Articles | Volume 13, issue 6
https://doi.org/10.5194/bg-13-1753-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-13-1753-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Historical reconstruction of ocean acidification in the Australian region
Andrew Lenton
CORRESPONDING AUTHOR
CSIRO Oceans and Atmosphere, Hobart, Australia
Bronte Tilbrook
CSIRO Oceans and Atmosphere, Hobart, Australia
Antarctic Climate and Ecosystems Co-operative Research Centre, Hobart,
Australia
Richard J. Matear
CSIRO Oceans and Atmosphere, Hobart, Australia
Tristan P. Sasse
Climate Change Research Centre, Kensington Campus, University of New
South Wales, Sydney, Australia
Yukihiro Nojiri
National Institute for Environmental Studies, Tsukuba, Japan
Related authors
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Vivek K. Arora, Anna Katavouta, Richard G. Williams, Chris D. Jones, Victor Brovkin, Pierre Friedlingstein, Jörg Schwinger, Laurent Bopp, Olivier Boucher, Patricia Cadule, Matthew A. Chamberlain, James R. Christian, Christine Delire, Rosie A. Fisher, Tomohiro Hajima, Tatiana Ilyina, Emilie Joetzjer, Michio Kawamiya, Charles D. Koven, John P. Krasting, Rachel M. Law, David M. Lawrence, Andrew Lenton, Keith Lindsay, Julia Pongratz, Thomas Raddatz, Roland Séférian, Kaoru Tachiiri, Jerry F. Tjiputra, Andy Wiltshire, Tongwen Wu, and Tilo Ziehn
Biogeosciences, 17, 4173–4222, https://doi.org/10.5194/bg-17-4173-2020, https://doi.org/10.5194/bg-17-4173-2020, 2020
Short summary
Short summary
Since the preindustrial period, land and ocean have taken up about half of the carbon emitted into the atmosphere by humans. Comparison of different earth system models with the carbon cycle allows us to assess how carbon uptake by land and ocean differs among models. This yields an estimate of uncertainty in our understanding of how land and ocean respond to increasing atmospheric CO2. This paper summarizes results from two such model intercomparison projects that use an idealized scenario.
Lester Kwiatkowski, Olivier Torres, Laurent Bopp, Olivier Aumont, Matthew Chamberlain, James R. Christian, John P. Dunne, Marion Gehlen, Tatiana Ilyina, Jasmin G. John, Andrew Lenton, Hongmei Li, Nicole S. Lovenduski, James C. Orr, Julien Palmieri, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Charles A. Stock, Alessandro Tagliabue, Yohei Takano, Jerry Tjiputra, Katsuya Toyama, Hiroyuki Tsujino, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, and Tilo Ziehn
Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, https://doi.org/10.5194/bg-17-3439-2020, 2020
Short summary
Short summary
We assess 21st century projections of marine biogeochemistry in the CMIP6 Earth system models. These models represent the most up-to-date understanding of climate change. The models generally project greater surface ocean warming, acidification, subsurface deoxygenation, and euphotic nitrate reductions but lesser primary production declines than the previous generation of models. This has major implications for the impact of anthropogenic climate change on marine ecosystems.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Judith Hauck, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Dorothee C. E. Bakker, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Peter Anthoni, Leticia Barbero, Ana Bastos, Vladislav Bastrikov, Meike Becker, Laurent Bopp, Erik Buitenhuis, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Kim I. Currie, Richard A. Feely, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Daniel S. Goll, Nicolas Gruber, Sören Gutekunst, Ian Harris, Vanessa Haverd, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Jed O. Kaplan, Etsushi Kato, Kees Klein Goldewijk, Jan Ivar Korsbakken, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Gregg Marland, Patrick C. McGuire, Joe R. Melton, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Craig Neill, Abdirahman M. Omar, Tsuneo Ono, Anna Peregon, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Roland Séférian, Jörg Schwinger, Naomi Smith, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Guido R. van der Werf, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-1783-2019, https://doi.org/10.5194/essd-11-1783-2019, 2019
Short summary
Short summary
The Global Carbon Budget 2019 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Ben Kravitz, Philip J. Rasch, Hailong Wang, Alan Robock, Corey Gabriel, Olivier Boucher, Jason N. S. Cole, Jim Haywood, Duoying Ji, Andy Jones, Andrew Lenton, John C. Moore, Helene Muri, Ulrike Niemeier, Steven Phipps, Hauke Schmidt, Shingo Watanabe, Shuting Yang, and Jin-Ho Yoon
Atmos. Chem. Phys., 18, 13097–13113, https://doi.org/10.5194/acp-18-13097-2018, https://doi.org/10.5194/acp-18-13097-2018, 2018
Short summary
Short summary
Marine cloud brightening has been proposed as a means of geoengineering/climate intervention, or deliberately altering the climate system to offset anthropogenic climate change. In idealized simulations that highlight contrasts between land and ocean, we find that the globe warms, including the ocean due to transport of heat from land. This study reinforces that no net energy input into the Earth system does not mean that temperature will necessarily remain unchanged.
Duoying Ji, Songsong Fang, Charles L. Curry, Hiroki Kashimura, Shingo Watanabe, Jason N. S. Cole, Andrew Lenton, Helene Muri, Ben Kravitz, and John C. Moore
Atmos. Chem. Phys., 18, 10133–10156, https://doi.org/10.5194/acp-18-10133-2018, https://doi.org/10.5194/acp-18-10133-2018, 2018
Short summary
Short summary
We examine extreme temperature and precipitation under climate-model-simulated solar dimming and stratospheric aerosol injection geoengineering schemes. Both types of geoengineering lead to lower minimum temperatures at higher latitudes and greater cooling of minimum temperatures and maximum temperatures over land compared with oceans. Stratospheric aerosol injection is more effective in reducing tropical extreme precipitation, while solar dimming is more effective over extra-tropical regions.
