Articles | Volume 20, issue 13
https://doi.org/10.5194/bg-20-2743-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-2743-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating the seasonal impact of optically significant water constituents on surface heating rates in the western Baltic Sea
Bronwyn E. Cahill
CORRESPONDING AUTHOR
Physical Oceanography and Instrumentation, Leibniz Institute for
Baltic Sea Research, Warnemünde 18119, Germany
Institute of Meteorology, Free University Berlin, Berlin 12165,
Germany
Piotr Kowalczuk
Institute of Oceanology PAS, Powstańców Warszawy 55, 81-712
Sopot, Poland
Lena Kritten
Institute of Meteorology, Free University Berlin, Berlin 12165,
Germany
Ulf Gräwe
Physical Oceanography and Instrumentation, Leibniz Institute for
Baltic Sea Research, Warnemünde 18119, Germany
John Wilkin
Department of Marine and Coastal Sciences, Rutgers University, New
Brunswick, 08901 NJ, USA
Jürgen Fischer
Institute of Meteorology, Free University Berlin, Berlin 12165,
Germany
Related authors
Thomas Neumann, Hagen Radtke, Bronwyn Cahill, Martin Schmidt, and Gregor Rehder
Geosci. Model Dev., 15, 8473–8540, https://doi.org/10.5194/gmd-15-8473-2022, https://doi.org/10.5194/gmd-15-8473-2022, 2022
Short summary
Short summary
Marine ecosystem models are usually constrained by the elements nitrogen and phosphorus and consider carbon in organic matter in a fixed ratio. Recent observations show a substantial deviation from the simulated carbon cycle variables. In this study, we present a marine ecosystem model for the Baltic Sea which allows for a flexible uptake ratio for carbon, nitrogen, and phosphorus. With this extension, the model reflects much more reasonable variables of the marine carbon cycle.
Nils Madenach, Florian Tornow, Howard Barker, Rene Preusker, and Jürgen Fischer
EGUsphere, https://doi.org/10.5194/egusphere-2025-1439, https://doi.org/10.5194/egusphere-2025-1439, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
In this study clouds fields with different macro- and microphysical properties are generated and used to simulate the top of atmosphere short wave radiances and fluxes. The fluxes are compared to two radiance-to-irradiance conversion approaches. Especially for viewing angles in the backscattering direction the approach that is aware of the cloud microphysics results in better flux estimates.
Solène Jousset, Sandrine Mulet, Eric Greiner, John Wilkin, Lien Vidar, Léon Chafik, Roshin Raj, Antonio Bonaduce, Nicolas Picot, and Gérald Dibarboure
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-429, https://doi.org/10.5194/essd-2025-429, 2025
Preprint under review for ESSD
Short summary
Short summary
Satellite altimetry has revolutionized ocean observation, making it possible to track sea level with very good spatio-temporal coverage. However, only sea level anomalies are retrieved; to monitor the entire ocean signal, mean dynamic topography (MDT) must be added to these anomalies. In this study, an evaluation of new NES-CLS22 MDT shows significant improvements in the Arctic. Over the globe, this new solution is better than its predecessor, although the two solutions remain close.
Pascal Matte, John Wilkin, and Joanna Staneva
State Planet, 5-opsr, 19, https://doi.org/10.5194/sp-5-opsr-19-2025, https://doi.org/10.5194/sp-5-opsr-19-2025, 2025
Short summary
Short summary
Rivers, vital to the Earth's system, connect the ocean with the land, governing hydrological and biogeochemical contributions and influencing processes like upwelling and mixing. This paper reviews methods to represent river runoff in operational ocean forecasting systems, from coarse-resolution models to coastal coupling approaches. It discusses river data sources and examines how river forcing is treated in global to coastal operational systems, highlighting challenges and future directions.
Marvin Lorenz, Katri Viigand, and Ulf Gräwe
Nat. Hazards Earth Syst. Sci., 25, 1439–1458, https://doi.org/10.5194/nhess-25-1439-2025, https://doi.org/10.5194/nhess-25-1439-2025, 2025
Short summary
Short summary
This study divides the sea level components that contribute to extreme sea levels in the Baltic Sea into three parts: the filling state of the Baltic Sea, seiches, and storm surges. In the western part of the Baltic Sea, storm surges are the main factor, while in the central and northern parts, the filling state plays a larger role. Using a numerical model, we show that wind and air pressure are the main drivers of these events, with Atlantic sea level also playing a small role.
Florian Börgel, Sven Karsten, Karoline Rummel, and Ulf Gräwe
Geosci. Model Dev., 18, 2005–2019, https://doi.org/10.5194/gmd-18-2005-2025, https://doi.org/10.5194/gmd-18-2005-2025, 2025
Short summary
Short summary
Forecasting river runoff, which is crucial for managing water resources and understanding climate impacts, can be challenging. This study introduces a new method using convolutional long short-term memory (ConvLSTM) networks, a machine learning model that processes spatial and temporal data. Focusing on the Baltic Sea region, our model uses weather data as input to predict daily river runoff for 97 rivers.
Nicole Docter, Anja Hünerbein, David P. Donovan, Rene Preusker, Jürgen Fischer, Jan Fokke Meirink, Piet Stammes, and Michael Eisinger
Atmos. Meas. Tech., 17, 2507–2519, https://doi.org/10.5194/amt-17-2507-2024, https://doi.org/10.5194/amt-17-2507-2024, 2024
Short summary
Short summary
MSI is the imaging spectrometer on board EarthCARE and will provide across-track information on clouds and aerosol properties. The MSI solar channels exhibit a spectral misalignment effect (SMILE) in the measurements. This paper describes and evaluates how the SMILE will affect the cloud and aerosol retrievals that do not account for it.
