Articles | Volume 22, issue 8
https://doi.org/10.5194/bg-22-1929-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-1929-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cenozoic pelagic accumulation rates and biased sampling of the deep-sea record
Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstrasse 43, 10115 Berlin, Germany
David B. Lazarus
Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstrasse 43, 10115 Berlin, Germany
Related authors
Cécile Figus, Steve Bohaty, Johan Renaudie, and Jakub Witkowski
Clim. Past, 21, 1431–1441, https://doi.org/10.5194/cp-21-1431-2025, https://doi.org/10.5194/cp-21-1431-2025, 2025
Short summary
Short summary
We examine trends in biosiliceous fluxes and isotopic records in the North and South Atlantic, South Pacific, and Indian oceans during two climatic and biotic events: the Latest Danian Event (LDE; ~62.2 Ma) and the Early Late Palaeocene Event (ELPE; ~59.2 Ma). Our results show a peak during the LDE and following the ELPE.
Cécile Figus, Johan Renaudie, Or M. Bialik, and Jakub Witkowski
Biogeosciences, 22, 3029–3046, https://doi.org/10.5194/bg-22-3029-2025, https://doi.org/10.5194/bg-22-3029-2025, 2025
Short summary
Short summary
The synthesis of Palaeogene deep-sea diatom-bearing sediment occurrences indicates that the deposition of diatom-bearing sediments is mainly controlled by nutrient availability and ocean circulation in the Atlantic, Pacific, and Indian oceans. Comparison with shallow marine diatomites suggests that the peak in the number of diatom-bearing sites in the Atlantic is indirectly related to tectonic reorganizations that caused the cessation of shallow marine diatomite deposition between ~46 and ~44 Ma.
Volkan Özen, David Lazarus, Johan Renaudie, and Gabrielle Rodrigues de Faria
EGUsphere, https://doi.org/10.5194/egusphere-2025-555, https://doi.org/10.5194/egusphere-2025-555, 2025
Short summary
Short summary
We studied diatom fossils from the Southern Ocean to understand how ocean productivity changed ~40–30 million years ago during a major climate shift marked by the onset of permanent Antarctic glaciation and global cooling. We found striking shifts in diatom productivity, revealing critical changes in ocean circulation and nutrient supply. Our results show how these microscopic organisms may have influenced climate, acting as a geological force that shaped global climate over time.
Cécile Figus, Or M. Bialik, Andrey Y. Gladenkov, Tatyana V. Oreshkina, Johan Renaudie, Pavel Smirnov, and Jakub Witkowski
Clim. Past, 20, 2629–2644, https://doi.org/10.5194/cp-20-2629-2024, https://doi.org/10.5194/cp-20-2629-2024, 2024
Short summary
Short summary
A global-scale compilation of Palaeogene diatomite occurrences shows how palaeogeographic and palaeoceanographic changes impacted diatom accumulation, especially in the middle Eocene. Diatomite deposition dropped in epicontinental seas between ~ 46 and ~ 44 Ma, while diatom accumulation began around 43.5 Ma in open-ocean settings. The compilation also shows an indirect correlation between Palaeogene climate fluctuations and diatomite deposition in shallow-marine and freshwater environments.
Gabrielle Rodrigues de Faria, David Lazarus, Johan Renaudie, Jessica Stammeier, Volkan Özen, and Ulrich Struck
Clim. Past, 20, 1327–1348, https://doi.org/10.5194/cp-20-1327-2024, https://doi.org/10.5194/cp-20-1327-2024, 2024
Short summary
Short summary
Export productivity is part of the global carbon cycle, influencing the climate system via biological pump. About 34 million years ago, the Earth's climate experienced a climate transition from a greenhouse state to an icehouse state with the onset of ice sheets in Antarctica. Our study shows important productivity events in the Southern Ocean preceding this climatic shift. Our findings strongly indicate that the biological pump potentially played an important role in that past climate change.
Clément Coiffard, Haytham El Atfy, Johan Renaudie, Robert Bussert, and Dieter Uhl
Biogeosciences, 20, 1145–1154, https://doi.org/10.5194/bg-20-1145-2023, https://doi.org/10.5194/bg-20-1145-2023, 2023
Short summary
Short summary
Eighty-million-year-old fossil leaf assemblages suggest a widespread distribution of tropical rainforest in northeastern Africa.
