GET-Université de
Toulouse, CNRS, IRD), Université de Toulouse Paul Sabatier, 14 Avenue
Edouard-Belin, 31400 Toulouse, France
IRD, UR 234, GET, 14 Avenue E. Belin, 31400, Toulouse, France
Related authors
No articles found.
Anh-Thái Hoàng, Frédéric Guérin, Chandrashekhar Deshmukh, Axay Vongkhamsao, Saysoulinthone Sopraseuth, Vincent Chanudet, Stéphane Descloux, Toan Vu Duc, and Dominique Serça
EGUsphere, https://doi.org/10.5194/egusphere-2025-3295, https://doi.org/10.5194/egusphere-2025-3295, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We studied greenhouse gas emissions from a large reservoir in Laos over 14 years to understand carbon cycling and changes over time. Methane release through bubbling remained high, while other pathways, like diffusion and degassing, declined. These findings show how emissions evolve as reservoirs age and highlight the value of long-term studies for understanding the climate impact of hydropower.
Rocio Jaimes-Gutierrez, Marine Prieur, David J. Wilson, Philip A. E. Pogge von Strandmann, Emmanuelle Pucéat, Thierry Adatte, Jorge E. Spangenberg, and Sébastien Castelltort
EGUsphere, https://doi.org/10.5194/egusphere-2025-2619, https://doi.org/10.5194/egusphere-2025-2619, 2025
Short summary
Short summary
This study examines how weathering in the Southern Pyrenees responded to a significant global warming event that occurred 56 million years ago. We found that changes in rainfall and erosion significantly influenced how minerals break down, and that the weathering response evolved from the continental interior to the marine environment. These results highlight regional variations in Earth's surface response to climatic perturbations and the processes at play in response to global warming.
Nikhil Sharma, Jorge E. Spangenberg, Thierry Adatte, Torsten Vennemann, László Kocsis, Jean Vérité, Luis Valero, and Sébastien Castelltort
Clim. Past, 20, 935–949, https://doi.org/10.5194/cp-20-935-2024, https://doi.org/10.5194/cp-20-935-2024, 2024
Short summary
Short summary
The Middle Eocene Climatic Optimum (MECO) is an enigmatic global warming event with scarce terrestrial records. To contribute, this study presents a new comprehensive geochemical record of the MECO in the fluvial Escanilla Formation, Spain. In addition to identifying the regional preservation of the MECO, results demonstrate continental sedimentary successions, as key archives of past climate and stable isotopes, to be a powerful tool in correlating difficult-to-date fluvial successions.
Cécile Charles, Nora Khelidj, Lucia Mottet, Bao Ngan Tu, Thierry Adatte, Brahimsamba Bomou, Micaela Faria, Laetitia Monbaron, Olivier Reubi, Natasha de Vere, Stéphanie Grand, and Gianalberto Losapio
EGUsphere, https://doi.org/10.5194/egusphere-2024-991, https://doi.org/10.5194/egusphere-2024-991, 2024
Preprint archived
Short summary
Short summary
We found that novel ecosystems created by glacier retreat are first characterized by an increase in plant diversity that is driven by a shift in soil texture. Plant diversity in turn increases soil organic matter and nutrient. Soils gradually acidifies and leads to a final stage where a dominance of few plant species reduces plant diversity. Understanding plant–soil interactions is crucial to anticipate how glacier retreat shapes biodiversity and landscapes.
Morgan T. Jones, Ella W. Stokke, Alan D. Rooney, Joost Frieling, Philip A. E. Pogge von Strandmann, David J. Wilson, Henrik H. Svensen, Sverre Planke, Thierry Adatte, Nicolas Thibault, Madeleine L. Vickers, Tamsin A. Mather, Christian Tegner, Valentin Zuchuat, and Bo P. Schultz
Clim. Past, 19, 1623–1652, https://doi.org/10.5194/cp-19-1623-2023, https://doi.org/10.5194/cp-19-1623-2023, 2023
Short summary
Short summary
There are periods in Earth’s history when huge volumes of magma are erupted at the Earth’s surface. The gases released from volcanic eruptions and from sediments heated by the magma are believed to have caused severe climate changes in the geological past. We use a variety of volcanic and climatic tracers to assess how the North Atlantic Igneous Province (56–54 Ma) affected the oceans and atmosphere during a period of extreme global warming.
Sabí Peris Cabré, Luis Valero, Jorge E. Spangenberg, Andreu Vinyoles, Jean Verité, Thierry Adatte, Maxime Tremblin, Stephen Watkins, Nikhil Sharma, Miguel Garcés, Cai Puigdefàbregas, and Sébastien Castelltort
Clim. Past, 19, 533–554, https://doi.org/10.5194/cp-19-533-2023, https://doi.org/10.5194/cp-19-533-2023, 2023
Short summary
Short summary
The Middle Eocene Climatic Optimum (MECO) was a global warming event that took place 40 Myr ago and lasted ca. 500 kyr, inducing physical, chemical, and biotic changes on the Earth. We use stable isotopes to identify the MECO in the Eocene deltaic deposits of the Southern Pyrenees. Our findings reveal enhanced deltaic progradation during the MECO, pointing to the important impact of global warming on fluvial sediment transport with implications for the consequences of current climate change.