Marvin Lorenz and Ulf Gräwe
Ocean Sci., 19, 1753–1771, https://doi.org/10.5194/os-19-1753-2023, https://doi.org/10.5194/os-19-1753-2023, 2023
Short summary
Short summary
We study the variability of extreme sea levels in a 13 member hindcast ensemble for the Baltic Sea. The ensemble mean shows good agreement with observations regarding return levels and trends. However, we find great variability and uncertainty within the ensemble. We argue that the variability of storms in the atmospheric data directly translates into the variability of the return levels. These results highlight the need for large regional ensembles to minimise uncertainties.
Aleksandra Cherkasheva, Rustam Manurov, Piotr Kowalczuk, Alexandra N. Loginova, Monika Zabłocka, and Astrid Bracher
EGUsphere, https://doi.org/10.5194/egusphere-2023-2495, https://doi.org/10.5194/egusphere-2023-2495, 2023
Preprint archived
Short summary
Short summary
We aimed to improve the quality of regional Greenland Sea primary production estimates. Seventy two versions of primary production model setups were tested against field data. Best performing models had local biomass and light absorption profiles. Thus by using local parametrizations for these parameters we can improve Arctic primary production model performance. Annual Greenland Sea basin estimates are larger than previously reported.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Joshua Kiesel, Marvin Lorenz, Marcel König, Ulf Gräwe, and Athanasios T. Vafeidis
Nat. Hazards Earth Syst. Sci., 23, 2961–2985, https://doi.org/10.5194/nhess-23-2961-2023, https://doi.org/10.5194/nhess-23-2961-2023, 2023
Short summary
Short summary
Among the Baltic Sea littoral states, Germany is anticipated to experience considerable damage as a result of increased coastal flooding due to sea-level rise (SLR). Here we apply a new modelling framework to simulate how flooding along the German Baltic Sea coast may change until 2100 if dikes are not upgraded. We find that the study region is highly exposed to flooding, and we emphasise the importance of current plans to update coastal protection in the future.
Nicole Docter, Rene Preusker, Florian Filipitsch, Lena Kritten, Franziska Schmidt, and Jürgen Fischer
Atmos. Meas. Tech., 16, 3437–3457, https://doi.org/10.5194/amt-16-3437-2023, https://doi.org/10.5194/amt-16-3437-2023, 2023
Short summary
Short summary
We describe the stand-alone retrieval algorithm used to derive aerosol properties relying on measurements of the Multi-Spectral Imager (MSI) aboard the upcoming Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) satellite. This aerosol data product will be available as M-AOT after the launch of EarthCARE. Additionally, we applied the algorithm to simulated EarthCARE MSI and Moderate Resolution Imaging Spectroradiometer (MODIS) data for prelaunch algorithm verification.
Lena Katharina Jänicke, Rene Preusker, Marco Celesti, Marin Tudoroiu, Jürgen Fischer, Dirk Schüttemeyer, and Matthias Drusch
Atmos. Meas. Tech., 16, 3101–3121, https://doi.org/10.5194/amt-16-3101-2023, https://doi.org/10.5194/amt-16-3101-2023, 2023
Short summary
Short summary
To compare two top-of-atmosphere radiances measured by instruments with different spectral characteristics, a transfer function has been developed. It is applied to a tandem data set of Sentinel-3A and B, for which OLCI-B mimicked the ESA’s eighth Earth Explorer FLEX. We found that OLCI-A measured radiances about 2 % brighter than OLCI-FLEX. Only at larger wavelengths were OLCI-A measurements about 5 % darker. The method is thus successful, being sensitive to calibration and processing issues.
Pia Kolb, Anna Zorndt, Hans Burchard, Ulf Gräwe, and Frank Kösters
Ocean Sci., 18, 1725–1739, https://doi.org/10.5194/os-18-1725-2022, https://doi.org/10.5194/os-18-1725-2022, 2022
Short summary
Short summary
River engineering measures greatly changed tidal dynamics in the Weser estuary. We studied the effect on saltwater intrusion with numerical models. Our analysis shows that a deepening of the navigation channel causes saltwater to intrude further into the Weser estuary. This effect is mostly masked by the natural variability of river discharge. In our study, it proved essential to recalibrate individual hindcast models due to differences in sediments, bed forms, and underlying bathymetric data.
Matthias Gröger, Manja Placke, H. E. Markus Meier, Florian Börgel, Sandra-Esther Brunnabend, Cyril Dutheil, Ulf Gräwe, Magnus Hieronymus, Thomas Neumann, Hagen Radtke, Semjon Schimanke, Jian Su, and Germo Väli
Geosci. Model Dev., 15, 8613–8638, https://doi.org/10.5194/gmd-15-8613-2022, https://doi.org/10.5194/gmd-15-8613-2022, 2022
Short summary
Short summary
Comparisons of oceanographic climate data from different models often suffer from different model setups, forcing fields, and output of variables. This paper provides a protocol to harmonize these elements to set up multidecadal simulations for the Baltic Sea, a marginal sea in Europe. First results are shown from six different model simulations from four different model platforms. Topical studies for upwelling, marine heat waves, and stratification are also assessed.
Thomas Neumann, Hagen Radtke, Bronwyn Cahill, Martin Schmidt, and Gregor Rehder
Geosci. Model Dev., 15, 8473–8540, https://doi.org/10.5194/gmd-15-8473-2022, https://doi.org/10.5194/gmd-15-8473-2022, 2022
Short summary
Short summary
Marine ecosystem models are usually constrained by the elements nitrogen and phosphorus and consider carbon in organic matter in a fixed ratio. Recent observations show a substantial deviation from the simulated carbon cycle variables. In this study, we present a marine ecosystem model for the Baltic Sea which allows for a flexible uptake ratio for carbon, nitrogen, and phosphorus. With this extension, the model reflects much more reasonable variables of the marine carbon cycle.
