Articles | Volume 22, issue 12
https://doi.org/10.5194/bg-22-3029-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-3029-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Controls on Palaeogene deep-sea diatom-bearing sediment deposition and comparison with shallow marine environments
Institute of Marine and Environmental Sciences, University of Szczecin, 70-383 Szczecin, Poland
Doctoral School, University of Szczecin, 70-383 Szczecin, Poland
Johan Renaudie
FB1 Dynamik der Natur, Museum für Naturkunde, 10115 Berlin, Germany
Or M. Bialik
Institute of Geology and Palaeontology, University of Münster, 48149 Münster, Germany
Dr. Moses Strauss Department of Marine Geosciences, The Leon H. Charney School of Marine Sciences, University of Haifa, Mount Carmel, 31905 Haifa, Israel
Jakub Witkowski
Institute of Marine and Environmental Sciences, University of Szczecin, 70-383 Szczecin, Poland
Related authors
Cécile Figus, Steve Bohaty, Johan Renaudie, and Jakub Witkowski
Clim. Past, 21, 1431–1441, https://doi.org/10.5194/cp-21-1431-2025, https://doi.org/10.5194/cp-21-1431-2025, 2025
Short summary
Short summary
We examine trends in biosiliceous fluxes and isotopic records in the North and South Atlantic, South Pacific, and Indian oceans during two climatic and biotic events: the Latest Danian Event (LDE; ~62.2 Ma) and the Early Late Palaeocene Event (ELPE; ~59.2 Ma). Our results show a peak during the LDE and following the ELPE.
Cécile Figus, Or M. Bialik, Andrey Y. Gladenkov, Tatyana V. Oreshkina, Johan Renaudie, Pavel Smirnov, and Jakub Witkowski
Clim. Past, 20, 2629–2644, https://doi.org/10.5194/cp-20-2629-2024, https://doi.org/10.5194/cp-20-2629-2024, 2024
Short summary
Short summary
A global-scale compilation of Palaeogene diatomite occurrences shows how palaeogeographic and palaeoceanographic changes impacted diatom accumulation, especially in the middle Eocene. Diatomite deposition dropped in epicontinental seas between ~ 46 and ~ 44 Ma, while diatom accumulation began around 43.5 Ma in open-ocean settings. The compilation also shows an indirect correlation between Palaeogene climate fluctuations and diatomite deposition in shallow-marine and freshwater environments.
Cécile Figus, Steve Bohaty, Johan Renaudie, and Jakub Witkowski
Clim. Past, 21, 1431–1441, https://doi.org/10.5194/cp-21-1431-2025, https://doi.org/10.5194/cp-21-1431-2025, 2025
Short summary
Short summary
We examine trends in biosiliceous fluxes and isotopic records in the North and South Atlantic, South Pacific, and Indian oceans during two climatic and biotic events: the Latest Danian Event (LDE; ~62.2 Ma) and the Early Late Palaeocene Event (ELPE; ~59.2 Ma). Our results show a peak during the LDE and following the ELPE.
Johan Renaudie and David B. Lazarus
Biogeosciences, 22, 1929–1946, https://doi.org/10.5194/bg-22-1929-2025, https://doi.org/10.5194/bg-22-1929-2025, 2025
Short summary
Short summary
We provide a new compilation of rates at which sediments deposited in the deep sea over the last 70 million years. We highlight a bias, linked to the drilling process, that makes it more likely for high rates to be recovered for younger sediments than for older ones. Correcting for this bias, the record shows, contrary to prior estimates, a more stable history, thus providing some insights on the past mismatch between physico-chemical model estimates and observations.