Simon Cazaurang, Manuel Marcoux, Oleg S. Pokrovsky, Sergey V. Loiko, Artem G. Lim, Stéphane Audry, Liudmila S. Shirokova, and Laurent Orgogozo
Hydrol. Earth Syst. Sci., 27, 431–451, https://doi.org/10.5194/hess-27-431-2023, https://doi.org/10.5194/hess-27-431-2023, 2023
Short summary
Short summary
Moss, lichen and peat samples are reconstructed using X-ray tomography. Most samples can be cut down to a representative volume based on porosity. However, only homogeneous samples could be reduced to a representative volume based on hydraulic conductivity. For heterogeneous samples, a devoted pore network model is computed. The studied samples are mostly highly porous and water-conductive. These results must be put into perspective with compressibility phenomena occurring in field tests.
Robin Fentimen, Eline Feenstra, Andres Rüggeberg, Efraim Hall, Valentin Rime, Torsten Vennemann, Irka Hajdas, Antonietta Rosso, David Van Rooij, Thierry Adatte, Hendrik Vogel, Norbert Frank, and Anneleen Foubert
Clim. Past, 18, 1915–1945, https://doi.org/10.5194/cp-18-1915-2022, https://doi.org/10.5194/cp-18-1915-2022, 2022
Short summary
Short summary
The investigation of a 9 m long sediment core recovered at ca. 300 m water depth demonstrates that cold-water coral mound build-up within the East Melilla Coral Province (southeastern Alboran Sea) took place during both interglacial and glacial periods. Based on the combination of different analytical methods (e.g. radiometric dating, micropaleontology), we propose that corals never thrived but rather developed under stressful environmental conditions.
Julia Gensel, Marc Steven Humphries, Matthias Zabel, David Sebag, Annette Hahn, and Enno Schefuß
Biogeosciences, 19, 2881–2902, https://doi.org/10.5194/bg-19-2881-2022, https://doi.org/10.5194/bg-19-2881-2022, 2022
Short summary
Short summary
We investigated organic matter (OM) and plant-wax-derived biomarkers in sediments and plants along the Mkhuze River to constrain OM's origin and transport pathways within South Africa's largest freshwater wetland. Presently, it efficiently captures OM, so neither transport from upstream areas nor export from the swamp occurs. Thus, we emphasize that such geomorphological features can alter OM provenance, questioning the assumption of watershed-integrated information in downstream sediments.
Sakaros Bogning, Frédéric Frappart, Gil Mahé, Adrien Paris, Raphael Onguene, Fabien Blarel, Fernando Niño, Jacques Etame, and Jean-Jacques Braun
Proc. IAHS, 384, 181–186, https://doi.org/10.5194/piahs-384-181-2021, https://doi.org/10.5194/piahs-384-181-2021, 2021
Short summary
Short summary
This paper investigates links between rainfall variability in the Ogooué River Basin (ORB) and El Niño Southern Oscillation (ENSO) in the Pacific Ocean. Recent hydroclimatology studies of the ORB and surrounding areas resulting in contrasting conclusions about links between rainfall variability and ENSO. Then, this work uses cross-wavelet and wavelet coherence analysis to highlight significant links between ENSO and rainfall in the ORB.
Louis Honegger, Thierry Adatte, Jorge E. Spangenberg, Miquel Poyatos-Moré, Alexandre Ortiz, Magdalena Curry, Damien Huyghe, Cai Puigdefàbregas, Miguel Garcés, Andreu Vinyoles, Luis Valero, Charlotte Läuchli, Andrés Nowak, Andrea Fildani, Julian D. Clark, and Sébastien Castelltort
Solid Earth Discuss., https://doi.org/10.5194/se-2021-12, https://doi.org/10.5194/se-2021-12, 2021
Publication in SE not foreseen
Lydia R. Bailey, Filippo L. Schenker, Maria Giuditta Fellin, Miriam Cobianchi, Thierry Adatte, and Vincenzo Picotti
Solid Earth, 11, 2463–2485, https://doi.org/10.5194/se-11-2463-2020, https://doi.org/10.5194/se-11-2463-2020, 2020
Short summary
Short summary
The Kallipetra Basin, formed in the Late Cretaceous on the reworked Pelagonian–Axios–Vardar contact in the Hellenides, is described for the first time. We document how and when the basin evolved in response to tectonic forcings and basin inversion. Cenomanian extension and basin widening was followed by Turonian compression and basin inversion. Thrusting occurred earlier than previously reported in the literature, with a vergence to the NE, at odds with the regional SW vergence of the margin.
Cited articles
Åberg, J. and Wallin, B.: Evaluating a fast headspace method for
measuring DIC and subsequent calculation of pCO2 in freshwater systems, Inl.
Waters, 4, 157–166, https://doi.org/10.5268/IW-4.2.694, 2014.
Abril, G. and Borges, A. V.: Ideas and perspectives: Carbon leaks from flooded land: do we need to replumb the inland water active pipe?, Biogeosciences, 16, 769–784, https://doi.org/10.5194/bg-16-769-2019, 2019.
Abril, G., Martinez, J. M., Artigas, L. F., Moreira-Turcq, P., Benedetti, M.
F., Vidal, L., Meziane, T., Kim, J. H., Bernardes, M. C., Savoye, N.,
Deborde, J., Souza, E. L., Albéric, P., Landim De Souza, M. F., and
Roland, F.: Amazon River carbon dioxide outgassing fuelled by wetlands,
Nature, 505, 395–398, https://doi.org/10.1038/nature12797, 2014.