Elias J. Hunter, Heidi L. Fuchs, John L. Wilkin, Gregory P. Gerbi, Robert J. Chant, and Jessica C. Garwood
Geosci. Model Dev., 15, 4297–4311, https://doi.org/10.5194/gmd-15-4297-2022, https://doi.org/10.5194/gmd-15-4297-2022, 2022
Short summary
Short summary
ROMSPath is an offline particle tracking model tailored for use with output from Regional Ocean Modeling System (ROMS) simulations. It is an update to an established system, the Lagrangian TRANSport (LTRANS) model, including a number of improvements. These include a modification of the model coordinate system which improved accuracy and numerical efficiency, and added functionality for nested grids and Stokes drift.
Tristan Petit, Børge Hamre, Håkon Sandven, Rüdiger Röttgers, Piotr Kowalczuk, Monika Zablocka, and Mats A. Granskog
Ocean Sci., 18, 455–468, https://doi.org/10.5194/os-18-455-2022, https://doi.org/10.5194/os-18-455-2022, 2022
Short summary
Short summary
We provide the first insights on bio-optical processes in Storfjorden (Svalbard). Information on factors controlling light propagation in the water column in this arctic fjord becomes crucial in times of rapid sea ice decline. We find a significant contribution of dissolved matter to light absorption and a subsurface absorption maximum linked to phytoplankton production. Dense bottom waters from sea ice formation carry elevated levels of dissolved and particulate matter.
Jens Daniel Müller, Bernd Schneider, Ulf Gräwe, Peer Fietzek, Marcus Bo Wallin, Anna Rutgersson, Norbert Wasmund, Siegfried Krüger, and Gregor Rehder
Biogeosciences, 18, 4889–4917, https://doi.org/10.5194/bg-18-4889-2021, https://doi.org/10.5194/bg-18-4889-2021, 2021
Short summary
Short summary
Based on profiling pCO2 measurements from a field campaign, we quantify the biomass production of a cyanobacteria bloom in the Baltic Sea, the export of which would foster deep water deoxygenation. We further demonstrate how this biomass production can be accurately reconstructed from long-term surface measurements made on cargo vessels in combination with modelled temperature profiles. This approach enables a better understanding of a severe concern for the Baltic’s good environmental status.
Erik Jacobs, Henry C. Bittig, Ulf Gräwe, Carolyn A. Graves, Michael Glockzin, Jens D. Müller, Bernd Schneider, and Gregor Rehder
Biogeosciences, 18, 2679–2709, https://doi.org/10.5194/bg-18-2679-2021, https://doi.org/10.5194/bg-18-2679-2021, 2021
Short summary
Short summary
We use a unique data set of 8 years of continuous carbon dioxide (CO2) and methane (CH4) surface water measurements from a commercial ferry to study upwelling in the Baltic Sea. Its seasonality and regional and interannual variability are examined. Strong upwelling events drastically increase local surface CO2 and CH4 levels and are mostly detected in late summer after long periods of impaired mixing. We introduce an extrapolation method to estimate regional upwelling-induced trace gas fluxes.
Robert Daniel Osinski, Kristina Enders, Ulf Gräwe, Knut Klingbeil, and Hagen Radtke
Ocean Sci., 16, 1491–1507, https://doi.org/10.5194/os-16-1491-2020, https://doi.org/10.5194/os-16-1491-2020, 2020
Short summary
Short summary
This study investigates the impact of the uncertainty in atmospheric data of a storm event on the transport of microplastics and sediments. The model chain includes the WRF atmospheric model, the WAVEWATCH III® wave model, and the GETM regional ocean model as well as a sediment transport model based on the FABM framework. An ensemble approach based on stochastic perturbations of the WRF model is used. We found a strong impact of atmospheric uncertainty on the amount of transported material.
Cited articles
Aas, E.: Two-stream irradiance model for deep waters, Appl. Optics, 26, 2095–2101, https://doi.org/10.1364/AO.26.002095, 1987.
Ackleson, S., Balch, W., and Holligan, P.: Response of water-leaving radiance
to particulate calcite and chlorophyll a concentrations: A model for Gulf of
Maine coccolithophore blooms, J. Geophys. Res., 99, 7483–7499, https://doi.org/10.1029/93JC02150, 1994.
Alikas, K., Kratzer, S., Reinart, A., Kauer, T., and Paavel, B.: Robust
remote sensing algorithms to derive the diffuse attenuation coefficient for
lakes and coastal waters, Limnol. Oceanogr. Meth., 13, 402–415,
https://doi.org/10.1002/lom3.10033, 2015.
Belkin, I.: Rapid warming of large marine ecosystems, Prog. Oceanogr., 81,
207–213, https://doi.org/10.1016/J.POCEAN.2009.04.011, 2009.
Bidigare, R. R., Ondrusek, M. E., Morrow, J. H., and Kiefer, D. A.: In vivo
absorption properties of algal pigments, P. SPIE, 1302, 290–302,
https://doi.org/10.1117/12.21451, 1990.
Bissett, W., Walsh, J., Dieterle, D., and Carder, K.: Carbon cycling in the
upper waters of the Sargasso Sea: I. Numerical simulation of differential
carbon and nitrogen fluxes, Deep-Sea Res. Pt. I, 46, 205–269, https://doi.org/10.1016/S0967-0637(98)00062-4, 1999a.
Bissett, W., Walsh, J., Dieterle, D., and Carder, K.: Carbon cycling in the
upper waters of the Sargasso Sea: II. Numerical simulation of apparent and
inherent optical properties, Deep-Sea Res. Pt. I, 46, 271–317, https://doi.org/10.1016/S0967-0637(98)00063-6, 1999b.
Cahill, B.: Bio-Optic bio-shortwave model code, initial conditions, river and boundary forcing, Zenodo [data set and code], https://doi.org/10.5281/zenodo.7215110, 2023.