Veronica Carlsson, Taniel Danelian, Pierre Boulet, Philippe Devienne, Aurelien Laforge, and Johan Renaudie
J. Micropalaeontol., 41, 165–182, https://doi.org/10.5194/jm-41-165-2022, https://doi.org/10.5194/jm-41-165-2022, 2022
Short summary
Short summary
This study evaluates the use of automatic classification using AI on eight closely related radiolarian species of the genus Podocyrtis based on MobileNet CNN. Species belonging to Podocyrtis are useful for middle Eocene biostratigraphy. Numerous images of Podocyrtis species from the tropical Atlantic Ocean were used to train and validate the CNN. An overall accuracy of about 91 % was obtained. Additional Podocyrtis specimens from other ocean realms were used to test the predictive model.
Cécile Figus, Steve Bohaty, Johan Renaudie, and Jakub Witkowski
Clim. Past, 21, 1431–1441, https://doi.org/10.5194/cp-21-1431-2025, https://doi.org/10.5194/cp-21-1431-2025, 2025
Short summary
Short summary
We examine trends in biosiliceous fluxes and isotopic records in the North and South Atlantic, South Pacific, and Indian oceans during two climatic and biotic events: the Latest Danian Event (LDE; ~62.2 Ma) and the Early Late Palaeocene Event (ELPE; ~59.2 Ma). Our results show a peak during the LDE and following the ELPE.
Cécile Figus, Johan Renaudie, Or M. Bialik, and Jakub Witkowski
Biogeosciences, 22, 3029–3046, https://doi.org/10.5194/bg-22-3029-2025, https://doi.org/10.5194/bg-22-3029-2025, 2025
Short summary
Short summary
The synthesis of Palaeogene deep-sea diatom-bearing sediment occurrences indicates that the deposition of diatom-bearing sediments is mainly controlled by nutrient availability and ocean circulation in the Atlantic, Pacific, and Indian oceans. Comparison with shallow marine diatomites suggests that the peak in the number of diatom-bearing sites in the Atlantic is indirectly related to tectonic reorganizations that caused the cessation of shallow marine diatomite deposition between ~46 and ~44 Ma.
Lukas Jonkers, Tonke Strack, Montserrat Alonso-Garcia, Simon D'haenens, Robert Huber, Michal Kucera, Iván Hernández-Almeida, Chloe L. C. Jones, Brett Metcalfe, Rajeev Saraswat, Lóránd Silye, Sanjay K. Verma, Muhamad Naim Abd Malek, Gerald Auer, Cátia F. Barbosa, Maria A. Barcena, Karl-Heinz Baumann, Flavia Boscolo-Galazzo, Joeven Austine S. Calvelo, Lucilla Capotondi, Martina Caratelli, Jorge Cardich, Humberto Carvajal-Chitty, Markéta Chroustová, Helen K. Coxall, Renata M. de Mello, Anne de Vernal, Paula Diz, Kirsty M. Edgar, Helena L. Filipsson, Ángela Fraguas, Heather L. Furlong, Giacomo Galli, Natalia L. García Chapori, Robyn Granger, Jeroen Groeneveld, Adil Imam, Rebecca Jackson, David Lazarus, Julie Meilland, Marína Molčan Matejová, Raphael Morard, Caterina Morigi, Sven N. Nielsen, Diana Ochoa, Maria Rose Petrizzo, Andrés S. Rigual-Hernández, Marina C. Rillo, Matthew L. Staitis, Gamze Tanık, Raúl Tapia, Nishant Vats, Bridget S. Wade, and Anna E. Weinmann
J. Micropalaeontol., 44, 145–168, https://doi.org/10.5194/jm-44-145-2025, https://doi.org/10.5194/jm-44-145-2025, 2025
Short summary
Short summary
Our study provides guidelines improving the reuse of marine microfossil assemblage data, which are valuable for understanding past ecosystems and environmental change. Based on a survey of 113 researchers, we identified key data attributes required for effective reuse. Analysis of a selection of datasets available online reveals a gap between the attributes scientists consider essential and the data currently available, highlighting the need for clearer data documentation and sharing practices.