Abril, G., Bouillon, S., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F., Ochieng Omengo, F., Geeraert, N., Deirmendjian, L., Polsenaere, P., and Borges, A. V.: Technical Note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters, Biogeosciences, 12, 67–78, https://doi.org/10.5194/bg-12-67-2015, 2015.
Alin, S. R., Rasera, M. D. F. F. L., Salimon, C. I., Richey, J. E.,
Holtgrieve, G. W., Krusche, A. V., and Snidvongs, A.: Physical controls on
carbon dioxide transfer velocity and flux in low-gradient river systems and
implications for regional carbon budgets, J. Geophys. Res.-Biogeo.,
116, G01009, https://doi.org/10.1029/2010JG001398, 2011.
Allen, G. H. and Pavelsky, T. M.: Global extent of rivers and streams,
Science, 361, 585–588, https://doi.org/10.1126/science.aat0636, 2018.
Amiotte Suchet, P., Probst, J., and Ludwig, W.: Worldwide distribution of
continental rock lithology: Implications for the atmospheric/soil CO2
uptake by continental weathering and alkalinity river transport to the
oceans, Global Biogeochem. Cy., 17, 1038, https://doi.org/10.1029/2002GB001891, 2003.
Audry, S., Bessa, H. A., Bedimo, J.-P. B., Boeglin, J.-L., Boithias, L.,
Braun, J.-J., Dupré, B., Faucheux, M., Lagane, C., Maréchal, J.-C.,
Ndam-Ngoupayou, J. R., Nnomo, B. N., Nlozoa, J., Ntonga, J.-C., Ribolzi, O.,
Riotte, J., Rochelle-Newall, E., and Ruiz, L.: The Multiscale TROPIcal
CatchmentS critical zone observatory M-TROPICS dataset I: The Nyong River
Basin, Cameroon, Hydrol. Process., 35, e14138, https://doi.org/10.1002/HYP.14138,
2021.
Boeglin, J.-L., Ndam, J.-R., and Braun, J.-J.: Composition of the different
reservoir waters in a tropical humid area: example of the Nsimi catchment
(Southern Cameroon), J. African Earth Sci., 37, 103–110, 2003.
Boeglin, J., Probst, J., Ndam-Ngoupayou, J., Nyeck, B., Etcheber, H.,
Mortatti, J., and Braun, J.: Soil carbon stock and river carbon fluxes in
humid tropical environments: the Nyong river basin (south Cameroon), in: Soil
Erosion and Carbon Dynamics, Adv. Soil Sci., CRC Press Boca
Raton, Fla., 275–288, 2005.
Bolan, N. S., Adriano, D. C., Kunhikrishnan, A., James, T., Mcdowell, R., and
Senesi, N.: Dissolved Organic Matter, 1 Edn., Elsevier Inc., 1–75, https://doi.org/10.1016/B978-0-12-385531-2.00001-3, 2011.
Borges, A. V., Abril, G., Darchambeau, F., Teodoru, C. R., Deborde, J.,
Vidal, L. O., Lambert, T., and Bouillon, S.: Divergent biophysical controls
of aquatic CO2 and CH4 in the World's two largest rivers, Sci. Rep., 5,
15614, https://doi.org/10.1038/srep15614, 2015a.
Borges, A. V, Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F.,
Geeraert, N., Omengo, F. O., Guérin, F., Lambert, T., Morana, C., Okuku,
E., and Bouillon, S.: Globally significant greenhouse-gas emissions from
African inland waters, Nat. Geosci., 8, 637–642, https://doi.org/10.1038/NGEO2486,
2015b.
Borges, A. V., Darchambeau, F., Lambert, T., Morana, C., Allen, G. H., Tambwe, E., Toengaho Sembaito, A., Mambo, T., Nlandu Wabakhangazi, J., Descy, J.-P., Teodoru, C. R., and Bouillon, S.: Variations in dissolved greenhouse gases (CO2, CH4, N2O) in the Congo River network overwhelmingly driven by fluvial-wetland connectivity, Biogeosciences, 16, 3801–3834, https://doi.org/10.5194/bg-16-3801-2019, 2019.
Braun, J.-J., Dupré, B., Viers, J., Ngoupayou, J. R. N., Bedimo, J.-P.
B., Sigha-Nkamdjou, L., Freydier, R., Robain, H., Nyeck, B., and Bodin, J.:
Biogeohydrodynamic in the forested humid tropical environment: the case
study of the Nsimi small experimental watershed (south Cameroon), Bull. la
Société géologique Fr., 173, 347–357, 2002.
Braun, J.-J., Ngoupayou, J. R. N., Viers, J., Dupre, B., Bedimo, J.-P. B.,
Boeglin, J.-L., Robain, H., Nyeck, B., Freydier, R., and Nkamdjou, L. S.:
Present weathering rates in a humid tropical watershed: Nsimi, South
Cameroon, Geochim. Cosmochim. Ac., 69, 357–387, 2005.
Braun, J.-J., Marechal, J.-C., Riotte, J., Boeglin, J.-L., Bedimo, J.-P. B.,
Ngoupayou, J. R. N., Nyeck, B., Robain, H., Sekhar, M., and Audry, S.:
Elemental weathering fluxes and saprolite production rate in a Central
African lateritic terrain (Nsimi, South Cameroon), Geochim. Cosmochim. Ac.,
99, 243–270, 2012.