Cahill, B., Schofield, O., Chant, R., Wilkin, J., Hunter, E., Glenn, S., and
Bissett, P.: Dynamics of turbid buoyant plumes and the feedbacks on
near-shore biogeochemistry and physics, Geophys. Res. Lett., 35, 1–6,
https://doi.org/10.1029/2008GL033595, 2008.
Cahill, B., Wilkin, J., Fennel, K., Vandemark, D., and Friedrichs, M.:
Interannual and seasonal variabilities in air-sea CO2 fluxes along the
U.S. eastern continental shelf and their sensitivity to increasing air
temperatures and variable winds, J. Geophys. Res., 121, 295–311,
https://doi.org/10.1002/2015JG002939, 2016.
Darecki, M. and Stramski, D.: An evaluation of MODIS and SeaWiFS bio-optical
algorithms in the Baltic Sea, Remote Sens. Environ., 89, 326–350, https://doi.org/10.1016/J.RSE.2003.10.012, 2004.
Darecki, M., Weeks, A., Sagan, S., Kowalczuk, P., and Kaczmarek, S.: Optical
characteristics of two contrasting Case 2 waters and their influence on
remote sensing algorithms, Cont. Shelf Res., 23, 237–250,
https://doi.org/10.1016/S0278-4343(02)00222-4, 2003.
Dera, J. and Woźniak, B.: Solar radiation in the Baltic Sea,
Oceanologia, 52, 533–582, 2010.
Dickey, T. and Falkowski, P.: Solar energy and its biological-physical
interactions in the sea, in: The Sea, Vol. 12, edited by: Robinson, A. R., McCarthy, J. J., and
Rothschild, B. J., John Wiley & Sons, NY, ISBN 0-471-18901-4, 2002.
Dutkiewicz, S., Hickman, A. E., Jahn, O., Gregg, W. W., Mouw, C. B., and Follows, M. J.: Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model, Biogeosciences, 12, 4447–4481, https://doi.org/10.5194/bg-12-4447-2015, 2015.
Fasham, M. J. R., Ducklow, H. W., and McKelvie, S. M.: A nitrogen-based model of
plankton dynamics in the oceanic mixed layer, J. Mar. Res., 48,
591–639, https://doi.org/10.1357/002224090784984678, 1990.
Fell, F. and Fischer, J.: Numerical simulation of the light field in the
atmosphere-ocean system using the matrix-operator method, J. Quant. Spectrosc.
Ra., 69, 351–388,
https://doi.org/10.1016/S0022-4073(00)00089-3, 2001.
Fennel, W. and Sturm, M.: Dynamics of the western Baltic, J. Marine Syst., 3,
183–205, https://doi.org/10.1016/0924-7963(92)90038-A, 1992.
Fennel, K. and Wilkin, J.: Quantifying biological carbon export for the
northwest North Atlantic continental shelves, Geophys. Res. Lett., 36, L18605,
https://doi.org/10.1029/2009GL039818, 2009.
Fennel, K., Wilkin, J., Levin, J., Moisan, J., O'Reilly, J., and Haidvogel,
D.: Nitrogen cycling in the Middle Atlantic Bight: Results from a three
dimensional model and implications for the North Atlantic nitrogen budget,
Global Biogeochem. Cy., 20, GB3007, https://doi.org/10.1029/2005GB002456, 2006.
Fennel, K., Wilkin, J., Previdi, M., and Najjar, R.: Denitrification effects
on air-sea CO2 flux in the coastal ocean: Simulations for the northwest
North Atlantic, Geophys. Res. Lett., 35, L24608,
https://doi.org/10.1029/2008GL036147, 2008.
Fischer, J. and Grassl, H.: Radiative transfer in an atmosphere-ocean
system: an azimuthally dependent matrix-operator approach, Appl. Optics,
23, 1032–1039, https://doi.org/10.1364/AO.23.001032, 1984.
Fournier, G. R. and Forand, J. L.: Analytic phase function for ocean water, edited by: Jaffe, J. S.,
Proc. SPIE 2258, Ocean Optics XII, https://doi.org/10.1117/12.190063, 1994.
Freda, W. and Piskozub, J.: Improved method of Fournier-Forand marine phase
function parameterization, Opt. Express, 15, 12763–12768, https://doi.org/10.1364/OE.15.012763, 2007.
Gallegos, C. L., Werdell, P. J., and McClain, C. R.: Long-term changes in light
scattering in Chesapeake Bay inferred from Secchi depth, light attenuation
and remote sensing measurements, J. Geophys. Res., 116, C00H08, https://doi.org/10.1029/2011JC007160, 2011.
Gnanadesikan, A., Kim, G., and Pradal, M.: Impact of colored dissolved
materials on the annual cycle of sea surface temperature: potential
implications for extreme ocean temperatures, Geophys. Res. Lett., 46, 861–869, https://doi.org/10.1029/2018GL080695, 2019.
Gonçalves-Araujo, R. and Markager, S.: Light in the dark: Retrieving
underwater irradiance in shallow eutropic waters from AC-S measurements,
Front. Mar. Sci., 7, 343, https://doi.org/10.3389/fmars.2020.00343, 2020.
Gordon, H. R., Smith, R. C., and Zaneveld, J. R. V.: Introduction to ocean
optics, edited by: Quimby Duntley, S., Proc. SPIE 0208, Ocean Optics VI, https://doi.org/10.1117/12.958262, 1980.
Gräwe, U., Holtermann, P., Klingbeil, K., and Burchard, H.: Advantages of
vertically adaptive coordinates in numerical models of stratified shelf
seas, Ocean Model., 92, 56–68,
https://doi.org/10.1016/j.ocemod.2015.05.008, 2015a.
Gräwe, U., Naumann, M., Mohrholz, V., and Burchard, H.: Anatomizing one of
the largest saltwater inflows into the Baltic Sea in December 2014, J.
Geophys. Res., 120, 7676–7697, https://doi.org/10.1002/2015JC011269,
2015b.