Volkan Özen, David Lazarus, Johan Renaudie, and Gabrielle Rodrigues de Faria
EGUsphere, https://doi.org/10.5194/egusphere-2025-555, https://doi.org/10.5194/egusphere-2025-555, 2025
Short summary
Short summary
We studied diatom fossils from the Southern Ocean to understand how ocean productivity changed ~40–30 million years ago during a major climate shift marked by the onset of permanent Antarctic glaciation and global cooling. We found striking shifts in diatom productivity, revealing critical changes in ocean circulation and nutrient supply. Our results show how these microscopic organisms may have influenced climate, acting as a geological force that shaped global climate over time.
Cécile Figus, Or M. Bialik, Andrey Y. Gladenkov, Tatyana V. Oreshkina, Johan Renaudie, Pavel Smirnov, and Jakub Witkowski
Clim. Past, 20, 2629–2644, https://doi.org/10.5194/cp-20-2629-2024, https://doi.org/10.5194/cp-20-2629-2024, 2024
Short summary
Short summary
A global-scale compilation of Palaeogene diatomite occurrences shows how palaeogeographic and palaeoceanographic changes impacted diatom accumulation, especially in the middle Eocene. Diatomite deposition dropped in epicontinental seas between ~ 46 and ~ 44 Ma, while diatom accumulation began around 43.5 Ma in open-ocean settings. The compilation also shows an indirect correlation between Palaeogene climate fluctuations and diatomite deposition in shallow-marine and freshwater environments.
Gabrielle Rodrigues de Faria, David Lazarus, Johan Renaudie, Jessica Stammeier, Volkan Özen, and Ulrich Struck
Clim. Past, 20, 1327–1348, https://doi.org/10.5194/cp-20-1327-2024, https://doi.org/10.5194/cp-20-1327-2024, 2024
Short summary
Short summary
Export productivity is part of the global carbon cycle, influencing the climate system via biological pump. About 34 million years ago, the Earth's climate experienced a climate transition from a greenhouse state to an icehouse state with the onset of ice sheets in Antarctica. Our study shows important productivity events in the Southern Ocean preceding this climatic shift. Our findings strongly indicate that the biological pump potentially played an important role in that past climate change.
Gerald Auer, Or M. Bialik, Mary-Elizabeth Antoulas, Noam Vogt-Vincent, and Werner E. Piller
Clim. Past, 19, 2313–2340, https://doi.org/10.5194/cp-19-2313-2023, https://doi.org/10.5194/cp-19-2313-2023, 2023
Short summary
Short summary
We provided novel insights into the behaviour of a major upwelling cell between 15 and 8.5 million years ago. To study changing conditions, we apply a combination of geochemical and paleoecological parameters to characterize the nutrient availability and subsequent utilization by planktonic primary producers. These changes we then juxtapose with established records of contemporary monsoon wind intensification and changing high-latitude processes to explain shifts in the plankton community.
Clément Coiffard, Haytham El Atfy, Johan Renaudie, Robert Bussert, and Dieter Uhl
Biogeosciences, 20, 1145–1154, https://doi.org/10.5194/bg-20-1145-2023, https://doi.org/10.5194/bg-20-1145-2023, 2023
Short summary
Short summary
Eighty-million-year-old fossil leaf assemblages suggest a widespread distribution of tropical rainforest in northeastern Africa.
Veronica Carlsson, Taniel Danelian, Pierre Boulet, Philippe Devienne, Aurelien Laforge, and Johan Renaudie
J. Micropalaeontol., 41, 165–182, https://doi.org/10.5194/jm-41-165-2022, https://doi.org/10.5194/jm-41-165-2022, 2022
Short summary
Short summary
This study evaluates the use of automatic classification using AI on eight closely related radiolarian species of the genus Podocyrtis based on MobileNet CNN. Species belonging to Podocyrtis are useful for middle Eocene biostratigraphy. Numerous images of Podocyrtis species from the tropical Atlantic Ocean were used to train and validate the CNN. An overall accuracy of about 91 % was obtained. Additional Podocyrtis specimens from other ocean realms were used to test the predictive model.