Andrew Lenton, Richard J. Matear, David P. Keller, Vivian Scott, and Naomi E. Vaughan
Earth Syst. Dynam., 9, 339–357, https://doi.org/10.5194/esd-9-339-2018, https://doi.org/10.5194/esd-9-339-2018, 2018
Short summary
Short summary
Artificial ocean alkalinization (AOA) is capable of reducing atmospheric carbon dioxide concentrations and surface warming while also addressing ocean acidification. We simulate the Earth system response to a fixed addition of AOA under low and high emissions. We explore the regional and global response to AOA. A key finding is that AOA is much more effective at reducing warming and ocean acidification under low emissions, despite lower carbon uptake.
David P. Keller, Andrew Lenton, Vivian Scott, Naomi E. Vaughan, Nico Bauer, Duoying Ji, Chris D. Jones, Ben Kravitz, Helene Muri, and Kirsten Zickfeld
Geosci. Model Dev., 11, 1133–1160, https://doi.org/10.5194/gmd-11-1133-2018, https://doi.org/10.5194/gmd-11-1133-2018, 2018
Short summary
Short summary
There is little consensus on the impacts and efficacy of proposed carbon dioxide removal (CDR) methods as a potential means of mitigating climate change. To address this need, the Carbon Dioxide Removal Model Intercomparison Project (or CDR-MIP) has been initiated. This project brings together models of the Earth system in a common framework to explore the potential, impacts, and challenges of CDR. Here, we describe the first set of CDR-MIP experiments.
Richard J. Matear and Andrew Lenton
Biogeosciences, 15, 1721–1732, https://doi.org/10.5194/bg-15-1721-2018, https://doi.org/10.5194/bg-15-1721-2018, 2018
Short summary
Short summary
We show climate–carbon feedbacks accelerate and enhance ocean acidification. Such an acceleration of ocean acidification may further undermine the ability of marine biota to adapt to the changing environment. Our study also identifies the need to use Earth system models to make future ocean acidification projections (relevance to AR6) and the need to reduce the uncertainty in the climate–carbon feedbacks.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Julia Pongratz, Andrew C. Manning, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Robert B. Jackson, Thomas A. Boden, Pieter P. Tans, Oliver D. Andrews, Vivek K. Arora, Dorothee C. E. Bakker, Leticia Barbero, Meike Becker, Richard A. Betts, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Catherine E. Cosca, Jessica Cross, Kim Currie, Thomas Gasser, Ian Harris, Judith Hauck, Vanessa Haverd, Richard A. Houghton, Christopher W. Hunt, George Hurtt, Tatiana Ilyina, Atul K. Jain, Etsushi Kato, Markus Kautz, Ralph F. Keeling, Kees Klein Goldewijk, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Ivan Lima, Danica Lombardozzi, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Yukihiro Nojiri, X. Antonio Padin, Anna Peregon, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Janet Reimer, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Steven van Heuven, Nicolas Viovy, Nicolas Vuichard, Anthony P. Walker, Andrew J. Watson, Andrew J. Wiltshire, Sönke Zaehle, and Dan Zhu
Earth Syst. Sci. Data, 10, 405–448, https://doi.org/10.5194/essd-10-405-2018, https://doi.org/10.5194/essd-10-405-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2017 describes data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. It is the 12th annual update and the 6th published in this journal.
Camilla W. Stjern, Helene Muri, Lars Ahlm, Olivier Boucher, Jason N. S. Cole, Duoying Ji, Andy Jones, Jim Haywood, Ben Kravitz, Andrew Lenton, John C. Moore, Ulrike Niemeier, Steven J. Phipps, Hauke Schmidt, Shingo Watanabe, and Jón Egill Kristjánsson
Atmos. Chem. Phys., 18, 621–634, https://doi.org/10.5194/acp-18-621-2018, https://doi.org/10.5194/acp-18-621-2018, 2018
Short summary
Short summary
Marine cloud brightening (MCB) has been proposed to help limit global warming. We present here the first multi-model assessment of idealized MCB simulations from the Geoengineering Model Intercomparison Project. While all models predict a global cooling as intended, there is considerable spread between the models both in terms of radiative forcing and the climate response, largely linked to the substantial differences in the models' representation of clouds.
Rachel M. Law, Tilo Ziehn, Richard J. Matear, Andrew Lenton, Matthew A. Chamberlain, Lauren E. Stevens, Ying-Ping Wang, Jhan Srbinovsky, Daohua Bi, Hailin Yan, and Peter F. Vohralik
Geosci. Model Dev., 10, 2567–2590, https://doi.org/10.5194/gmd-10-2567-2017, https://doi.org/10.5194/gmd-10-2567-2017, 2017
Short summary
Short summary
The paper describes a version of the Australian Community Climate and Earth System Simulator that has been enabled to simulate the carbon cycle, which is designated ACCESS-ESM1. The model performance for pre-industrial conditions is assessed and land and ocean carbon fluxes are found to be simulated realistically.
Tilo Ziehn, Andrew Lenton, Rachel M. Law, Richard J. Matear, and Matthew A. Chamberlain
Geosci. Model Dev., 10, 2591–2614, https://doi.org/10.5194/gmd-10-2591-2017, https://doi.org/10.5194/gmd-10-2591-2017, 2017
Short summary
Short summary
Our work presents the evaluation of the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) over the historical period (1850–2005). The main focus is on climate and carbon related variables. Globally integrated land–atmosphere and ocean–atmosphere fluxes and flux patterns are well reproduced and show good agreement with most recent observations. This makes ACCESS-ESM1 a useful tool to explore the change in land and oceanic carbon uptake in the future.