Gregg, W. W.: A coupled ocean-atmosphere radiative model for global ocean
biogeochemical model, NASA Technical Report Series on Global modelling and
Data Assimilation, 22 (NASA/TM-2002-104606), 2002.
Gregg, W. W. and Carder, K.: A simple spectral solar irradiance model for
cloudless maritime atmospheres, Limnol. Oceanogr., 35, 1657–1675, https://doi.org/10.4319/lo.1990.35.8.1657, 1990.
Gregg, W. W. and Rousseaux, C. S.: Directional and spectral irradiance in
ocean models: effects on simulated global phytoplankton, nutrients and
primary production, Front. Mar. Sci., 3, 240, https://doi.org/10.3389/fmars.2016.00240, 2016.
Guanter, L., Alonso, L., Gomez-Chova, L., Meroni, M., Preusker, R., Fischer,
J., and Moreno, J.: Developments for vegetation fluorescence retrieval from
spaceborne high-resolution spectrometry in the O2-A and O2-B
absorption bands, J. Geophys. Res., 115, D19303, https://doi.org/10.1029/2009JD013716,
2010.
Haidvogel, D., Arango, H., Budgell, W., Cornuelle, B., Curchitser, E.,
Lorenzo, E., Fennel, K., Geyer, W., Hermann, A., Lanerolle, L., Levin, J.,
McWilliams, J., Miller, J., Moore, A., Powell, T., Shchepetkin, A.,
Sherwood, C., Signell, R., Warner, J., and Wilkin, J.: Ocean forecasting in
terrain-following coordinates: Formulation and skill assessment of the
Regional Ocean Modeling System, J. Comput. Phys., 227, 3595–3624,
https://doi.org/10.1016/j.jcp.2007.06.016, 2008 (code available at https://www.myroms.org/, last access: 4 July 2023).
Hill, V.: Impacts of chromophoric dissolved organic material on surface
ocean heating in the Chukchi Sea, J. Geophys. Res., 113, C07024,
https://doi.org/10.1029/2007JC004119, 2008.
Hollstein, A. and Fischer, J.: Radiative transfer solutions for coupled
atmosphere ocean systems using the matrix operator technique, J. Quant.
Spectrosc. Ra., 113, 536–548,
https://doi.org/10.1016/j.jqsrt.2012.01.010, 2012.
Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Hankins, B., Smith,
T., and Zhang, H.-M.: Improvements of the Daily Optimum Interpolation Sea
Surface Temperature (DOISST) Version 2.1, J. Climate, 34, 2923–2939, https://doi.org/10.1175/JCLI-D-20-0166.1, 2021 (data set available at https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html, last access: 6 July 2023).
IPCC: Summary for Policymakers, in: IPCC Special Report on the Ocean
and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C.,
Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K.,
Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M.,
Cambridge University Press, Cambridge, UK and New York, NY, USA, 3–35,
https://doi.org/10.1017/9781009157964.001, 2019.
Isemer, H. J. and Rozwadowska, A.: Solar radiation fluxes at the surface of
the Baltic Proper. Part 2. Uncertainties and comparison with simple bulk
parameterization, Oceanologia, 41, 147–185, 1999.
Jolliff, J. and Smith, T.: Biological modulation of upper ocean physics:
Simulating the biothermal feedback effect in Monterey Bay, California, J.
Geophys. Res., 119, 703–721, https://doi.org/10.1002/2013JG002522, 2014.
Kahru, M., Elmgren, R., and Savchuk, O. P.: Changing seasonality of the Baltic Sea, Biogeosciences, 13, 1009–1018, https://doi.org/10.5194/bg-13-1009-2016, 2016.
Kim, G., Gnanadesikan, A., and Pradal, M.: Increased surface ocean heating by
colored detrital matter (CDM) linked to greater northern hemisphere ice
formation in the GFDL CM2Mc ESM, J. Climate, 29, 9063–9076,
https://doi.org/10.1175/JCLI-D-16-0053.1, 2016.
Kim, G., Gnanadesikan, A. Del Castillo, C., and Pradal, M.: Upper ocean
cooling in a coupled climate model due to light attenuation by yellowing
materials, Geophys. Res. Lett., 45, 6134–6140,
https://doi.org/10.1029/2018GL077297, 2018.
Kim, G., St-Laurent, P., Friedrichs, M., and Mannino, A.: Impacts of water
clarity variability on temperature and biogeochemistry in the Chesapeake
Bay, Estuar. Coasts, 43 1973–1991, https://doi.org/10.1007/s12237-020-00760-x, 2020.
Kim, G. E., Pradal, M.-A., and Gnanadesikan, A.: Quantifying the biological impact of surface ocean light attenuation by colored detrital matter in an ESM using a new optical parameterization, Biogeosciences, 12, 5119–5132, https://doi.org/10.5194/bg-12-5119-2015, 2015.
Kirk, J. T. O.: Light and Photosynthesis in Aquatic Systems, 3rd Edn.,
University Press, Cambridge, 649 pp., 2011.
Kowalczuk, P.: Seasonal variability of yellow substance absorption in the
surface layer of the Baltic Sea, J. Geophys. Res., 104, 30047–30058,
1999.
Kowalczuk, P., Sagan, S., Olszewski, J., Darecki, M., and Hapter,R.: Seasonal
changes in selected optical parameters in the Pomeranian Bay in 1996–1997,
Oceanologia, 41, 309–334, 1999.
Kowalczuk, P., Olszewski, J., Darecki, M., and Kaczmarek, S.: Empirical
relationships between Coloured Dissolved Organic Matter (CDOM) absorption
and apparent optical properties in Baltic Sea waters, Int. J. Remote Sens.,
26, 345–370, 2005a.
Kowalczuk, P., Stoń-Egiert, J., Cooper, W. J., Whitehead, R. F., and
Durako, M. J.: Characterization of Chromophoric Dissolved Organic Matter
(CDOM) in the Baltic Sea by Excitation Emission Matrix fluorescence
spectroscopy, Mar. Chem., 96, 273–292, 2005b.