Jakub Witkowski, Karolina Bryłka, Steven M. Bohaty, Elżbieta Mydłowska, Donald E. Penman, and Bridget S. Wade
Clim. Past, 17, 1937–1954, https://doi.org/10.5194/cp-17-1937-2021, https://doi.org/10.5194/cp-17-1937-2021, 2021
Short summary
Short summary
We reconstruct the history of biogenic opal accumulation through the early to middle Paleogene in the western North Atlantic. Biogenic opal accumulation was controlled by deepwater temperatures, atmospheric greenhouse gas levels, and continental weathering intensity. Overturning circulation in the Atlantic was established at the end of the extreme early Eocene greenhouse warmth period. We also show that the strength of the link between climate and continental weathering varies through time.
Cited articles
Akhmetiev, M. A., Zaporozhets, N. I., Iakovleva, A. I., Aleksandrova, G. N., Beniamovsky, V. N., Oreshkina, T. V., Gnibidenko, Z. N., and Dolya, Z. A.: Comparative analysis of marine paleogene sections and biota from West Siberia and the Arctic Region, Stratigr. Geol. Correl., 18, 635–659, https://doi.org/10.1134/S0869593810060043, 2010. a
Araujo, M., Noriega, C., Hounsou-gbo, G. A., Veleda, D., Araujo, J., Bruto, L., Feitosa, F., Flores-Montes, M., Lefèvre, N., Melo, P., Otsuka, A., Travassos, K., Schwamborn, R., and Neumann-Leitão, S.: A Synoptic Assessment of the Amazon River-Ocean Continuum during Boreal Autumn: From Physics to Plankton Communities and Carbon Flux, Front. Microbiol., 8, 1358, https://doi.org/10.3389/fmicb.2017.01358, 2017. a
Auderset, A.: Nutrient cycling in the oligotrophic ocean over the past 65 million years, thesis, DISS. ETH NO. 26863, 2020. a
Barron, E. J.: Eocene equator-to-pole surface ocean temperatures: A significant climate problem?, Paleoceanography, 2, 729–739, https://doi.org/10.1029/PA002i006p00729, 1987. a
Barron, J. A., Stickley, C. E., and Bukry, D.: Paleoceanographic, and paleoclimatic constraints on the global Eocene diatom and silicoflagellate record, Palaeogeogr. Palaeocl., 422, 85–100, https://doi.org/10.1016/j.palaeo.2015.01.015, 2015. a
Berger, W. H.: Biogenous Deep-Sea Sediments: Fractionation by Deep-Sea Circulation, Geol. Soc. Am. Bull., 81, 1385, https://doi.org/10.1130/0016-7606(1970)81[1385:BDSFBD]2.0.CO;2, 1970. a
Berner, R. A., Lasaga, A. C., and Garrels, R. M.: The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years, Am. J. Sci., 283, 641–683, https://doi.org/10.2475/ajs.283.7.641, 1983. a
Bryłka, K., Witkowski, J., and Bohaty, S. M.: Biogenic silica accumulation and diatom assemblage variations through the Eocene-Oligocene Transition: A Southern Indian Ocean versus South Atlantic perspective, Palaeogeogr. Palaeocl., 636, 111971, https://doi.org/10.1016/j.palaeo.2023.111971, 2024. a, b
Cermeño, P.: The geological story of marine diatoms and the last generation of fossil fuels, Perspectives in Phycology, 3, 53–60, https://doi.org/10.1127/pip/2016/0050, 2016. a
Fenner, J.: Eocene-Oligocene Planktic Diatom Stratigraphy in the Low Latitudes and the High Southern Latitudes, Micropaleontology, 30, 319, https://doi.org/10.2307/1485708, 1984. a