Pearse J. Buchanan, Richard J. Matear, Andrew Lenton, Steven J. Phipps, Zanna Chase, and David M. Etheridge
Clim. Past, 12, 2271–2295, https://doi.org/10.5194/cp-12-2271-2016, https://doi.org/10.5194/cp-12-2271-2016, 2016
Short summary
Short summary
We quantify the contributions of physical and biogeochemical changes in the ocean to enhancing ocean carbon storage at the Last Glacial Maximum. We find that simulated circulation and surface conditions cannot explain changes in carbon storage or other major biogeochemical fields that existed during the glacial climate. Key modifications to the functioning of the biological pump are therefore required to explain the glacial climate and improve model–proxy agreement for all fields.
Corinne Le Quéré, Robbie M. Andrew, Josep G. Canadell, Stephen Sitch, Jan Ivar Korsbakken, Glen P. Peters, Andrew C. Manning, Thomas A. Boden, Pieter P. Tans, Richard A. Houghton, Ralph F. Keeling, Simone Alin, Oliver D. Andrews, Peter Anthoni, Leticia Barbero, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Kim Currie, Christine Delire, Scott C. Doney, Pierre Friedlingstein, Thanos Gkritzalis, Ian Harris, Judith Hauck, Vanessa Haverd, Mario Hoppema, Kees Klein Goldewijk, Atul K. Jain, Etsushi Kato, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Joe R. Melton, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Kevin O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Christian Rödenbeck, Joe Salisbury, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Adrienne J. Sutton, Taro Takahashi, Hanqin Tian, Bronte Tilbrook, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 8, 605–649, https://doi.org/10.5194/essd-8-605-2016, https://doi.org/10.5194/essd-8-605-2016, 2016
Short summary
Short summary
The Global Carbon Budget 2016 is the 11th annual update of emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land, and ocean. This data synthesis brings together measurements, statistical information, and analyses of model results in order to provide an assessment of the global carbon budget and their uncertainties for years 1959 to 2015, with a projection for year 2016.
C. Le Quéré, R. Moriarty, R. M. Andrew, J. G. Canadell, S. Sitch, J. I. Korsbakken, P. Friedlingstein, G. P. Peters, R. J. Andres, T. A. Boden, R. A. Houghton, J. I. House, R. F. Keeling, P. Tans, A. Arneth, D. C. E. Bakker, L. Barbero, L. Bopp, J. Chang, F. Chevallier, L. P. Chini, P. Ciais, M. Fader, R. A. Feely, T. Gkritzalis, I. Harris, J. Hauck, T. Ilyina, A. K. Jain, E. Kato, V. Kitidis, K. Klein Goldewijk, C. Koven, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, I. D. Lima, N. Metzl, F. Millero, D. R. Munro, A. Murata, J. E. M. S. Nabel, S. Nakaoka, Y. Nojiri, K. O'Brien, A. Olsen, T. Ono, F. F. Pérez, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, C. Rödenbeck, S. Saito, U. Schuster, J. Schwinger, R. Séférian, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, I. T. van der Laan-Luijkx, G. R. van der Werf, S. van Heuven, D. Vandemark, N. Viovy, A. Wiltshire, S. Zaehle, and N. Zeng
Earth Syst. Sci. Data, 7, 349–396, https://doi.org/10.5194/essd-7-349-2015, https://doi.org/10.5194/essd-7-349-2015, 2015
Short summary
Short summary
Accurate assessment of anthropogenic carbon dioxide emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to understand the global carbon cycle, support the development of climate policies, and project future climate change. We describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on a range of data and models and their interpretation by a broad scientific community.
T. P. Sasse, B. I. McNeil, R. J. Matear, and A. Lenton
Biogeosciences, 12, 6017–6031, https://doi.org/10.5194/bg-12-6017-2015, https://doi.org/10.5194/bg-12-6017-2015, 2015
Short summary
Short summary
Our results show that accounting for oceanic CO2 seasonality is crucial to projecting the future onset of critical ocean acidification levels (i.e. aragonite undersaturation). In particular, seasonality will bring forward the initial onset of month-long undersaturation by a global average of 17 years. Importantly, widespread undersaturation is projected to occur once atmospheric CO2 reaches 496ppm in the North Pacific and 511ppm in the Southern Ocean, independent of emissions scenario.
C. Le Quéré, R. Moriarty, R. M. Andrew, G. P. Peters, P. Ciais, P. Friedlingstein, S. D. Jones, S. Sitch, P. Tans, A. Arneth, T. A. Boden, L. Bopp, Y. Bozec, J. G. Canadell, L. P. Chini, F. Chevallier, C. E. Cosca, I. Harris, M. Hoppema, R. A. Houghton, J. I. House, A. K. Jain, T. Johannessen, E. Kato, R. F. Keeling, V. Kitidis, K. Klein Goldewijk, C. Koven, C. S. Landa, P. Landschützer, A. Lenton, I. D. Lima, G. Marland, J. T. Mathis, N. Metzl, Y. Nojiri, A. Olsen, T. Ono, S. Peng, W. Peters, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. E. Salisbury, U. Schuster, J. Schwinger, R. Séférian, J. Segschneider, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, G. R. van der Werf, N. Viovy, Y.-P. Wang, R. Wanninkhof, A. Wiltshire, and N. Zeng
Earth Syst. Sci. Data, 7, 47–85, https://doi.org/10.5194/essd-7-47-2015, https://doi.org/10.5194/essd-7-47-2015, 2015
Short summary
Short summary
Carbon dioxide (CO2) emissions from human activities (burning fossil fuels and cement production, deforestation and other land-use change) are set to rise again in 2014.
This study (updated yearly) makes an accurate assessment of anthropogenic CO2 emissions and their redistribution between the atmosphere, ocean, and terrestrial biosphere in order to better understand the global carbon cycle, support the development of climate policies, and project future climate change.