Brunet, F., Dubois, K., Veizer, J., Ndondo, G. R. N., Ngoupayou, J. R. N.,
Boeglin, J. L., and Probst, J. L.: Terrestrial and fluvial carbon fluxes in a
tropical watershed: Nyong basin, Cameroon, Chem. Geol., 265, 563–572,
https://doi.org/10.1016/j.chemgeo.2009.05.020, 2009.
Camino-Serrano, M., Gielen, B., Luyssaert, S., Ciais, P., Vicca, S., Guenet,
B., Vos, B. De, Cools, N., Ahrens, B., Altaf Arain, M., Borken, W., Clarke,
N., Clarkson, B., Cummins, T., Don, A., Pannatier, E. G., Laudon, H., Moore,
T., Nieminen, T. M., Nilsson, M. B., Peichl, M., Schwendenmann, L., Siemens,
J., and Janssens, I.: Linking variability in soil solution dissolved organic
carbon to climate, soil type, and vegetation type, Global Biogeochem. Cy., 28, 497–509, https://doi.org/10.1002/2013GB004726, 2014.
Cardoso, S. J., Enrich-Prast, A., Pace, M. L., and Roland, F.: Do models of
organic carbon mineralization extrapolate to warmer tropical sediments?,
Limnol. Oceanogr., 59, 48–54, 2014.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J. G.,
Chhabra, A., Defries, R., Galloway, J., Heimann, M., Jones, C., Le
Quéré, C., Myeni, R., Piao, S., and Thornton, P.: Carbon and Other
Biogeochemical Cycles, Cambridge University Press, 465–570, 2013.
Cole, J. J. and Caraco, N. F.: Carbon in catchments: connecting terrestrial
carbon losses with aquatic metabolism, 52, 101–110, 2001.
Cole, J. J., Prairie, Y. T., Caraco, N. F., Mcdowell, W. H., Tranvik, L. J.,
Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg,
J. J., and Melack, J.: Plumbing the Global Carbon Cycle: Integrating Inland
Waters into the Terrestrial Carbon Budget, Ecosystems, 10, 172–185,
https://doi.org/10.1007/s10021-006-9013-8, 2007.
Davidson, E. A., Verchot, L. V, Cattânio, J. H., Ackerman, I. L., and
Carvalho, J. E. M.: Effects of soil water content on soil respiration in
forests and cattle pastures of eastern Amazonia, Biogeochemistry, 48,
53–69, 2000.
Deirmendjian, L. and Abril, G.: Carbon dioxide degassing at the
groundwater-stream-atmosphere interface: isotopic equilibration and
hydrological mass balance in a sandy watershed, J. Hydrol., 558, 129–143,
https://doi.org/10.1016/j.jhydrol.2018.01.003, 2018.
Deirmendjian, L., Loustau, D., Augusto, L., Lafont, S., Chipeaux, C., Poirier, D., and Abril, G.: Hydro-ecological controls on dissolved carbon dynamics in groundwater and export to streams in a temperate pine forest, Biogeosciences, 15, 669–691, https://doi.org/10.5194/bg-15-669-2018, 2018.
Deirmendjian, L., Anschutz, P., Morel, C., Mollier, A., Augusto, L.,
Loustau, D., Cotovicz, L. C., Buquet, D., Lajaunie, K., Chaillou, G., Voltz,
B., Charbonnier, C., Poirier, D., and Abril, G.: Importance of the
vegetation-groundwater-stream continuum to understand transformation of
biogenic carbon in aquatic systems – A case study based on a pine-maize
comparison in a lowland sandy watershed (Landes de Gascogne, SW France),
Sci. Total Environ., 661, 613–629, https://doi.org/10.1016/j.scitotenv.2019.01.152, 2019.
Drake, T. W., Raymond, P. A., and Spencer, R. G. M.: Terrestrial carbon
inputs to inland waters: A current synthesis of estimates and uncertainty,
Limnol. Oceanogr. Lett., 3, 132–142, https://doi.org/10.1002/lol2.10055, 2018.
Duvert, C., Hutley, L. B., Beringer, J., Bird, M. I., Birkel, C., Maher, D.
T., Northwood, M., Rudge, M., Setterfield, S. A., and Wynn, J. G.: Net
landscape carbon balance of a tropical savanna: Relative importance of fire
and aquatic export in offsetting terrestrial production, Glob. Chang. Biol.,
26, 5899–5913, https://doi.org/10.1111/GCB.15287, 2020a.
Duvert, C., Hutley, L. B., Birkel, C., Rudge, M., Munksgaard, N. C., Wynn,
J. G., Setterfield, S. A., Cendón, D. I., and Bird, M. I.: Seasonal shift
from biogenic to geogenic fluvial carbon caused by changing water sources in
the wet-dry tropics, J. Geophys. Res.-Biogeo., 125, e2019JG005384, https://doi.org/10.1029/2019JG005384,
2020b.
Engle, D. L., Melack, J. M., Doyle, R. D., and Fisher, T. R: High rates
of net primary production and turnover of floating grasses on the Amazon
floodplain: implications for aquatic respiration and regional CO2 flux,
Glob. Chang. Biol., 14, 369–381, https://doi.org/10.1111/J.1365-2486.2007.01481.X,
2008.