Fenner, J.: Late Cretaceous to Oligocene planktic diatoms, in: Plankton Stratigraphy, edited by: Bolli, H., Saunders, J., and Perch-Nielsen, K., vol. 2, Cambridge Univ. Press, p. 1006, 1995. a
Figus, C. and Witkowski, J.: New taxa of the Rhaphoneidaceae Forti (Bacillariophyta) from the middle Eocene, Diatom Res., 39, 1–11, https://doi.org/10.1080/0269249X.2024.2319356, 2024. a
Figus, C., Bialik, O. M., Gladenkov, A. Y., Oreshkina, T. V., Renaudie, J., Smirnov, P., and Witkowski, J.: Climatic and tectonic controls on shallow-marine and freshwater diatomite deposition throughout the Palaeogene, Clim. Past, 20, 2629–2644, https://doi.org/10.5194/cp-20-2629-2024, 2024a. a, b, c, d, e, f, g, h, i, j, k, l
Figus, C., Renaudie, J., Bialik, O. M., and Witkowski, J.: Compilations of Palaeogene deep-sea diatom-bearing sediments and associated data, Zenodo [data set], https://doi.org/10.5281/ZENODO.14245396, 2024bb. a, b
Fontorbe, G., Frings, P. J., De La Rocha, C. L., Hendry, K. R., Carstensen, J., and Conley, D. J.: Enrichment of dissolved silica in the deep equatorial Pacific during the Eocene-Oligocene, Paleoceanography, 32, 848–863, https://doi.org/10.1002/2017PA003090, 2017. a
Foster, G. L., Royer, D. L., and Lunt, D. J.: Future climate forcing potentially without precedent in the last 420 million years, Nat. Commun., 8, 14845, https://doi.org/10.1038/ncomms14845, 2017. a
Froelich, F. and Misra, S.: Was the Late Paleocene-Early Eocene Hot Because Earth Was Flat? An Ocean Lithium Isotope View of Mountain Building, Continental Weathering, Carbon Dioxide, and Earth's Cenozoic Clima, Oceanography, 27, 36–49, https://doi.org/10.5670/oceanog.2014.06, 2014. a, b
Galeotti, S., DeConto, R., Naish, T., Stocchi, P., Florindo, F., Pagani, M., Barrett, P., Bohaty, S. M., Lanci, L., Pollard, D., Sandroni, S., Talarico, F. M., and Zachos, J. C.: Antarctic Ice Sheet variability across the Eocene-Oligocene boundary climate transition, Science, 352, 76–80, https://doi.org/10.1126/science.aab0669, 2016. a
Gombos, A.: Late Paleocene diatoms in the Cape basin, vol. 73 of Initial Reports of the Deep Sea Drilling Project, U. S. Government Printing Office, https://doi.org/10.2973/dsdp.proc.73.1984, 1984. a
Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G.: The Geologic Time Scale 2012 2-Volume Set, Elsevier Science, OCLC: 956664433, ISBN 978-0-444-59448-8, 2012. a
Grimm, K. A., Lange, C. B., and Gill, A. S.: Self-sedimentation of phytoplankton blooms in the geologic record, Sediment. Geol., 110, 151–161, https://doi.org/10.1016/S0037-0738(97)00048-1, 1997. a
Haq, B. U.: Paleogene Paleoceanography: Early Cenozoic Oceans Revisited, Oceanol. Acta, 4, 71–81, 1981. a
Hawkings, J. R., Wadham, J. L., Benning, L. G., Hendry, K. R., Tranter, M., Tedstone, A., Nienow, P., and Raiswell, R.: Ice sheets as a missing source of silica to the polar oceans, Nat. Commun., 8, 14198, https://doi.org/10.1038/ncomms14198, 2017. a
Hein, J. R., Yeh, H.-W., and Barron, J.: Eocene Diatom Chert From Adak Island, Alaska, J. Sediment. Res., 60, 250–257, https://doi.org/10.1306/212F9165-2B24-11D7-8648000102C1865D, 1990. a
Huber, M. and Sloan, L. C.: Heat transport, deep waters, and thermal gradients: Coupled simulation of an Eocene greenhouse climate, Geophys. Res. Lett., 28, 3481–3484, https://doi.org/10.1029/2001GL012943, 2001. a