C. Evenhuis, A. Lenton, N. E. Cantin, and J. M. Lough
Biogeosciences, 12, 2607–2630, https://doi.org/10.5194/bg-12-2607-2015, https://doi.org/10.5194/bg-12-2607-2015, 2015
Short summary
Short summary
Coral reefs are diverse ecosystems threatened by rising CO2 levels through increases in sea surface temperature and ocean acidification. This study presents a new unified model, based on experimental and observational data, that links changes in temperature and carbonate chemistry to coral health. We show that, despite the implicit complexity of the coral reef environment, our simple model can give important insights into how corals respond to changes in temperature and ocean acidification.
R. J. Matear, A. Lenton, D. Etheridge, and S. J. Phipps
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-1093-2015, https://doi.org/10.5194/cpd-11-1093-2015, 2015
Revised manuscript has not been submitted
Short summary
Short summary
Global climate models provide an important tool for simulating the earth's climate. Here we present a simulation of the climate of the Last Glacial Maximum, which was obtained by setting atmospheric greenhouse gas concentrations and the earth's orbital parameters to the 21 000 years before present values. We simulate an ocean behaviour that agrees with paleoclimate reconstructions supporting our ability to model the climate system and use the model to explore the impacts on the carbon cycle.
R. J. Matear and A. Lenton
Biogeosciences, 11, 3965–3983, https://doi.org/10.5194/bg-11-3965-2014, https://doi.org/10.5194/bg-11-3965-2014, 2014
M. Ishii, R. A. Feely, K. B. Rodgers, G.-H. Park, R. Wanninkhof, D. Sasano, H. Sugimoto, C. E. Cosca, S. Nakaoka, M. Telszewski, Y. Nojiri, S. E. Mikaloff Fletcher, Y. Niwa, P. K. Patra, V. Valsala, H. Nakano, I. Lima, S. C. Doney, E. T. Buitenhuis, O. Aumont, J. P. Dunne, A. Lenton, and T. Takahashi
Biogeosciences, 11, 709–734, https://doi.org/10.5194/bg-11-709-2014, https://doi.org/10.5194/bg-11-709-2014, 2014
V. V. S. S. Sarma, A. Lenton, R. M. Law, N. Metzl, P. K. Patra, S. Doney, I. D. Lima, E. Dlugokencky, M. Ramonet, and V. Valsala
Biogeosciences, 10, 7035–7052, https://doi.org/10.5194/bg-10-7035-2013, https://doi.org/10.5194/bg-10-7035-2013, 2013
A. Lenton, B. Tilbrook, R. M. Law, D. Bakker, S. C. Doney, N. Gruber, M. Ishii, M. Hoppema, N. S. Lovenduski, R. J. Matear, B. I. McNeil, N. Metzl, S. E. Mikaloff Fletcher, P. M. S. Monteiro, C. Rödenbeck, C. Sweeney, and T. Takahashi
Biogeosciences, 10, 4037–4054, https://doi.org/10.5194/bg-10-4037-2013, https://doi.org/10.5194/bg-10-4037-2013, 2013
P. R. Oke, D. A. Griffin, A. Schiller, R. J. Matear, R. Fiedler, J. Mansbridge, A. Lenton, M. Cahill, M. A. Chamberlain, and K. Ridgway
Geosci. Model Dev., 6, 591–615, https://doi.org/10.5194/gmd-6-591-2013, https://doi.org/10.5194/gmd-6-591-2013, 2013
R. Wanninkhof, G. -H. Park, T. Takahashi, C. Sweeney, R. Feely, Y. Nojiri, N. Gruber, S. C. Doney, G. A. McKinley, A. Lenton, C. Le Quéré, C. Heinze, J. Schwinger, H. Graven, and S. Khatiwala
Biogeosciences, 10, 1983–2000, https://doi.org/10.5194/bg-10-1983-2013, https://doi.org/10.5194/bg-10-1983-2013, 2013
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-519, https://doi.org/10.5194/essd-2024-519, 2024
Preprint under review for ESSD
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Benoît Pasquier, Mark Holzer, Matthew A. Chamberlain, Richard J. Matear, Nathaniel L. Bindoff, and François W. Primeau
Biogeosciences, 20, 2985–3009, https://doi.org/10.5194/bg-20-2985-2023, https://doi.org/10.5194/bg-20-2985-2023, 2023
Short summary
Short summary
Modeling the ocean's carbon and oxygen cycles accurately is challenging. Parameter optimization improves the fit to observed tracers but can introduce artifacts in the biological pump. Organic-matter production and subsurface remineralization rates adjust to compensate for circulation biases, changing the pathways and timescales with which nutrients return to the surface. Circulation biases can thus strongly alter the system’s response to ecological change, even when parameters are optimized.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Simone Alin, Marta Álvarez, Kumiko Azetsu-Scott, Leticia Barbero, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Li-Qing Jiang, Steve D. Jones, Claire Lo Monaco, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, https://doi.org/10.5194/essd-14-5543-2022, 2022
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2022 is the fourth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1085 hydrographic cruises covering the world's oceans from 1972 to 2021.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Steve D. Jones, Maren K. Karlsen, Claire Lo Monaco, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 13, 5565–5589, https://doi.org/10.5194/essd-13-5565-2021, https://doi.org/10.5194/essd-13-5565-2021, 2021
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2021 is the third update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 989 hydrographic cruises covering the world's oceans from 1972 to 2020.