Volkan Özen, David Lazarus, Johan Renaudie, and Gabrielle Rodrigues de Faria
EGUsphere, https://doi.org/10.5194/egusphere-2025-555, https://doi.org/10.5194/egusphere-2025-555, 2025
Short summary
Short summary
We studied diatom fossils from the Southern Ocean to understand how ocean productivity changed ~40–30 million years ago during a major climate shift marked by the onset of permanent Antarctic glaciation and global cooling. We found striking shifts in diatom productivity, revealing critical changes in ocean circulation and nutrient supply. Our results show how these microscopic organisms may have influenced climate, acting as a geological force that shaped global climate over time.
Cécile Figus, Or M. Bialik, Andrey Y. Gladenkov, Tatyana V. Oreshkina, Johan Renaudie, Pavel Smirnov, and Jakub Witkowski
Clim. Past, 20, 2629–2644, https://doi.org/10.5194/cp-20-2629-2024, https://doi.org/10.5194/cp-20-2629-2024, 2024
Short summary
Short summary
A global-scale compilation of Palaeogene diatomite occurrences shows how palaeogeographic and palaeoceanographic changes impacted diatom accumulation, especially in the middle Eocene. Diatomite deposition dropped in epicontinental seas between ~ 46 and ~ 44 Ma, while diatom accumulation began around 43.5 Ma in open-ocean settings. The compilation also shows an indirect correlation between Palaeogene climate fluctuations and diatomite deposition in shallow-marine and freshwater environments.
Gabrielle Rodrigues de Faria, David Lazarus, Johan Renaudie, Jessica Stammeier, Volkan Özen, and Ulrich Struck
Clim. Past, 20, 1327–1348, https://doi.org/10.5194/cp-20-1327-2024, https://doi.org/10.5194/cp-20-1327-2024, 2024
Short summary
Short summary
Export productivity is part of the global carbon cycle, influencing the climate system via biological pump. About 34 million years ago, the Earth's climate experienced a climate transition from a greenhouse state to an icehouse state with the onset of ice sheets in Antarctica. Our study shows important productivity events in the Southern Ocean preceding this climatic shift. Our findings strongly indicate that the biological pump potentially played an important role in that past climate change.
Clément Coiffard, Haytham El Atfy, Johan Renaudie, Robert Bussert, and Dieter Uhl
Biogeosciences, 20, 1145–1154, https://doi.org/10.5194/bg-20-1145-2023, https://doi.org/10.5194/bg-20-1145-2023, 2023
Short summary
Short summary
Eighty-million-year-old fossil leaf assemblages suggest a widespread distribution of tropical rainforest in northeastern Africa.
Veronica Carlsson, Taniel Danelian, Pierre Boulet, Philippe Devienne, Aurelien Laforge, and Johan Renaudie
J. Micropalaeontol., 41, 165–182, https://doi.org/10.5194/jm-41-165-2022, https://doi.org/10.5194/jm-41-165-2022, 2022
Short summary
Short summary
This study evaluates the use of automatic classification using AI on eight closely related radiolarian species of the genus Podocyrtis based on MobileNet CNN. Species belonging to Podocyrtis are useful for middle Eocene biostratigraphy. Numerous images of Podocyrtis species from the tropical Atlantic Ocean were used to train and validate the CNN. An overall accuracy of about 91 % was obtained. Additional Podocyrtis specimens from other ocean realms were used to test the predictive model.