Hutchins, D. A. and Bruland, K. W.: Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime, Nature, 393, 561–564, https://doi.org/10.1038/31203, 1998. a
Kast, E. R., Stolper, D. A., Auderset, A., Higgins, J. A., Ren, H., Wang, X. T., Martínez-García, A., Haug, G. H., and Sigman, D. M.: Nitrogen isotope evidence for expanded ocean suboxia in the early Cenozoic, Science, 364, 386–389, https://doi.org/10.1126/science.aau5784, 2019. a, b, c, d
Katz, T., Weinstein, Y., Alkalay, R., Biton, E., Toledo, Y., Lazar, A., Zlatkin, O., Soffer, R., Rahav, E., Sisma-Ventura, G., Bar, T., Ozer, T., Gildor, H., Almogi-Labin, A., Kanari, M., Berman-Frank, I., and Herut, B.: The first deep-sea mooring station in the eastern Levantine basin (DeepLev), outline and insights into regional sedimentological processes, Deep-Sea Res. Pt. II, 171, 104663, https://doi.org/10.1016/j.dsr2.2019.104663, 2020. a
Keller, G.: Paleoclimatic analyses of middle Eocene through Oligocene planktic foraminiferal faunas, Palaeogeogr. Palaeocl., 43, 73–94, https://doi.org/10.1016/0031-0182(83)90049-4, 1983. a
Kemp, A. E. S., Pike, J., Pearce, R. B., and Lange, C. B.: The “Fall dump” – a new perspective on the role of a “shade flora” in the annual cycle of diatom production and export flux, Deep-Sea Res. Pt. II, 47, 2129–2154, 2000. a
Lazarus, D., Barron, J., Renaudie, J., Diver, P., and Türke, A.: Cenozoic Planktonic Marine Diatom Diversity and Correlation to Climate Change, PLOS ONE, 9, e84857, https://doi.org/10.1371/journal.pone.0084857, 2014. a, b
Litchman, E.: Resource Competition and the Ecological Success of Phytoplankton, in: Evolution of Primary Producers in the Sea, edited by: Falkowski, P. G. and Knoll, A. H., Elsevier, https://doi.org/10.1016/B978-012370518-1/50017-5, pp. 351–375, 2007. a
Mazzullo, J., Meyer, A., and Kidd, R.: New sediment classification scheme for the Ocean Drilling Program, in: Handbook for Shipboard Sedimentologists, edited by: Mazzullo, J. and Graham, A., no. 8 in Ocean Drilling Program Technical Notes, Texas A&M University, https://doi.org/10.2973/odp.tn.8.1988, pp. 45–67, 1988. a
McArthur, J. M., Howarth, R. J., and Bailey, T. R.: Strontium Isotope Stratigraphy: LOWESS Version 3: Best Fit to the Marine Sr-Isotope Curve for 0–509 Ma and Accompanying Look-up Table for Deriving Numerical Age, J. Geol., 109, 155–170, https://doi.org/10.1086/319243, 2001. a, b
McGill, R., Tukey, J., and Larsen, W.: Variations of box plots, Am. Stat., 32, 12–16, 1978. a
Michalopoulos, P. and Aller, R. C.: Rapid Clay Mineral Formation in Amazon Delta Sediments: Reverse Weathering and Oceanic Elemental Cycles, Science, 270, 614–617, https://doi.org/10.1126/science.270.5236.614, 1995. a
Miller, K. G.: 8. Middle Eocene to Oligocene Stable Isotopes, Climate, and Deep-Water History: The Terminal Eocene Event?, in: Eocene-Oligocene Climatic and Biotic Evolution, edited by: Prothero, D. R. and Berggren, W. A., Princeton University Press, https://doi.org/10.1515/9781400862924.160, pp. 160–177, 1992. a