Hakase Hayashida, Meibing Jin, Nadja S. Steiner, Neil C. Swart, Eiji Watanabe, Russell Fiedler, Andrew McC. Hogg, Andrew E. Kiss, Richard J. Matear, and Peter G. Strutton
Geosci. Model Dev., 14, 6847–6861, https://doi.org/10.5194/gmd-14-6847-2021, https://doi.org/10.5194/gmd-14-6847-2021, 2021
Short summary
Short summary
Ice algae are tiny plants like phytoplankton but they grow within sea ice. In polar regions, both phytoplankton and ice algae are the foundation of marine ecosystems and play an important role in taking up carbon dioxide in the atmosphere. However, state-of-the-art climate models typically do not include ice algae, and therefore their role in the climate system remains unclear. This project aims to address this knowledge gap by coordinating a set of experiments using sea-ice–ocean models.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Henry C. Bittig, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Camilla S. Landa, Siv K. Lauvset, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, and Ryan J. Woosley
Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, https://doi.org/10.5194/essd-12-3653-2020, 2020
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2020 is the second update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 946 hydrographic cruises covering the world's oceans from 1972 to 2019.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Vivek K. Arora, Anna Katavouta, Richard G. Williams, Chris D. Jones, Victor Brovkin, Pierre Friedlingstein, Jörg Schwinger, Laurent Bopp, Olivier Boucher, Patricia Cadule, Matthew A. Chamberlain, James R. Christian, Christine Delire, Rosie A. Fisher, Tomohiro Hajima, Tatiana Ilyina, Emilie Joetzjer, Michio Kawamiya, Charles D. Koven, John P. Krasting, Rachel M. Law, David M. Lawrence, Andrew Lenton, Keith Lindsay, Julia Pongratz, Thomas Raddatz, Roland Séférian, Kaoru Tachiiri, Jerry F. Tjiputra, Andy Wiltshire, Tongwen Wu, and Tilo Ziehn
Biogeosciences, 17, 4173–4222, https://doi.org/10.5194/bg-17-4173-2020, https://doi.org/10.5194/bg-17-4173-2020, 2020
Short summary
Short summary
Since the preindustrial period, land and ocean have taken up about half of the carbon emitted into the atmosphere by humans. Comparison of different earth system models with the carbon cycle allows us to assess how carbon uptake by land and ocean differs among models. This yields an estimate of uncertainty in our understanding of how land and ocean respond to increasing atmospheric CO2. This paper summarizes results from two such model intercomparison projects that use an idealized scenario.
Lester Kwiatkowski, Olivier Torres, Laurent Bopp, Olivier Aumont, Matthew Chamberlain, James R. Christian, John P. Dunne, Marion Gehlen, Tatiana Ilyina, Jasmin G. John, Andrew Lenton, Hongmei Li, Nicole S. Lovenduski, James C. Orr, Julien Palmieri, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Charles A. Stock, Alessandro Tagliabue, Yohei Takano, Jerry Tjiputra, Katsuya Toyama, Hiroyuki Tsujino, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, and Tilo Ziehn
Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, https://doi.org/10.5194/bg-17-3439-2020, 2020
Short summary
Short summary
We assess 21st century projections of marine biogeochemistry in the CMIP6 Earth system models. These models represent the most up-to-date understanding of climate change. The models generally project greater surface ocean warming, acidification, subsurface deoxygenation, and euphotic nitrate reductions but lesser primary production declines than the previous generation of models. This has major implications for the impact of anthropogenic climate change on marine ecosystems.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Judith Hauck, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Dorothee C. E. Bakker, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Peter Anthoni, Leticia Barbero, Ana Bastos, Vladislav Bastrikov, Meike Becker, Laurent Bopp, Erik Buitenhuis, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Kim I. Currie, Richard A. Feely, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Daniel S. Goll, Nicolas Gruber, Sören Gutekunst, Ian Harris, Vanessa Haverd, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Jed O. Kaplan, Etsushi Kato, Kees Klein Goldewijk, Jan Ivar Korsbakken, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Gregg Marland, Patrick C. McGuire, Joe R. Melton, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Craig Neill, Abdirahman M. Omar, Tsuneo Ono, Anna Peregon, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Roland Séférian, Jörg Schwinger, Naomi Smith, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Guido R. van der Werf, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-1783-2019, https://doi.org/10.5194/essd-11-1783-2019, 2019
Short summary
Short summary
The Global Carbon Budget 2019 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Marta Álvarez, Susan Becker, Henry C. Bittig, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Steve D. Jones, Sara Jutterström, Maren K. Karlsen, Alex Kozyr, Siv K. Lauvset, Claire Lo Monaco, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Maciej Telszewski, Bronte Tilbrook, Anton Velo, and Rik Wanninkhof
Earth Syst. Sci. Data, 11, 1437–1461, https://doi.org/10.5194/essd-11-1437-2019, https://doi.org/10.5194/essd-11-1437-2019, 2019
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2019 is the first update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 840 hydrographic cruises covering the world's oceans from 1972 to 2017.