Cited articles
Berger, W., Smetacek, V., and Wefer, G.: Ocean productivity and paleoproductivity – an overview, in: Productivity of the ocean: present and past, Wiley New York, 1–34, ISBN 0471922463, 1989. a
Berner, R. A., Lasaga, A. C., and Garrels, R. M.: The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years, Am. J. Sci., 283, 641–683, https://doi.org/10.2475/ajs.283.7.641, 1983. a
Burdige, D. J.: Temperature dependence of organic matter remineralization in deeply-buried marine sediments, Earth Planet. Sc. Lett., 311, 396–410, https://doi.org/10.1016/j.epsl.2011.09.043, 2011. a
Coffin, M. F., McKenzie, J., Davis, E., Dickens, G., Ellins, K., Erzinger, J., Huchon, P., Kemp., A., Rea D., Suyehiro K., and Tatsumi Y.: Earth, Oceans, and Life. Scientific Investigations of the Earth System using Multiple Drilling Platforms and New Technologies, Integrated Ocean Drilling Program Initial Science Plan, 2003–2013, Integrated Ocean Drilling Program, https://www.iodp.org/iodp-legacy/iodp-2003-2013-documents/iodp-2003-2013-general-reference-documents/735-iodp-2003-2013-initial-science-plan/file (last access: 15 April 2025), 2001. a
Cramer, B., Toggweiler, J., Wright, J., Katz, M., and Miller, K.: Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation, Paleoceanography, 24, PA4216, https://doi.org/10.1029/2008PA001683, 2009. a
Davies, T. A. and Worsley, T. R.: Paleoenvironmental Implications of Oceanic Carbonate Sedimentation Rates, in: The Deep Sea Drilling Project: A Decade of Progress, edited by: Warme, J. E., Douglas, R. G., and Winterer, E. L., vol. 32, SEPM Society for Sedimentary Geology, ISBN 9991732144, 1981. a, b, c, d
D'Hondt, S.: Consequences of the Cretaceous/Paleogene mass extinction for marine ecosystems, Annu. Rev. Ecol. Evol. Syst., 36, 295–317, 2005. a
Glasby, G.: Mineralogy, geochemistry, and origin of Pacific red clays: a review, New Zeal. J. Geol. Geop., 34, 167–176, 1991. a
Hilgen, F., Lourens, L., Van Dam, J., Beu, A., Boyes, A., Cooper, R., Krijgsman, W., Ogg, J., Piller, W., and Wilson, D.: Chapter 29 – The Neogene Period, in: The Geologic Time Scale, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., pp. 923–978, Elsevier, Boston, ISBN 978-0-444-59425-9, https://doi.org/10.1016/B978-0-444-59425-9.00029-9, 2012. a
Hilton, R. G. and West, A. J.: Mountains, erosion and the carbon cycle, Nature Reviews Earth & Environment, 1, 284–299, 2020. a
Hüneke, H. and Henrich, R.: Pelagic sedimentation in modern and ancient oceans, Developments in Sedimentology, 63, 215–351, 2011. a
Imbrie, J., Barron, E. J., Berger, W. H., Bornhold, B. D., Sironi, M. B. C., Diester-Haass, L., Elderfield, H., Fischer, A., Lancelot, Y., Prell, W. L., Hinte, J. R., and Toggweiler, J. V.: Scientific goals of an Ocean Drilling Program designed to investigate changes in the global environment, in: Report of the Second Conference on Scientific Ocean Drilling (COSOD II), European Science Foundation, 15–36, ISBN 9782903148522, 1987. a
International Ocean Discovery Program (IODP): IODP LIMS Reports, https://web.iodp.tamu.edu/LORE/ (last access: 20 December 2023), 2016. a
Katchinoff, J. A., Syverson, D. D., Planavsky, N. J., Evans, E. S., and Rooney, A. D.: Seawater chemistry and hydrothermal controls on the Cenozoic osmium cycle, Geophys. Res. Lett., 48, e2021GL095558, https://doi.org/10.1029/2021GL095558, 2021. a
Kocsis, Á. T. and Raja, N. B.: chronosphere: Earth system history variables, Zenodo [data set], https://doi.org/10.5281/zenodo.3530703, 2020. a, b
Komar, N. and Zeebe, R. E.: Reconciling atmospheric CO2, weathering, and calcite compensation depth across the Cenozoic, Science Advances, 7, eabd4876, https://doi.org/10.1126/sciadv.abd4876, 2021. a
Kump, L. R., Brantley, S. L., and Arthur, M. A.: Chemical weathering, atmospheric CO2, and climate, Annu. Rev. Earth Pl. Sc., 28, 611–667, 2000. a