Fang, W., Wei, Y., Liu, J., Kosson, D. S., Management, H., van der Sloot, H. A., and Zhang, P.: Effects of aerobic and anaerobic biological processes on leaching
of heavy metals from soil amended with sewage sludge compost, Elsevier,
58, 324–334, 2016.
Geeraert, N., Omengo, F. O., Borges, A. V., Govers, G., and Bouillon, S.:
Shifts in the carbon dynamics in a tropical lowland river system (Tana
River, Kenya) during flooded and non-flooded conditions, Biogeochemistry,
132, 141–163, https://doi.org/10.1007/s10533-017-0292-2, 2017.
Gómez-Gener, L., Rocher-Ros, G., Battin, T., Cohen, M. J., Dalmagro, H.
J., Dinsmore, K. J., Drake, T. W., Duvert, C., Enrich-Prast, A., Horgby,
Å., Johnson, M. S., Kirk, L., Machado-Silva, F., Marzolf, N. S.,
McDowell, M. J., McDowell, W. H., Miettinen, H., Ojala, A. K., Peter, H.,
Pumpanen, J., Ran, L., Riveros-Iregui, D. A., Santos, I. R., Six, J.,
Stanley, E. H., Wallin, M. B., White, S. A., and Sponseller, R. A.: Global
carbon dioxide efflux from rivers enhanced by high nocturnal emissions, Nat.
Geosci., 14, 289–294, https://doi.org/10.1038/S41561-021-00722-3, 2021.
Gran, G.: Determination of the equivalence point in potentiometric
titrations, Part II, Analyst, 77, 661–671, 1952.
Gumbricht, T., Román-Cuesta, R. M., Verchot, L. V., Herold, M., Wittmann,
F., Householder, E., Herold, N., and Murdiyarso, D.: Tropical and Subtropical
Wetlands Distribution version 2, https://doi.org/10.17528/CIFOR/DATA.00058, 2017.
Haase, K. and Rätsch, G.: The morphology and anatomy of tree roots and
their aeration strategies, in Amazonian Floodplain Forests,
Springer, 141–161, 2010.
Hagedorn, F., Bruderhofer, N., Ferrari, A., and Niklaus, P. A.: Tracking
litter-derived dissolved organic matter along a soil chronosequence using
14C imaging: Biodegradation, physico-chemical retention or preferential
flow?, Soil Biol. Biochem., 88, 333–343, https://doi.org/10.1016/J.SOILBIO.2015.06.014,
2015.
Hall, R. O., Tank, J. L., Baker, M. A. et al.: Metabolism, Gas Exchange, and Carbon Spiraling in Rivers. Ecosystems 19, 73–86, https://doi.org/10.1007/s10021-015-9918-1, 2016.
Hastie, A., Lauerwald, R., Ciais, P., and Regnier, P.: Aquatic carbon fluxes
dampen the overall variation of net ecosystem productivity in the Amazon
basin: An analysis of the interannual variability in the boundless, Wiley
Online Libr., 25, 2094–2111, https://doi.org/10.1111/gcb.14620, 2019.
Holgerson, M. A. and Raymond, P. A.: Large contribution to inland water CO2
and CH4 emissions from very small ponds, 9, 222–226,
https://doi.org/10.1038/NGEO2654, 2016.
Hotchkiss, E. R., Hall Jr, R. O., Sponseller, R. A., Butman, D., Klaminder,
J., Laudon, H., Rosvall, M., and Information, S.: Sources of and processes
controlling CO2 emissions change with the size of streams and rivers, Nat.
Geosci., 8, 696–699, https://doi.org/10.1038/NGEO2507, 2015.
Huang, T., Fu, Y., Pan, P. and Chen, C.: Fluvial carbon fluxes in tropical
rivers, Curr. Opin. Environ. Sustain., 4, 162–169, 2012.
Huang, Y., Evaristo, J., and Li, Z.: Multiple tracers reveal different
groundwater recharge mechanisms in deep loess deposits, Elsevier, 353,
204–212, 2019.
Johnson, M. S., Lehmann, Æ. J., Couto, E., Filho, J., and Riha, S.: DOC
and DIC in flowpaths of Amazonian headwater catchments with hydrologically
contrasting soils, Biogeochemistry, 81, 45–57,
https://doi.org/10.1007/s10533-006-9029-3, 2006.
Johnson, M. S., Lehmann, J., Riha, S. J., Krusche, A. V., Richey, J. E.,
Ometto, J. P. H. B., and Couto, E. G.: CO2 efflux from Amazonian headwater
streams represents a significant fate for deep soil respiration, Geophys.
Res. Lett., 35, https://doi.org/10.1029/2008GL034619, 2008.
Jones, M. B. and Humphries, S. W.: Impacts of the C4 sedge Cyperus papyrus
L. on carbon and water fluxes in an African wetland, 107–113, 2002.
Junk, W., Bayley, P., and Sparks, R.: The flood pulse concept in
river-floodplain system.pdf, Can. Spec. Publ. Fish. Aquat. Sci., 106,
110–127, 1989.
Kaiser, K., Guggenberger, G., and Zech, W.: Sorption of DOM and DOM fractions
to forest soils, Geoderma, 74, 281–303,
https://doi.org/10.1016/S0016-7061(96)00071-7, 1996.
Kalbitz, K. and Kaiser, K.: Contribution of dissolved organic matter to
carbon storage in forest mineral soils, J. Plant Nutr. Soil Sci., 171,
52–60, https://doi.org/10.1002/JPLN.200700043, 2008.