Pearse J. Buchanan, Richard J. Matear, Zanna Chase, Steven J. Phipps, and Nathan L. Bindoff
Geosci. Model Dev., 12, 1491–1523, https://doi.org/10.5194/gmd-12-1491-2019, https://doi.org/10.5194/gmd-12-1491-2019, 2019
Short summary
Short summary
Oceanic sediment cores are commonly used to understand past climates. The composition of the sediments changes with the ocean above it. An understanding of oceanographic conditions that existed many thousands of years ago, in some cases many millions of years ago, can therefore be extracted from sediment cores. We simulate two chemical signatures (13C and 15N) of sediment cores in a model. This study assesses the model before it is applied to reinterpret the sedimentary record.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Judith Hauck, Julia Pongratz, Penelope A. Pickers, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Almut Arneth, Vivek K. Arora, Leticia Barbero, Ana Bastos, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Scott C. Doney, Thanos Gkritzalis, Daniel S. Goll, Ian Harris, Vanessa Haverd, Forrest M. Hoffman, Mario Hoppema, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Truls Johannessen, Chris D. Jones, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Peter Landschützer, Nathalie Lefèvre, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Craig Neill, Are Olsen, Tsueno Ono, Prabir Patra, Anna Peregon, Wouter Peters, Philippe Peylin, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Matthias Rocher, Christian Rödenbeck, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Tobias Steinhoff, Adrienne Sutton, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, Rebecca Wright, Sönke Zaehle, and Bo Zheng
Earth Syst. Sci. Data, 10, 2141–2194, https://doi.org/10.5194/essd-10-2141-2018, https://doi.org/10.5194/essd-10-2141-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2018 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Ben Kravitz, Philip J. Rasch, Hailong Wang, Alan Robock, Corey Gabriel, Olivier Boucher, Jason N. S. Cole, Jim Haywood, Duoying Ji, Andy Jones, Andrew Lenton, John C. Moore, Helene Muri, Ulrike Niemeier, Steven Phipps, Hauke Schmidt, Shingo Watanabe, Shuting Yang, and Jin-Ho Yoon
Atmos. Chem. Phys., 18, 13097–13113, https://doi.org/10.5194/acp-18-13097-2018, https://doi.org/10.5194/acp-18-13097-2018, 2018
Short summary
Short summary
Marine cloud brightening has been proposed as a means of geoengineering/climate intervention, or deliberately altering the climate system to offset anthropogenic climate change. In idealized simulations that highlight contrasts between land and ocean, we find that the globe warms, including the ocean due to transport of heat from land. This study reinforces that no net energy input into the Earth system does not mean that temperature will necessarily remain unchanged.
Duoying Ji, Songsong Fang, Charles L. Curry, Hiroki Kashimura, Shingo Watanabe, Jason N. S. Cole, Andrew Lenton, Helene Muri, Ben Kravitz, and John C. Moore
Atmos. Chem. Phys., 18, 10133–10156, https://doi.org/10.5194/acp-18-10133-2018, https://doi.org/10.5194/acp-18-10133-2018, 2018
Short summary
Short summary
We examine extreme temperature and precipitation under climate-model-simulated solar dimming and stratospheric aerosol injection geoengineering schemes. Both types of geoengineering lead to lower minimum temperatures at higher latitudes and greater cooling of minimum temperatures and maximum temperatures over land compared with oceans. Stratospheric aerosol injection is more effective in reducing tropical extreme precipitation, while solar dimming is more effective over extra-tropical regions.
Andrew Lenton, Richard J. Matear, David P. Keller, Vivian Scott, and Naomi E. Vaughan
Earth Syst. Dynam., 9, 339–357, https://doi.org/10.5194/esd-9-339-2018, https://doi.org/10.5194/esd-9-339-2018, 2018
Short summary
Short summary
Artificial ocean alkalinization (AOA) is capable of reducing atmospheric carbon dioxide concentrations and surface warming while also addressing ocean acidification. We simulate the Earth system response to a fixed addition of AOA under low and high emissions. We explore the regional and global response to AOA. A key finding is that AOA is much more effective at reducing warming and ocean acidification under low emissions, despite lower carbon uptake.
David P. Keller, Andrew Lenton, Vivian Scott, Naomi E. Vaughan, Nico Bauer, Duoying Ji, Chris D. Jones, Ben Kravitz, Helene Muri, and Kirsten Zickfeld
Geosci. Model Dev., 11, 1133–1160, https://doi.org/10.5194/gmd-11-1133-2018, https://doi.org/10.5194/gmd-11-1133-2018, 2018
Short summary
Short summary
There is little consensus on the impacts and efficacy of proposed carbon dioxide removal (CDR) methods as a potential means of mitigating climate change. To address this need, the Carbon Dioxide Removal Model Intercomparison Project (or CDR-MIP) has been initiated. This project brings together models of the Earth system in a common framework to explore the potential, impacts, and challenges of CDR. Here, we describe the first set of CDR-MIP experiments.
Richard J. Matear and Andrew Lenton
Biogeosciences, 15, 1721–1732, https://doi.org/10.5194/bg-15-1721-2018, https://doi.org/10.5194/bg-15-1721-2018, 2018
Short summary
Short summary
We show climate–carbon feedbacks accelerate and enhance ocean acidification. Such an acceleration of ocean acidification may further undermine the ability of marine biota to adapt to the changing environment. Our study also identifies the need to use Earth system models to make future ocean acidification projections (relevance to AR6) and the need to reduce the uncertainty in the climate–carbon feedbacks.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Julia Pongratz, Andrew C. Manning, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Robert B. Jackson, Thomas A. Boden, Pieter P. Tans, Oliver D. Andrews, Vivek K. Arora, Dorothee C. E. Bakker, Leticia Barbero, Meike Becker, Richard A. Betts, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Catherine E. Cosca, Jessica Cross, Kim Currie, Thomas Gasser, Ian Harris, Judith Hauck, Vanessa Haverd, Richard A. Houghton, Christopher W. Hunt, George Hurtt, Tatiana Ilyina, Atul K. Jain, Etsushi Kato, Markus Kautz, Ralph F. Keeling, Kees Klein Goldewijk, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Ivan Lima, Danica Lombardozzi, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Yukihiro Nojiri, X. Antonio Padin, Anna Peregon, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Janet Reimer, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Steven van Heuven, Nicolas Viovy, Nicolas Vuichard, Anthony P. Walker, Andrew J. Watson, Andrew J. Wiltshire, Sönke Zaehle, and Dan Zhu
Earth Syst. Sci. Data, 10, 405–448, https://doi.org/10.5194/essd-10-405-2018, https://doi.org/10.5194/essd-10-405-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2017 describes data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. It is the 12th annual update and the 6th published in this journal.