Kowalczuk, P., Stedmon, C. A., and Markager, S.: Modelling absorption by CDOM
in the Baltic Sea from season, salinity and chlorophyll, Mar. Chem., 101,
1–11, 2006.
Kratzer, S., Hakansson, B., and Sahlin, C.: Assessing Secchi and photic zone
depth in the Baltic sea from satellite data, Ambio, 32, 577–585,
https://www.jstor.org/stable/4315443 (last access: 4 July 2023), 2003.
Kratzer, S. and Moore, G.: Inherent optical properties of the Baltic Sea in
comparison to other seas and oceans, Remote Sens., 10, 418,
https://doi.org/10.3390/rs10030418, 2018.
Kritten, L., Preusker, R., and Fischer, J.: A new retrieval of sun-induced
chlorophyll fluorescence in water from ocean colour measurements applied on
OLCI L-1b and L-2, Remote Sens., 12, 1–24,
https://doi.org/10.3390/rs12233949, 2020.
Lee, Z., Du, K., and Arnone, R.: A model for the diffuse attenuation
coefficient of downwelling, J. Geophys. Res., 110, 1–10,
https://doi.org/10.1029/2004JC002275, 2005.
Lewis, M., Carr, M., Feldman, G., Esaias, W., and McClain, C.: Influence of
penetrating solar radiation on the heat budget of the equatorial Pacific
Ocean, Nature, 347, 543–545, https://doi.org/10.1038/347543a0, 1990.
Löptien, U. and Meier, H. E. M.: The influence of increasing water
turbidity on the sea surface temperature in the Baltic sea: A model
sensitivity study, J. Marine Syst., 88, 323–331,
https://doi.org/10.1016/J.JMARSYS.2011.06.001, 2011.
Lund-Hansen, L.: Diffuse attenuation coefficients Kd(PAR) at the
estuarine North Sea-Baltic Sea transition: time-series, partitioning,
absorption and scattering, Estuar. Coast. Shelf S., 61, 251–259,
https://doi.org/10.1016/J.ECSS.2004.05.004, 2004.
Łysiak-Pastuszak, E., Drgas, N. and Piatkowska, Z.: Eutrophication in the
Polish coastal zone: the past, present status and future scenarios, Mar.
Pollut. Bull., 49, 186–195,
https://doi.org/10.1016/j.marpolbul.2004.02.007, 2004.
Manizza, M., Quere, C., Watson, A., and Buitenhuis, E.: Bio-optical feedbacks
among phytoplankton, upper ocean physics and sea-ice in a global model, Geophys.
Res. Lett., 32, 1–4, https://doi.org/10.1029/2004GL020778, 2005.
Manizza, M., Quere, C., Watson, A., and Buitenhuis, E.: Ocean biogeochemical
response to phytoplankton-light feedback in a global model, J. Geophys.
Res., 113, C10010, https://doi.org/10.1029/2007JC004478, 2008.
Meier, H. E. M.: Modeling the pathways and ages of inflowing salt- and
freshwater in the Baltic Sea, Estuar. Coast. Shelf S., 74, 717–734,
https://doi.org/10.1016/j.ecss.2007.05.019, 2007.
Meier, H. E. M., Kniebusch, M., Dieterich, C., Gröger, M., Zorita, E., Elmgren, R., Myrberg, K., Ahola, M. P., Bartosova, A., Bonsdorff, E., Börgel, F., Capell, R., Carlén, I., Carlund, T., Carstensen, J., Christensen, O. B., Dierschke, V., Frauen, C., Frederiksen, M., Gaget, E., Galatius, A., Haapala, J. J., Halkka, A., Hugelius, G., Hünicke, B., Jaagus, J., Jüssi, M., Käyhkö, J., Kirchner, N., Kjellström, E., Kulinski, K., Lehmann, A., Lindström, G., May, W., Miller, P. A., Mohrholz, V., Müller-Karulis, B., Pavón-Jordán, D., Quante, M., Reckermann, M., Rutgersson, A., Savchuk, O. P., Stendel, M., Tuomi, L., Viitasalo, M., Weisse, R., and Zhang, W.: Climate change in the Baltic Sea region: a summary, Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, 2022.
Meler, J., Ostrowska, M., and Stoń-Egiert, J.: Seasonal and spatial
variability of phytoplankton and non-algal absorption in the surface layer
of the Baltic, Estuar. Coast. Shelf S., 180, 123–135,
https://doi.org/10.1016/J.ECSS.2016.06.012, 2016a.
Meler, J., Kowalczuk, P., Ostrowska, M., Ficek, D., Zabłocka, M., and Zdun, A.: Parameterization of the light absorption properties of chromophoric dissolved organic matter in the Baltic Sea and Pomeranian lakes, Ocean Sci., 12, 1013–1032, https://doi.org/10.5194/os-12-1013-2016, 2016b.
Meler, J., Ostrowska, M., Stoń-Egiert, J., and Zabłocka, M.: Seasonal
and spatial variability of light absorption by suspended particles in the
southern Baltic: A mathematical description, J. Marine Syst., 170, 68–87,
https://doi.org/10.1016/J.JMARSYS.2016.10.011, 2017.
Morel, A.: Optical modelling of the upper ocean in relation to its biogenous
matter content (Case I waters), J. Geophys. Res., 93, 749–768,
https://doi.org/10.1029/JC093iC09p10749, 1988.
Morel, A.: Light and marine photosynthesis: a spectral model with geochemical and climatological implications, Prog. Oceanogr., 26, 263–306, https://doi.org/10.1016/0079-6611(91)90004-6, 1991.
Morel, A. and Antoine, D.: Heating rate within the upper ocean in relation
to its bio-optical state, J. Phys. Oceanogr., 24, 1652–1665, https://doi.org/10.1175/1520-0485(1994)024<1652:HRWTUO>2.0.CO;2,
1994.