Kalbitz, K., Solinger, S., Park, J., Michalzik, B., and Matzner, E.: Controls
on the dynamics of dissolved organic matter in soils: a review, Soil Sci.,
165, 277–304, 2000.
Kalbitz, K., Schwesig, D., Rethemeyer, J., and Matzner, E.: Stabilization of
dissolved organic matter by sorption to the mineral soil, Soil Biol.
Biochem., 37, 1319–1331, https://doi.org/10.1016/J.SOILBIO.2004.11.028, 2005.
Kindler, R., Siemens, J., Kaiser, K., Walmsley, D. C., Bernhofer, C., Buchmann, N., Cellier, P., Eugster, W., Gleixner, G., Grunwald, T., Heim, A., Ibrom, A., Jones, S. K., Jones, M., Klumpp, K., Kutsch, W., Larsen, K. S., Lehuger, S., Loubet, B., Mckenzie, R., Moors, E., Osborne, B., Pilegaard, K., Rebmann, C., Saunders, M., Schmidt, M. W. I., Schrumpf, M., Seyfferth, J., Skiba, U., Soussana, J. F., Sutton, M. A., Tefs, C., Vowinckel, B., Zeeman, M. J., and Kaupenjohann, M.:
Dissolved carbon leaching from soil is a crucial component of the net
ecosystem carbon balance, Wiley Online Libr., 17, 1167–1185,
https://doi.org/10.1111/j.1365-2486.2010.02282.x, 2011.
Köppen, W.: Das geographisca System der Klimate, in: Handbuchder
Klimatologie, edited by: Köppen, B. W. and Geiger, G., C.Gebr, Borntraeger, 1–44, 1936.
Kothawala, D. N., Moore, T. R., and Hendershot, W. H.: Soil Properties
Controlling the Adsorption of Dissolved Organic Carbon to Mineral Soils,
Soil Sci. Soc. Am. J., 73, 1831–1842, https://doi.org/10.2136/SSSAJ2008.0254, 2009.
Lambert, T., Teodoru, C. R., Nyoni, F. C., Bouillon, S., Darchambeau, F., Massicotte, P., and Borges, A. V.: Along-stream transport and transformation of dissolved organic matter in a large tropical river, Biogeosciences, 13, 2727–2741, https://doi.org/10.5194/bg-13-2727-2016, 2016a.
Lambert, T., Bouillon, S., Darchambeau, F., Massicotte, P., and Borges, A. V.: Shift in the chemical composition of dissolved organic matter in the Congo River network, Biogeosciences, 13, 5405–5420, https://doi.org/10.5194/bg-13-5405-2016, 2016b.
Lauerwald, R., Laruelle, G. G., Hartmann, J., Ciais, P., and Regnier, P. A.
G.: Spatial patterns in CO2 evasion from the global river network, Global Biogeochem. Cy., 29, 534–554, https://doi.org/10.1002/2014GB004941, 2015.
Lehner, B., Verdin, K., Jarvis, A., and Systems, E.: New global hydrography
derived from spaceborne elevation data, Eos, Trans. Am. Geophys. Union,
89, 93–94, 2008.
Lewis, E. and Wallace Upton, N.: Program developed for CO2 calculations,
https://doi.org/10.2172/639712, 1998.
Ludwig, W., Probst, J., and Kempe, S.: Predicting the oceanic input of
organic carbon by continental erosion, Global Biogeochem. Cy., 10,
23–41, 1996.
Malard, F. and Hervant, F.: Oxygen supply and the adaptations of animals in
groundwater, Freshw. Biol., 41, 1–30,
https://doi.org/10.1046/J.1365-2427.1999.00379.X, 1999.
Maréchal, J., Braun, J., Riotte, J., Bedimo, J. B., and Boeglin, J.:
Hydrological processes of a rainforest headwater swamp from natural chemical
tracing in Nsimi watershed, Cameroon, Hydrol. Process., 25, 2246–2260,
2011.
Mayorga, E., Aufdenkampe, A. K., Masiello, C. A., Krusche, A. V, Hedges, J.
I., Quay, P. D., Richey, J. E., and Brown, T. A.: Young organic matter as a
source of carbon dioxide outgassing from Amazonian rivers, Nature, 436, 538–541,
https://doi.org/10.1038/nature03880, 2005.
Meybeck, M.: Carbon, nitrogen, and phosphorus transport by world rivers, Am.
J. Sci., 282, 401–450, 1982.
Meybeck, M.: Global chemical weathering of surficial rocks estimated from
river dissolved loads, Am. J. Sci., 287, 401–428,
https://doi.org/10.2475/ajs.287.5.401, 1987.
Meybeck, M.: Riverine transport of atmospheric carbon: Sources, global
typology and budget, Water, Air Soil Pollut., 70, 443–463,
https://doi.org/10.1007/BF01105015, 1993.
Millero, F. J.: The thermodynamics of the carbonate system in seawater,
Geochem. Cosmochem. Ac., 43, 1651–1661, 1979.
Mitsch, W. J., Zhang, L., Stefanik, K. C., Nahlik, A. M., Anderson, C. J.,
Bernal, B., Hernandez, M., and Song, K.: Creating Wetlands: Primary
Succession, Water Quality Changes, and Self-Design over 15 Years,
Bioscience, 62, 237–250, https://doi.org/10.1525/BIO.2012.62.3.5, 2012.