Lazarus, D.: Age depth plot and age maker: Age modelling of stratigraphic sections on the Macintosh series of computers, Geobyte, 2, 7–13, 1992. a
Lazarus, D.: Neptune: a marine micropaleontology database, Math. Geol., 26, 817–832, 1994. a
Lazarus, D., Spencer-Cervato, C., Pika-Biolzi, M., Beckmann, J. P., von Salis, K., Hilbrecht, H., and Thierstein, H.: Revised chronology of Neogene DSDP holes from the world ocean, Ocean Drilling Program Technical Report, 24, https://www.ngdc.noaa.gov/mgg/geology/lazarus/contents.html (last access: 15 April 2025), 1995. a
Lear, C. H., Elderfield, H., and Wilson, P.: A Cenozoic seawater Sr/Ca record from benthic foraminiferal calcite and its application in determining global weathering fluxes, Earth Planet. Sc. Lett., 208, 69–84, 2003. a
Li, Z., Zhang, Y. G., Torres, M., and Mills, B. J.: Neogene burial of organic carbon in the global ocean, Nature, 613, 90–95, 2023. a
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005. a
Lisitzin, A. P.: Sedimentation in the World Ocean, vol. 17, SEPM Special Publications, SEPM Society for Sedimentary Geology, ISBN 9781565761476, 1972. a
Lisitzin, A. P.: Oceanic sedimentation: lithology and geochemistry, American Geophysical Union, ISBN 9780875902432, 1996. a
McArthur, J., Howarth, R., Shields, G., and Zhou, Y.: Strontium isotope stratigraphy, in: Geologic time scale 2020, Elsevier, 211–238, ISBN 978-0-12-824360-2, 2020. a
McCauley, S. E. and DePaolo, D. J.: The marine and δ18O records, Himalayan alkalinity fluxes, and Cenozoic climate models, in: Tectonic uplift and climate change, Springer, 427–467, https://doi.org/10.1007/978-1-4615-5935-1_19, 1997. a
McLennan, S. M.: Weathering and global denudation, J. Geol., 101, 295–303, 1993. a
Misra, S. and Froelich, P. N.: Lithium Isotope History of Cenozoic Seawater: Changes in Silicate Weathering and Reverse Weathering, Science, 335, 818–823, https://doi.org/10.1126/science.1214697, 2012. a, b, c
Mithal, R. and Becker, D. G.: The Janus database: providing worldwide access to ODP and IODP data, Geological Society of London, Special Publications, 267, 253–259, 2006. a
Molnar, P.: Late Cenozoic increase in accumulation rates of terrestrial sediment: How might climate change have affected erosion rates?, Annu. Rev. Earth Planet. Sci., 32, 67–89, 2004. a
Moore Jr., T., Van Andel, T. H., Sancetta, C., and Pisias, N.: Cenozoic hiatuses in pelagic sediments, Micropaleontology, 24, 113–138, 1978. a
Morel, F. M. and Price, N. M.: The biogeochemical cycles of trace metals in the oceans, Science, 300, 944–947, 2003. a
Morse, J. W. and Arvidson, R. S.: The dissolution kinetics of major sedimentary carbonate minerals, Earth-Sci. Rev., 58, 51–84, https://doi.org/10.1016/S0012-8252(01)00083-6, 2002. a
National Geophysical Data Center: Core Data from the Deep Sea Drilling Project Legs 1-96, World Data Center for Marine Geology & Geophysics, Seafloor Series, 1, http://www.ngdc.noaa.gov/mgg/fliers/00mgg03.html (last access: 8 May 2013), 2000. a
National Geophysical Data Center: Core Data from the Ocean Drilling Program Legs 101-129, World Data Center for Marine Geology & Geophysics, Seafloor Series, 2, http://www.ngdc.noaa.gov/mgg/geology/odp/start.htm (last access: 8 May 2013), 2001. a
Olson, P., Reynolds, E., Hinnov, L., and Goswami, A.: Variation of ocean sediment thickness with crustal age, Geochem. Geophy. Geosy., 17, 1349–1369, https://doi.org/10.1002/2015GC006143, 2016. a, b