Morel, A. and Prieur, L.: Analysis of variations in ocean color, Limnol.
Oceanogr., 2, 709–722, https://doi.org/10.4319/lo.1977.22.4.0709, 1977.
Murtugudde, R., Beauchamp, J., McClain, C., Lewis, M., and Busalacchi, A.:
Effects of penetrative radiation on the upper tropical ocean circulation, J.
Clim., 15, 470–486, https://doi.org/10.1175/1520-0442(2002)015<0470:EOPROT>2.0.CO;2,
2002
Neumann, T., Siegel, H., and Gerth, M.: A new radiation model for Baltic Sea
ecosystem modelling, J. Mar. Sci., 152, 83–91, https://doi.org/10.1016/j.jmarsys.2015.08.001, 2015.
Neumann, T., Koponen, S., Attila, J., Brockmann, C., Kallio, K., Kervinen, M., Mazeran, C., Müller, D., Philipson, P., Thulin, S., Väkevä, S., and Ylöstalo, P.: Optical model for the Baltic Sea with an explicit CDOM state variable: a case study with Model ERGOM (version 1.2), Geosci. Model Dev., 14, 5049–5062, https://doi.org/10.5194/gmd-14-5049-2021, 2021.
Ohlmann, J. and Siegel, D.: Ocean radiant heating. Part II: Parameterizing
solar radiation transmission through the upper ocean, J. Phys. Oceanogr., 30,
1833–1848, https://doi.org/10.1175/1520-0485(2000)030<1849:ORHPIP>2.0.CO;2,
2000.
Ohlmann, J., Siegel, D., and Gautier, C.: Ocean mixed layer radiant heating
and solar penetration: A global analysis, J. Climate, 9, https://doi.org/10.1175/1520-0442(1996)009<2265:OMLRHA>2.0.CO;2,
1996.
Ohlmann, J., Siegel, D., and Washburn, L.: Radiant heating of the western
equatorial Pacific during TOGA-COARE, J. Geophys. Res., 103, 5379–5395, https://doi.org/10.1029/97jc03422, 1998.
Ohlmann, J., Siegel, D., and Mobley, C.: Ocean radiant heating. Part I:
Optical Influences, J. Phys. Oceanogr., 30, 1833–1848, https://doi.org/10.1175/1520-0485(2000)030<1833:ORHPIO>2.0.CO;2,
2000.
Omstedt, A. and Nohr, C.: Calculating the water and heat balances of the
Baltic Sea using ocean modelling and available meteorological, hydrological
and ocean data, Tellus A, 56, 400–414,
https://doi.org/10.3402/tellusa.v56i4.14428, 2004.
Omstedt, A., Pettersen, C., Rodhe, J., and Winsor, P.: Baltic Sea climate:
200 yr of data on air temperature, sea level variation, ice cover, and
atmospheric circulation, Clim. Res., 25, 205–216, https://www.jstor.org/stable/24868400 (last access: 4 July 2023), 2004.
Oschlies, A.: Feedbacks of biotically induced radiative heating on
upper-ocean heat budget, circulation and biological production in a coupled
ecosystem-circulation model, J. Geophys. Res., 109, 1–12, https://doi.org/10.1029/2004JC002430, 2004.
Paulson, C. and Simpson, J.: Irradiance measurements in the upper ocean, J.
Phys. Oceanogr., 7, 952–956, https://doi.org/10.1175/1520-0485(1977)007<0952:IMITUO>2.0.CO;2,
1977.
Pefanis, V., Losa, S. N., Losch, M., Janout, M. A., and Bracher, A: Amplified
Arctic surface warming and sea ice loss due to phytoplankton and colored
dissolved material, Geophys. Res. Lett., 47, e2020GL088795, https://doi.org/10.1029/2020GL088795, 2020.
Röhrenbach, J. and Cahill, B.: MERIS FRS L2 CDOM absorption monthly climatology Western Baltic Sea, Zenodo [data set], https://doi.org/10.5281/zenodo.7753425, 2019.
Rozwadowska, A. and Isemer, H. J.: Solar irradiation fluxes at the surface of
the Baltic Proper. Part 1. Mean annual cycle and influencing factors,
Oceanologia, 40, 307–330, 1998.
Satellite observations: Baltic Sea Ocean Colour Plankton, Reflectances, Transparency and Optics L3 NRT daily observations, Copernicus Marine Service [data set], https://doi.org/10.48670/moi-00294, 2023.
Sathyendranath, S. and Platt, T.: The spectral irradiance field at the
surface and in the interior of the ocean: A model for applications in
oceanography and remote sensing, J. Geophys. Res., 93, 9270–9280,
https://doi.org/10.1029/JC093iC08p09270, 1988.
Sathyendranath, S., Prieur, L., and Morel, A.: A three-component model of
ocean colour and its application to remote sensing of phytoplankton pigments
in coastal waters, Int. J. Remote Sens., 10, 1373–1394, https://doi.org/10.1080/01431168908903974, 1989.
Shchepetkin, A. and McWilliams, J.: The regional oceanic modelling system
(ROMS): A split-explicit, free-surface, topography-following-coordinate
ocean model, Ocean Model., 9, 347–404, https://doi.org/10.1016/j.ocemod.2004.08.002, 2005.
Siegel, H., Gerth, M., Ohde, T., and Heene, T.: Ocean colour remote sensing
relevant water constituents and optical properties of the Baltic Sea, Int.
J. Remote Sens., 26, 315–330,
https://doi.org/10.1080/01431160410001723709, 2005.
Simis, S., Ylöstalo, P., Kallio, K., Spilling, K., and Kutser, T.:
Contrasting seasonality in optical biogeochemical properties of the Baltic
Sea, PLOS ONE, 12, e0173357, https://doi.org/10.1371/journal.pone.0173357, 2017.