Moore, T. R.: Dissolved organic carbon in a northern boreal landscape,
Global Biogeochem. Cy., 17, 1109, https://doi.org/10.1029/2003GB002050, 2003.
Moreira-Turcq, P., Bonnet, M. P., Amorim, M., Bernardes, M., Lagane, C.,
Maurice, L., Perez, M., and Seyler, P.: Seasonal variability in
concentration, composition, age, and fluxes of particulate organic carbon
exchanged between the floodplain and Amazon River, Global Biogeochem. Cy., 27, 119–130, https://doi.org/10.1002/gbc.20022, 2013.
Moustapha, M., Deirmendjian, L., Sebag, D., Braun, J.-J., Ateba Bessa, H.,
Adatte, T., Causserand, C., Adamou, I., Ngounou Ngatcha, B., and Guérin,
F.: Data-base for: “Partitioning carbon sources between wetland and
well-drained ecosystems to a tropical first-order stream – Implications to
carbon cycling at the watershed scale (Nyong, Cameroon)”, Zenodo [data set],
https://doi.org/10.5281/ZENODO.5625039, 2021.
Neff, J. and Asner, G.: Dissolved organic carbon in terrestrial ecosystems:
synthesis and a model, Springer, 4, 29–48, https://doi.org/10.1007/s100210000058,
2001.
Nepstad, D. C., Carvalhot, C. R., Davidson, E. A., Jlpp, P. H., Lefebvre,
P. A., Negrelros, G. H., Sllvat, E. D., Stone, T. A., and Trumbore, S. E.:
and Pastures, Nature, 372, 666–669, 1994.
Nkoue-ndondo, G.-R.: Le cycle du carbone en domaine tropical humide: exemple
du bassin versant forestier du Nyong au sud Cameroun, Université de
Toulouse, Université Toulouse III-Paul Sabatier, 278 pp., 2008.
Nkoue Ndondo, G. R., Probst, J.-L. L., Ndjama, J., Ndam Ngoupayou, J. R.,
Boeglin, J.-L. L., Takem, G. E., Brunet, F., Mortatti, J., Gauthier-Lafaye,
F., Braun, J.-J. J., Ekodeck, G. E., Nkoue-ndondo, G.-R., Probst, J.-L. L.,
Ndjama, J., Ngoupayou, J. R. N., Boeglin, J.-L. L., Takem, G. E., Brunet,
F., Mortatti, J., Gauthier-Lafaye, F., and Braun, J.-J. J.: Stable Carbon
Isotopes δ 13 C as a Proxy for Characterizing Carbon Sources and
Processes in a Small Tropical Headwater Catchment: Nsimi, Cameroon, Aquat.
Geochem., 27, 1–30, https://doi.org/10.1007/s10498-020-09386-8, 2020.
Nyeck, B., Bilong, P., Monkam, A., and Belinga, S. M. E.: Mise au point d'un
modèle de cartographie et de classification des sols en zone
forestières intertropicale au Cameroun, Cas du plateau forestier humide
de Zoétélé, Géocam2, Press Uni. Yaoundé, 171–180, 1999.
Oliva, P., Viers, J., Dupré, B., Fortuné, J., Martin, F., Braun, J.,
Nahon, D., and Robain, H.: The effect of organic matter on chemical
weathering: Study of a small tropical watershed: Nsimi-Zoetele site,
Cameroon, Geochim. Cosmochim. Ac., 63, 4013–4055, 1999.
Olivry, J.: Fleuves et rivières du Cameroun, edited by ORSTOM, Paris, 733 pp.,
1986.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Piedade, M. T. F., Ferreira, C. S., de Oliveira Wittmann, A., Buckeridge, M.,
and Parolin, P.: Biochemistry of Amazonian floodplain trees, in: Amazonian
floodplain forests, Springer, 127–139, 2010.
Raymond, P. A., Zappa, C. J., Butman, D., Bott, T. L., Potter, J.,
Mulholland, P., Laursen, A. E., Mcdowell, W. H., and Newbold, D.: Scaling the
gas transfer velocity and hydraulic geometry in streams and small rivers,
Limnol. Oceanogr. Fluids Environ., 2, 41–53,
https://doi.org/10.1215/21573689-1597669, 2012.
Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C.,
Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen,
P., Dürr, H., Meybeck, M., Ciais, P., and Guth, P.: Global carbon dioxide
emissions from inland waters, Nature, 503, 355–359,
https://doi.org/10.1038/nature12760, 2013.
Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M., and Hess,
L. L.: Outgassing from Amazonian rivers and wetlands as a large tropical
source of atmospheric CO2, 416, 617–620, 2002.
Sabater, S., Armengol, J., Comas, E., Sabater, F., Urrizalqui, I., and
Urrutia, I.: Algal biomass in a disturbed Atlantic river: water quality
relationships and environmental implications, Sci. Total Environ.,
263, 185–195, https://doi.org/10.1016/S0048-9697(00)00702-6, 2000.
Sanderman, J. and Amundson, R.: A comparative study of dissolved organic
carbon transport and stabilization in California forest and grassland soils,
Biogeochemistry, 89, 309–327, https://doi.org/10.1007/S10533-008-9221-8, 2008.