Camilla W. Stjern, Helene Muri, Lars Ahlm, Olivier Boucher, Jason N. S. Cole, Duoying Ji, Andy Jones, Jim Haywood, Ben Kravitz, Andrew Lenton, John C. Moore, Ulrike Niemeier, Steven J. Phipps, Hauke Schmidt, Shingo Watanabe, and Jón Egill Kristjánsson
Atmos. Chem. Phys., 18, 621–634, https://doi.org/10.5194/acp-18-621-2018, https://doi.org/10.5194/acp-18-621-2018, 2018
Short summary
Short summary
Marine cloud brightening (MCB) has been proposed to help limit global warming. We present here the first multi-model assessment of idealized MCB simulations from the Geoengineering Model Intercomparison Project. While all models predict a global cooling as intended, there is considerable spread between the models both in terms of radiative forcing and the climate response, largely linked to the substantial differences in the models' representation of clouds.
Thomas W. Trull, Abraham Passmore, Diana M. Davies, Tim Smit, Kate Berry, and Bronte Tilbrook
Biogeosciences, 15, 31–49, https://doi.org/10.5194/bg-15-31-2018, https://doi.org/10.5194/bg-15-31-2018, 2018
Short summary
Short summary
We present the first large-scale survey of planktonic biogenic carbonate concentrations south of Australia, accompanied by biogenic silica and particulate organic carbon. These suggest that coccolithophores are largely restricted to subantarctic waters and are present in much lower abundance than in Northern Hemisphere polar waters. Comparison to upper ocean properties suggests that thermal tolerance and competition with diatoms for limiting iron may be as influential as ocean acidification.
Paula Conde Pardo, Bronte Tilbrook, Clothilde Langlais, Thomas William Trull, and Stephen Rich Rintoul
Biogeosciences, 14, 5217–5237, https://doi.org/10.5194/bg-14-5217-2017, https://doi.org/10.5194/bg-14-5217-2017, 2017
Short summary
Short summary
The carbon content of the water masses of the Southern Ocean south of Tasmania has increased over the period 1995–2011, leading to a general decrease in pH. An enhancement in the upwelling of DIC-rich deep waters is the main plausible cause of the increase in carbon in surface waters south of the Polar Front. North of the Polar Front, strong winds favor the ventilation of surface to intermediate layers, where the DIC increase is explained by the uptake of atmospheric CO2.
Rachel M. Law, Tilo Ziehn, Richard J. Matear, Andrew Lenton, Matthew A. Chamberlain, Lauren E. Stevens, Ying-Ping Wang, Jhan Srbinovsky, Daohua Bi, Hailin Yan, and Peter F. Vohralik
Geosci. Model Dev., 10, 2567–2590, https://doi.org/10.5194/gmd-10-2567-2017, https://doi.org/10.5194/gmd-10-2567-2017, 2017
Short summary
Short summary
The paper describes a version of the Australian Community Climate and Earth System Simulator that has been enabled to simulate the carbon cycle, which is designated ACCESS-ESM1. The model performance for pre-industrial conditions is assessed and land and ocean carbon fluxes are found to be simulated realistically.
Tilo Ziehn, Andrew Lenton, Rachel M. Law, Richard J. Matear, and Matthew A. Chamberlain
Geosci. Model Dev., 10, 2591–2614, https://doi.org/10.5194/gmd-10-2591-2017, https://doi.org/10.5194/gmd-10-2591-2017, 2017
Short summary
Short summary
Our work presents the evaluation of the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) over the historical period (1850–2005). The main focus is on climate and carbon related variables. Globally integrated land–atmosphere and ocean–atmosphere fluxes and flux patterns are well reproduced and show good agreement with most recent observations. This makes ACCESS-ESM1 a useful tool to explore the change in land and oceanic carbon uptake in the future.
James C. Orr, Raymond G. Najjar, Olivier Aumont, Laurent Bopp, John L. Bullister, Gokhan Danabasoglu, Scott C. Doney, John P. Dunne, Jean-Claude Dutay, Heather Graven, Stephen M. Griffies, Jasmin G. John, Fortunat Joos, Ingeborg Levin, Keith Lindsay, Richard J. Matear, Galen A. McKinley, Anne Mouchet, Andreas Oschlies, Anastasia Romanou, Reiner Schlitzer, Alessandro Tagliabue, Toste Tanhua, and Andrew Yool
Geosci. Model Dev., 10, 2169–2199, https://doi.org/10.5194/gmd-10-2169-2017, https://doi.org/10.5194/gmd-10-2169-2017, 2017
Short summary
Short summary
The Ocean Model Intercomparison Project (OMIP) is a model comparison effort under Phase 6 of the Coupled Model Intercomparison Project (CMIP6). Its physical component is described elsewhere in this special issue. Here we describe its ocean biogeochemical component (OMIP-BGC), detailing simulation protocols and analysis diagnostics. Simulations focus on ocean carbon, other biogeochemical tracers, air-sea exchange of CO2 and related gases, and chemical tracers used to evaluate modeled circulation.
Pearse J. Buchanan, Richard J. Matear, Andrew Lenton, Steven J. Phipps, Zanna Chase, and David M. Etheridge
Clim. Past, 12, 2271–2295, https://doi.org/10.5194/cp-12-2271-2016, https://doi.org/10.5194/cp-12-2271-2016, 2016
Short summary
Short summary
We quantify the contributions of physical and biogeochemical changes in the ocean to enhancing ocean carbon storage at the Last Glacial Maximum. We find that simulated circulation and surface conditions cannot explain changes in carbon storage or other major biogeochemical fields that existed during the glacial climate. Key modifications to the functioning of the biological pump are therefore required to explain the glacial climate and improve model–proxy agreement for all fields.