Simpson, J. and Dickey, T.: Alternative parameterizations of downward
irradiance and their dynamical significance, J. Phys. Oceanogr., 11, 876–882,
https://doi.org/10.1175/1520-0485(1981)011<0876:APODIA>2.0.CO;2,
1981.
Skákala, J., Bruggeman, J., Ford, D., Wakelin, S., Akpınar, A., Hull,
T., Kaiser, J., Loveday, B. R., O'Dea, E., Williams, C. A. J., and Ciavatta, S.:
The impact of ocean biogeochemistry on physics and its consequences for
modelling shelf seas, Ocean Model., 172, 101976, https://doi.org/10.1016/j.ocemod.2022.101976, 2022.
Soppa, A., Pefanis, V., Hellmann, S., Losa, S., Hölemann, J., Janout, M.,
Martynov, F., Heim, B., Dinter, R., Rozanov, V., and Bracher, A.: Assessing
the influence of water consitutents on the radiative heating of Laptev Sea
shelf waters, Front. Mar. Sci., 6, 221, https://doi.org/10.3389/fmars.2019.00221, 2019.
Stoń-Egiert, J. and Ostrowska, M.: Long-term changes in phytoplankton
pigment contents in the Baltic Sea: Trends and spatial variability during 20
years of investigations, Cont. Shelf Res., 236, 104666,
https://doi.org/10.1016/j.csr.2022.104666, 2022.
Taucher, J. and Oschlies, A.: Can we predict the direction of marine primary
production change under global warming?, Geophys. Res. Lett., 38, L02603,
https://doi.org/10.1029/2010GL045934, 2011.
Terzić, E., Lazzari, P., Organelli, E., Solidoro, C., Salon, S., D'Ortenzio,
F. and Conan, P.: Merging bio-optical data from Biogeochemical-Argo floats
and models in marine biogeochemistry, Biogeosciences, 16, 2527–2542,
https://doi.org/10.5194/bg-16-2527-2019, 2019.
Terzić, E., Miro, A., Organelli, E., Kowalczuk, P., D'Ortenzio, F and
Lazzari, P.: Radiative transfer modelling with Biogeochemical – Argo float
data in the Mediterranean Sea, J. Geophys. Res., 126, e2021JC017690,
https://doi.org/10.1029/2021JC017690, 2021a.
Terzić, E., Salon, S., Cossarini, G., Solidoro, C., Teruzzi, A., Miro, A.,
and Lazzari, P.: Impact of interannually variable diffuse attenuation
coefficients for downwelling irradiance on biogeochemical modelling, Ocean
Model., 161, 101793, https://doi.org/10.1016/J.OCEMOD.2021.101793,
2021b.
Wetzel, P., Maier-Reimer, E., Botzet, M., Jungclaus, J., Keenlyside, N., and
Latif, M.: Effects of ocean biology on the penetrative radiation in a
coupled climate model, J. Climate, 19, 3973–3987, https://doi.org/10.1175/JCLI3828.1, 2006.
Wilkin, J., Zhang, W. G., Cahill, B., and Chant, R. C.: Integrating coastal
models and observations for studies of ocean dynamics, observing systems and
forecasting, in: Operational Oceanography in the 21st Century, edited by: Schiller, A.
and Brassington, G., Springer, https://doi.org/10.1007/978-94-007-0332-2_19, 2011.
Wohlers, J., Engel, A., Breithaupt, P., Jü, K., Hoppe, H., Sommer, U.,
and Riebesell, U.: Changes in biogenic carbon flow in response to sea
surface warming, P. Natl. Acad. Sci. USA, 106, 7067–7072, https://doi.org/10.1073/pnas.0812743106, 2009.
Zabłocka, M.: Variability of chromophoric dissolved organic matter in Baltic Sea waters tested with methods of fluorescence spectroscopy, Ph.D. Thesis, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland, 224 pp., 2017 (in Polish).
Zaneveld, J. and Spinrad, R.: An arc tangent model of irradiance in the sea,
J. Geophys. Res., 85, 4919–4922, https://doi.org/10.1029/JC085iC09p04919, 1980.
Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON
(ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M:
Description of the non-hydrostatic dynamical core, Q. J. Roy. Meteor. Soc.,
141, 563–579, https://doi.org/10.1002/qj.2378, 2015.
Zdun, A., Stoń-Egiert, J., Ficek, D., and Ostrowska, M.: Seasonal and
Spatial Changes of Primary Production in the Baltic Sea (Europe) Based on in
situ Measurements in the Period of 1993–2018, Front. Mar. Sci. 7, 604532,
https://doi.org/10.3389/fmars.2020.604532, 2021.
Zhang, T., Fell, F., Zhi-Shen, L., Preusker, R., Fischer, J., and He, M.-X.: Evaluating the performance of artificial neural network techniques for
pigment retrieval from ocean color in Case I waters, J. Geophys. Res.,
108, 3286, https://doi.org/10.1029/2002JC001638, 2003.
Zielinski, O., Llinas, O., Oschlies, A., and Reuter, R.: Underwater light
field and its effect on a one-dimensional ecosystem model at station ESTOC,
north of the Canary Islands, Deep-Sea Res. Pt. II, 49, 3529–3542, https://doi.org/10.1016/S0967-0645(02)00096-6, 2002.
Short summary
We quantify the impact of optically significant water constituents on surface heating rates and thermal energy fluxes in the western Baltic Sea. During productive months in 2018 (April to September) we found that the combined effect of coloured
dissolved organic matter and particulate absorption contributes to sea surface heating of between 0.4 and 0.9 K m−1 d−1 and a mean loss of heat (ca. 5 W m−2) from the sea to the atmosphere. This may be important for regional heat balance budgets.
We quantify the impact of optically significant water constituents on surface heating rates and...
Altmetrics
Final-revised paper
Preprint