Misra, S. and Froelich, P. N.: Lithium Isotope History of Cenozoic Seawater: Changes in Silicate Weathering and Reverse Weathering, Science, 335, 818–823, https://doi.org/10.1126/science.1214697, 2012. a, b, c
Mithal, R. and Becker, D. G.: The Janus database: providing worldwide access to ODP and IODP data, Geol. Soc. Spec. Publ., 267, 253–259, https://doi.org/10.1144/GSL.SP.2006.267.01.19, 2006. a
Moore, T.: Chert in the Pacific: Biogenic silica and hydrothermal circulation, Palaeogeogr. Palaeocl., 261, 87–99, https://doi.org/10.1016/j.palaeo.2008.01.009, 2008. a, b
Moore, T. C., Jarrard, R. D., Olivarez Lyle, A., and Lyle, M.: Eocene biogenic silica accumulation rates at the Pacific equatorial divergence zone, Paleoceanography, 23, 2007PA001514, https://doi.org/10.1029/2007PA001514, 2008. a, b
Müller, R. D., Cannon, J., Qin, X., Watson, R. J., Gurnis, M., Williams, S., Pfaffelmoser, T., Seton, M., Russell, S. H. J., and Zahirovic, S.: GPlates: Building a Virtual Earth Through Deep Time, Geochem. Geophy. Geosy., 19, 2243–2261, https://doi.org/10.1029/2018GC007584, 2018. a
National Geophysical Data Center: Core Data from the Deep Sea Drilling Project Legs 1–96, World Data Center for Marine Geology & Geophysics, Seafloor Series, 1 [data set], http://www.ngdc.noaa.gov/mgg/fliers/00mgg03.html (last access: 17 November 2024), 2000. a
National Geophysical Data Center: Core Data from the Deep Sea Drilling Project Legs 101–129, World Data Center for Marine Geology & Geophysics, Seafloor Series, 2 [data set], http://www.ngdc.noaa.gov/mgg/geology/odp/start.html (last access: 17 October 2024), 2001. a
Olivarez Lyle, A. and Lyle, M. W.: Missing organic carbon in Eocene marine sediments: Is metabolism the biological feedback that maintains end-member climates?, Paleoceanography, 21, 2005PA001230, https://doi.org/10.1029/2005PA001230, 2006. a
Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H. K., Lear, C. H., Shackleton, N. J., Tripati, A. K., and Wade, B. S.: The Heartbeat of the Oligocene Climate System, Science, 314, 1894–1898, https://doi.org/10.1126/science.1133822, 2006. a
Pascher, K. M., Hollis, C. J., Bohaty, S. M., Cortese, G., McKay, R. M., Seebeck, H., Suzuki, N., and Chiba, K.: Expansion and diversification of high-latitude radiolarian assemblages in the late Eocene linked to a cooling event in the southwest Pacific, Clim. Past, 11, 1599–1620, https://doi.org/10.5194/cp-11-1599-2015, 2015. a, b
Pellegrino, L., Natalicchio, M., Birgel, D., Pastero, L., Carnevale, G., Jordan, R. W., Peckmann, J., Zanellato, N., and Dela Pierre, F.: From biogenic silica and organic matter to authigenic clays and dolomite: Insights from Messinian (upper Miocene) sediments of the Northern Mediterranean, Sedimentology, 70, 505–537, https://doi.org/10.1111/sed.13053, 2023. a
Penman, D. E.: Silicate weathering and North Atlantic silica burial during the Paleocene-Eocene Thermal Maximum, Geology, 44, 731–734, https://doi.org/10.1130/G37704.1, 2016. a
Penman, D. E., Keller, A., D'haenens, S., Kirtland Turner, S., and Hull, P. M.: Atlantic Deep-Sea Cherts Associated With Eocene Hyperthermal Events, Paleoceanogr. Paleoclimatol., 34, 287–299, https://doi.org/10.1029/2018PA003503, 2019. a