Sanders, I. A., Cotton, J., Hildrew, A. G., and Trimmer, M.: Emission of
Methane from Chalk Streams Has Potential Implications for Agricultural
Practices, Freshw. Biol., 52, 1176–1186,
https://doi.org/10.1111/j.1365-2427.2007.01745.x, 2007.
Sauer, D., Sommer, M., Jahn, R., Sauer, D., Sponagel, H., Sommer, M., Giani,
L., Jahn, R., and Stahr, K.: Podzol: Soil of the Year 2007, A review on its
genesis, occurrence, and functions A review on its genesis, occurrence,
and functions, J. Plant Nutr. Soil Sci., 170, 581–597,
https://doi.org/10.1002/jpln.200700135, 2007.
Saunders, M. J., Jones, M. B., and Kansiime, F.: Carbon and water cycles in
tropical papyrus wetlands, Wetl. Ecol. Manag., 15, 489–498,
https://doi.org/10.1007/s11273-007-9051-9, 2007.
Sawakuchi, H. O., Neu, V., Ward, N. D., Barros, M. D. L. C., Valerio, A. M.,
Gagne-Maynard, W., Cunha, A. C., Less, D. F. S. S., Diniz, J. E. M., Brito,
D. C., Krusche, A. V., and Richey, J. E.: Carbon dioxide emissions along the
lower Amazon River, Front. Mar. Sci., 4, 1–12,
https://doi.org/10.3389/fmars.2017.00076, 2017.
Schewendenmann, L. and Veldkamp, E.: Long-term CO2 production from deeply
weathered soils of a tropical rain forest: Evidence for a potential positive
feedback to climate warming, Glob. Chang. Biol., 12, 1878–1893,
https://doi.org/10.1111/j.1365-2486.2006.01235.x, 2006.
Shen, Y., Chapelle, F. H., Strom, E. W., and Benner, R.: Origins and
bioavailability of dissolved organic matter in groundwater, Biogeochemistry, 122, 61–78,
https://doi.org/10.1007/s10533-014-0029-4, 2015.
Silva, T. S. F., Melack, J. M., and Novo, E. M. L. M.: Responses of aquatic
macrophyte cover and productivity to flooding variability on the Amazon
floodplain, Glob. Chang. Biol., 19, 3379–3389, https://doi.org/10.1111/GCB.12308,
2013.
Strahler, A. N.: Mtm Quantitative Analysis of Watershed Geomorphology,
Trans. Am. Geophys. Union, 38, 913–920, 1957.
Suchel, J.-B.: Les climats du Cameroun, Université de Bordeaux III,
France, 1186 pp., 1987.
Tamooh, F., Van den Meersche, K., Meysman, F., Marwick, T. R., Borges, A. V., Merckx, R., Dehairs, F., Schmidt, S., Nyunja, J., and Bouillon, S.: Distribution and origin of suspended matter and organic carbon pools in the Tana River Basin, Kenya, Biogeosciences, 9, 2905–2920, https://doi.org/10.5194/bg-9-2905-2012, 2012.
Tamooh, F., Meysman, F. J. R., Borges, A. V, Marwick, T. R., Van, K.,
Meersche, D., Dehairs, F., Merckx, R., and Bouillon, S.: Sediment and carbon
fluxes along a longitudinal gradient in the lower Tana River (Kenya),
J. Geophys. Res.-Biogeo., 119, 1340–1353, https://doi.org/10.1002/2013JG002358, 2014.
Tsypin, M. and Macpherson, G. L.: The effect of precipitation events on
inorganic carbon in soil and shallow groundwater, Konza Prairie LTER Site,
NE Kansas, USA, Appl. Geochem., 27, 2356–2369, 2012.
Viers, J., Dupré, B., Polvé, M., Schott, J., Dandurand, J. L., and
Braun, J. J.: Chemical weathering in the drainage basin of a tropical
watershed (Nsimi-Zoetele site, Cameroon): comparison between organic-poor
and organic-rich waters, Chem. Geol., 140, 181–206,
https://doi.org/10.1016/S0009-2541(97)00048-X, 1997.
Viers, J., Dupré, B., Braun, J. J., Deberdt, S., Angeletti, B.,
Ngoupayou, J. N., and Michard, A.: Major and trace element abundances, and
strontium isotopes in the Nyong basin rivers (Cameroon): constraints on
chemical weathering processes and elements transport mechanisms in humid
tropical environments, Chem. Geol., 169, 211–241,
https://doi.org/10.1016/S0009-2541(00)00298-9, 2000.
Weiss, R. F.: Carbon dioxide in water and seawater: the solubility of a
non-ideal gas, Mar. Chem., 2, 203–215, https://doi.org/10.1016/0304-4203(74)90015-2, 1974.
White, A. F. and Blum, A. E.: Effects of climate on chemical_weathering in watersheds, Geochim. Cosmochim. Ac., 59, 1729–1747, 1995.
Short summary
We monitor the spatio-temporal variability of organic and inorganic carbon (C) species in the tropical Nyong River (Cameroon), across groundwater and increasing stream orders. We show the significant contribution of wetland as a C source for tropical rivers. Thus, ignoring the river–wetland connectivity might lead to the misrepresentation of C dynamics in tropical watersheds. Finally, total fluvial carbon losses might offset ~10 % of the net C sink estimated for the whole Nyong watershed.
We monitor the spatio-temporal variability of organic and inorganic carbon (C) species in the...
Altmetrics
Final-revised paper
Preprint