Pälike, H., Lyle, M. W., Nishi, H., Raffi, I., Ridgwell, A., Gamage, K., Klaus, A., Acton, G., Anderson, L., Backman, J., Baldauf, J., Beltran, C., Bohaty, S. M., Bown, P., Busch, W., Channell, J. E. T., Chun, C. O. J., Delaney, M., Dewangan, P., Dunkley Jones, T., Edgar, K. M., Evans, H., Fitch, P., Foster, G. L., Gussone, N., Hasegawa, H., Hathorne, E. C., Hayashi, H., Herrle, J. O., Holbourn, A., Hovan, S., Hyeong, K., Iijima, K., Ito, T., Kamikuri, S.-I., Kimoto, K., Kuroda, J., Leon-Rodriguez, L., Malinverno, A., Moore Jr, T. C., Murphy, B. H., Murphy, D. P., Nakamura, H., Ogane, K., Ohneiser, C., Richter, C., Robinson, R., Rohling, E. J., Romero, O., Sawada, K., Scher, H., Schneider, L., Sluijs, A., Takata, H., Tian, J., Tsujimoto, A., Wade, B. S., Westerhold, T., Wilkens, R., Williams, T., Wilson, P. A., Yamamoto, Y., Yamamoto, S., Yamazaki, T., and Zeebe, R. E.: A Cenozoic record of the equatorial Pacific carbonate compensation depth, Nature, 488, 609–614, https://doi.org/10.1038/nature11360, 2012. a, b
Penman, D. E., Caves Rugenstein, J. K., Ibarra, D. E., and Winnick, M. J.: Silicate weathering as a feedback and forcing in Earth's climate and carbon cycle, Earth-Sci. Rev., 209, 103298, https://doi.org/10.1016/j.earscirev.2020.103298, 2020. a
Peucker-Ehrenbrink, B., Ravizza, G., and Hofmann, A.: The marine record of the past 80 million years, Earth Planet. Sc. Lett., 130, 155–167, 1995. a
Raffi, I., Backman, J., Fornaciari, E., Pälike, H., Rio, D., Lourens, L., and Hilgen, F.: A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years, Quaternary Sci. Rev., 25, 3113–3137, 2006. a
Ravizza, G. and Zachos, J.: Records of Cenozoic Ocean Chemistry, in: The oceans and marine geochemistry, edited by: Holland, H. D. and Turekian, K. K., vol. 6, Treatise on Geochemistry, Pergamon, Oxford, 551–581, https://doi.org/10.1016/B0-08-043751-6/06121-1, 2003. a
Raymo, M. E., Ruddiman, W. F., and Froelich, P. N.: Influence of late Cenozoic mountain building on ocean geochemical cycles, Geology, 16, 649–653, 1988. a
Renaudie, J. and Lazarus, D.: Code and additional material for “Cenozoic pelagic accumulation rates and biased sampling of the deep-sea record”, Zenodo [code], https://doi.org/10.5281/zenodo.13301795, 2024. a
Renaudie, J., Lazarus, D. D., and Diver, P.: NSB (Neptune Sandbox Berlin): An expanded and improved database of marine planktonic microfossil data and deep-sea stratigraphy, Palaeontol. Electron., 23, a11, https://doi.org/10.26879/1032, 2020. a, b, c, d
Renaudie, J., Lazarus, D., and Diver, P.: Archive of Neptune (NSB) database backups, Zenodo [data set], https://doi.org/10.5281/zenodo.10063218, 2023. a, b
Riebe, C. S., Kirchner, J. W., and Finkel, R. C.: Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes, Earth Planet. Sc. Lett., 224, 547–562, 2004. a
Ruddiman, W. F.: Tectonic Uplift and Climate Change, Springer, https://doi.org/10.1007/978-1-4615-5935-1, 2013. a
Sarmiento, J. L. and Gruber, N.: Ocean Biogeochemical Dynamics, Princeton Uiversity Press, ISBN 9780691017075, 2006. a
Scherer, R. P., Gladenkov, A. Y., and Barron, J. A.: Methods and applications of Cenozoic marine diatom biostratigraphy, The Paleontological Society Papers, 13, 61–83, 2007. a
Smith, J., Rillo, M. C., Kocsis, Á. T., Dornelas, M., Fastovich, D., Huang, H.-H. M., Jonkers, L., Kiessling, W., Li, Q., Liow, L. H., Margulis-Ohnuma, M., Meyers, S., Na, L., Penny, A. M., Pippenger, K., Renaudie, J., Saupe, E. E., Steinbauer, M. J., Sugawara, M., Tomašovỳch, A., Williams, J. W., Yasuhara, M., Finnegan, S., and Hull, P. M.: BioDeepTime: A database of biodiversity time series for modern and fossil assemblages, Global Ecol. Biogeogr., 32, 1680–1689, https://doi.org/10.1111/geb.13735, 2023. a
Southam, J. R. and Hay, W. W.: Time scales and dynamic models of deep-sea sedimentation, J. Geophys. Res., 82, 3825–3842, 1977. a
Straume, E. O., Steinberger, B., Becker, T. W., and Faccenna, C.: Impact of mantle convection and dynamic topography on the Cenozoic paleogeography of Central Eurasia and the West Siberian Seaway, Earth Planet. Sc. Lett., 630, 118615, https://doi.org/10.1016/j.epsl.2024.118615, 2024. a, b, c
Syvitski, J., Ángel, J. R., Saito, Y., Overeem, I., Vörösmarty, C. J., Wang, H., and Olago, D.: Earth's sediment cycle during the Anthropocene, Nature Reviews Earth & Environment, 3, 179–196, https://doi.org/10.1038/s43017-021-00253-w, 2022. a