Ragueneau, O., Schultes, S., Bidle, K., Claquin, P., and Moriceau, B.: Si and C interactions in the world ocean: Importance of ecological processes and implications for the role of diatoms in the biological pump, Global Biogeochem. Cy., 20, 2006GB002688, https://doi.org/10.1029/2006GB002688, 2006. a
Renaudie, J.: Quantifying the Cenozoic marine diatom deposition history: links to the C and Si cycles, Biogeosciences, 13, 6003–6014, https://doi.org/10.5194/bg-13-6003-2016, 2016. a, b
Renaudie, J., Lazarus, D., and Diver, P.: Archive of Neptune (NSB) database backups, Zenodo [data set], https://doi.org/10.5281/ZENODO.10063218, 2023. a
Rice, S., Freund, H., Huang, W., Clouse, J., and Isaacs, C.: Application of Fourier Transform Infrared Spectroscopy to Silica Diagenesis: The Opal-A to Opal-Ct Transformation, J. Sediment. Res., 65A, 639–647, https://doi.org/10.1306/D4268185-2B26-11D7-8648000102C1865D, 1995. a
Sanders, H.: Marine benthic diversity: a comparative study, American Naturalist, 32, 243–282, 1968. a
Sims, P. A., Mann, D. G., and Medlin, L. K.: Evolution of the diatoms: insights from fossil, biological and molecular data, Phycologia, 45, 361–402, https://doi.org/10.2216/05-22.1, 2006. a
Smetacek, V. S.: Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance, Mar. Biol., 84, 239–251, https://doi.org/10.1007/BF00392493, 1985. a
Straume, E. O., Steinberger, B., Becker, T. W., and Faccenna, C.: Impact of mantle convection and dynamic topography on the Cenozoic paleogeography of Central Eurasia and the West Siberian Seaway, Earth Planet. Sc. Lett., 630, 118615, https://doi.org/10.1016/j.epsl.2024.118615, 2024. a, b
Thomas, D. J.: Evidence for deep-water production in the North Pacific Ocean during the early Cenozoic warm interval, Nature, 430, 65–68, https://doi.org/10.1038/nature02639, 2004. a
Torsvik, T. H., Steinberger, B., Shephard, G. E., Doubrovine, P. V., Gaina, C., Domeier, M., Conrad, C. P., and Sager, W. W.: Pacific-Panthalassic Reconstructions: Overview, Errata and the Way Forward, Geochem. Geophy. Geosy., 20, 3659–3689, https://doi.org/10.1029/2019GC008402, 2019. a
Tréguer, P., Bowler, C., Moriceau, B., Dutkiewicz, S., Gehlen, M., Aumont, O., Bittner, L., Dugdale, R., Finkel, Z., Iudicone, D., Jahn, O., Guidi, L., Lasbleiz, M., Leblanc, K., Levy, M., and Pondaven, P.: Influence of diatom diversity on the ocean biological carbon pump, Nat. Geosci., 11, 27–37, https://doi.org/10.1038/s41561-017-0028-x, 2018. a
Tréguer, P. J., Sutton, J. N., Brzezinski, M., Charette, M. A., Devries, T., Dutkiewicz, S., Ehlert, C., Hawkings, J., Leynaert, A., Liu, S. M., Llopis Monferrer, N., López-Acosta, M., Maldonado, M., Rahman, S., Ran, L., and Rouxel, O.: Reviews and syntheses: The biogeochemical cycle of silicon in the modern ocean, Biogeosciences, 18, 1269–1289, https://doi.org/10.5194/bg-18-1269-2021, 2021. a
Tsekhovsky, Y. G.: Sedimentogenesis and geodynamics in the Cretaceous-Paleogene boundary at the epoch of continental peneplanation. Article 1. Central and Eastern Eurasia, Litosfera, 1, 5–23, 2015. a
Tukey, J.: Exploratory data analysis, Addison-Wesley, 1977. a
Vahlenkamp, M., Niezgodzki, I., De Vleeschouwer, D., Lohmann, G., Bickert, T., and Pälike, H.: Ocean and climate response to North Atlantic seaway changes at the onset of long-term Eocene cooling, Earth Planet. Sc. Lett., 498, 185–195, https://doi.org/10.1016/j.epsl.2018.06.031, 2018. a
Van Breedam, J., Huybrechts, P., and Crucifix, M.: Modelling evidence for late Eocene Antarctic glaciations, Earth Planet. Sc. Lett., 586, 117532, https://doi.org/10.1016/j.epsl.2022.117532, 2022. a
Wade, B. S. and Pälike, H.: Oligocene climate dynamics, Paleoceanography, 19, 2004PA001042, https://doi.org/10.1029/2004PA001042, 2004. a
Wade, B. S., O'Neill, J. F., Phujareanchaiwon, C., Ali, I., Lyle, M., and Witkowski, J.: Evolution of deep-sea sediments across the Paleocene-Eocene and Eocene-Oligocene boundaries, Earth-Sci. Rev., 211, 103403, https://doi.org/10.1016/j.earscirev.2020.103403, 2020. a
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H., Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An astronomically dated record of Earth's climate and its predictability over the last 66 million years, Science, 369, 1383–1387, https://doi.org/10.1126/science.aba6853, 2020. a
Witkowski, J.: Early Paleocene-Late Eocene diatoms from the Blake Nose, western North Atlantic Ocean, vol. 152 of Nova Heidwigia, Beiheft, J. CRAMER Borntraeger Science Publishers, ISBN 978-3-443-51077-0, 2022. a
Witkowski, J., Penman, D. E., Bryłka, K., Wade, B. S., Matting, S., Harwood, D. M., and Bohaty, S. M.: Early Paleogene biosiliceous sedimentation in the Atlantic Ocean: Testing the inorganic origin hypothesis for Paleocene and Eocene chert and porcellanite, Palaeogeogr. Palaeocl., 556, 109896, https://doi.org/10.1016/j.palaeo.2020.109896, 2020. a, b, c
Witkowski, J., Bryłka, K., Bohaty, S. M., Mydłowska, E., Penman, D. E., and Wade, B. S.: North Atlantic marine biogenic silica accumulation through the early to middle Paleogene: implications for ocean circulation and silicate weathering feedback, Clim. Past, 17, 1937–1954, https://doi.org/10.5194/cp-17-1937-2021, 2021. a, b, c, d, e
Yanchilina, A., Yam, R., Kolodny, Y., and Shemesh, A.: From diatom opal-A δ18O to chert δ18O in deep sea sediments, Geochim. Cosmochim. Ac., 268, 368–382, https://doi.org/10.1016/j.gca.2019.10.018, 2020. a
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present, Science, 292, 686–693, https://doi.org/10.1126/science.1059412, 2001. a
Zahajská, P., Opfergelt, S., Fritz, S. C., Stadmark, J., and Conley, D. J.: What is diatomite?, Quaternary Res., 96, 48–52, https://doi.org/10.1017/qua.2020.14, 2020. a, b, c
Short summary
The synthesis of Palaeogene deep-sea diatom-bearing sediment occurrences indicates that the deposition of diatom-bearing sediments is mainly controlled by nutrient availability and ocean circulation in the Atlantic, Pacific, and Indian oceans. Comparison with shallow marine diatomites suggests that the peak in the number of diatom-bearing sites in the Atlantic is indirectly related to tectonic reorganizations that caused the cessation of shallow marine diatomite deposition between ~46 and ~44 Ma.
The synthesis of Palaeogene deep-sea diatom-bearing sediment occurrences indicates that the...
Altmetrics
Final-revised paper
Preprint