Tréguer, P. J., Sutton, J. N., Brzezinski, M., Charette, M. A., Devries, T., Dutkiewicz, S., Ehlert, C., Hawkings, J., Leynaert, A., Liu, S. M., Llopis Monferrer, N., López-Acosta, M., Maldonado, M., Rahman, S., Ran, L., and Rouxel, O.: Reviews and syntheses: The biogeochemical cycle of silicon in the modern ocean, Biogeosciences, 18, 1269–1289, https://doi.org/10.5194/bg-18-1269-2021, 2021. a
Tukey, J. W.: Exploratory data analysis, Addison-Wesley, Reading, MA, ISBN 0201076160, 1977. a
Van Andel, T. H.: Mesozoic/cenozoic calcite compensation depth and the global distribution of calcareous sediments, Earth Planet. Sc. Lett., 26, 187–194, https://doi.org/10.1016/0012-821X(75)90086-2, 1975. a, b
Vandenberghe, N., Hilgen, F., Speijer, R., Ogg, J., Gradstein, F., Hammer, O., Hollis, C., and Hooker, J.: Chapter 28 – The Paleogene Period, in: The Geologic Time Scale, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier, Boston, 855–921, ISBN 978-0-444-59425-9, https://doi.org/10.1016/B978-0-444-59425-9.00028-7, 2012. a
Vigier, N. and Goddéris, Y.: A new approach for modeling Cenozoic oceanic lithium isotope paleo-variations: the key role of climate, Clim. Past, 11, 635–645, https://doi.org/10.5194/cp-11-635-2015, 2015. a, b
von Strandmann, P. A. P., Kasemann, S. A., and Wimpenny, J. B.: Lithium and lithium isotopes in Earth's surface cycles, Elements, 16, 253–258, 2020. a
Wade, B. S., Pearson, P. N., Berggren, W. A., and Pälike, H.: Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale, Earth-Sci. Rev., 104, 111–142, 2011. a
Walling, D. and Webb, B.: Erosion and sediment yield: a global overview, in: Erosion and sediment yield: global and regional perspectives, edited by: Walling, D. and Webb, B., vol. 236, IAHS, 3–20, ISBN 0947571892, 1996. a
West, A. J., Galy, A., and Bickle, M.: Tectonic and climatic controls on silicate weathering, Earth Planet. Sc. Lett., 235, 211–228, 2005. a
Whitman, J. M. and Davies, T. A.: Cenozoic oceanic sedimentation rates: How good are the data?, Mar. Geol., 30, 269–284, https://doi.org/10.1016/0025-3227(79)90019-7, 1979. a
Willenbring, J. K. and Jerolmack, D. J.: The null hypothesis: globally steady rates of erosion, weathering fluxes and shelf sediment accumulation during Late Cenozoic mountain uplift and glaciation, Terra Nova, 28, 11–18, https://doi.org/10.1111/ter.12185, 2016. a, b, c
Worsley, T. R. and Davies, T. A.: Sea-level fluctuations and deep-sea sedimentation rates, Science, 203, 455–456, 1979. a
Co-editor-in-chief
This paper reveals a previously unrecognized bias in the marine sediment record, challenging conventional interpretations of long-term carbon sequestration and weathering trends. While biases in the fossil and geological records are well-studied, this study demonstrates that deep-sea sedimentation data are also systematically skewed, necessitating a critical reevaluation of widely used paleoceanographic proxies. As a comprehensive meta-analysis of marine core data, these findings have far-reaching implications, highlighting the need to account for age-dependent biases in sedimentation-related proxies to refine our understanding of Earth's past climate and carbon cycle dynamics.
This paper reveals a previously unrecognized bias in the marine sediment record, challenging...
Short summary
We provide a new compilation of rates at which sediments deposited in the deep sea over the last 70 million years. We highlight a bias, linked to the drilling process, that makes it more likely for high rates to be recovered for younger sediments than for older ones. Correcting for this bias, the record shows, contrary to prior estimates, a more stable history, thus providing some insights on the past mismatch between physico-chemical model estimates and observations.
We provide a new compilation of rates at which sediments deposited in the deep sea over the last...
Altmetrics
Final-revised paper
Preprint