Emlyn M. Jones, Mark E. Baird, Mathieu Mongin, John Parslow, Jenny Skerratt, Jenny Lovell, Nugzar Margvelashvili, Richard J. Matear, Karen Wild-Allen, Barbara Robson, Farhan Rizwi, Peter Oke, Edward King, Thomas Schroeder, Andy Steven, and John Taylor
Biogeosciences, 13, 6441–6469, https://doi.org/10.5194/bg-13-6441-2016, https://doi.org/10.5194/bg-13-6441-2016, 2016
Short summary
Short summary
Marine biogeochemical models are often used to understand water quality, nutrient and blue-carbon dynamics at scales that range from estuaries and bays, through to the global ocean. We introduce a new methodology allowing for the assimilation of observed remote sensing reflectances, avoiding the need to use empirically derived chlorophyll-a concentrations. This method opens up the possibility to assimilate of reflectances from a variety of missions and potentially non-satellite platforms.
Corinne Le Quéré, Robbie M. Andrew, Josep G. Canadell, Stephen Sitch, Jan Ivar Korsbakken, Glen P. Peters, Andrew C. Manning, Thomas A. Boden, Pieter P. Tans, Richard A. Houghton, Ralph F. Keeling, Simone Alin, Oliver D. Andrews, Peter Anthoni, Leticia Barbero, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Kim Currie, Christine Delire, Scott C. Doney, Pierre Friedlingstein, Thanos Gkritzalis, Ian Harris, Judith Hauck, Vanessa Haverd, Mario Hoppema, Kees Klein Goldewijk, Atul K. Jain, Etsushi Kato, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Joe R. Melton, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Kevin O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Christian Rödenbeck, Joe Salisbury, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Adrienne J. Sutton, Taro Takahashi, Hanqin Tian, Bronte Tilbrook, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 8, 605–649, https://doi.org/10.5194/essd-8-605-2016, https://doi.org/10.5194/essd-8-605-2016, 2016
Short summary
Short summary
The Global Carbon Budget 2016 is the 11th annual update of emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land, and ocean. This data synthesis brings together measurements, statistical information, and analyses of model results in order to provide an assessment of the global carbon budget and their uncertainties for years 1959 to 2015, with a projection for year 2016.
Dorothee C. E. Bakker, Benjamin Pfeil, Camilla S. Landa, Nicolas Metzl, Kevin M. O'Brien, Are Olsen, Karl Smith, Cathy Cosca, Sumiko Harasawa, Stephen D. Jones, Shin-ichiro Nakaoka, Yukihiro Nojiri, Ute Schuster, Tobias Steinhoff, Colm Sweeney, Taro Takahashi, Bronte Tilbrook, Chisato Wada, Rik Wanninkhof, Simone R. Alin, Carlos F. Balestrini, Leticia Barbero, Nicholas R. Bates, Alejandro A. Bianchi, Frédéric Bonou, Jacqueline Boutin, Yann Bozec, Eugene F. Burger, Wei-Jun Cai, Robert D. Castle, Liqi Chen, Melissa Chierici, Kim Currie, Wiley Evans, Charles Featherstone, Richard A. Feely, Agneta Fransson, Catherine Goyet, Naomi Greenwood, Luke Gregor, Steven Hankin, Nick J. Hardman-Mountford, Jérôme Harlay, Judith Hauck, Mario Hoppema, Matthew P. Humphreys, Christopher W. Hunt, Betty Huss, J. Severino P. Ibánhez, Truls Johannessen, Ralph Keeling, Vassilis Kitidis, Arne Körtzinger, Alex Kozyr, Evangelia Krasakopoulou, Akira Kuwata, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Claire Lo Monaco, Ansley Manke, Jeremy T. Mathis, Liliane Merlivat, Frank J. Millero, Pedro M. S. Monteiro, David R. Munro, Akihiko Murata, Timothy Newberger, Abdirahman M. Omar, Tsuneo Ono, Kristina Paterson, David Pearce, Denis Pierrot, Lisa L. Robbins, Shu Saito, Joe Salisbury, Reiner Schlitzer, Bernd Schneider, Roland Schweitzer, Rainer Sieger, Ingunn Skjelvan, Kevin F. Sullivan, Stewart C. Sutherland, Adrienne J. Sutton, Kazuaki Tadokoro, Maciej Telszewski, Matthias Tuma, Steven M. A. C. van Heuven, Doug Vandemark, Brian Ward, Andrew J. Watson, and Suqing Xu
Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, https://doi.org/10.5194/essd-8-383-2016, 2016
Short summary
Short summary
Version 3 of the Surface Ocean CO2 Atlas (www.socat.info) has 14.5 million CO2 (carbon dioxide) values for the years 1957 to 2014 covering the global oceans and coastal seas. Version 3 is an update to version 2 with a longer record and 44 % more CO2 values. The CO2 measurements have been made on ships, fixed moorings and drifting buoys. SOCAT enables quantification of the ocean carbon sink and ocean acidification, as well as model evaluation, thus informing climate negotiations.
Paulina Cetina-Heredia, Erik van Sebille, Richard Matear, and Moninya Roughan
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-53, https://doi.org/10.5194/bg-2016-53, 2016
Revised manuscript not accepted
Short summary
Short summary
Characterizing phytoplankton growth influences fisheries and climate. We use a lagrangian approach to identify phytoplankton blooms in the Great Australian Bight (GAB), and associate them with nitrate sources. We find that 88 % of the nitrate utilized in blooms is originated between the GAB and the SubAntarctic Front. Large nitrate concentrations are supplied at depth but do not reach the euphotic zone often. As a result, 55 % of blooms utilize nitrate supplied in the top 100 m.
X. Zhang, P. R. Oke, M. Feng, M. A. Chamberlain, J. A. Church, D. Monselesan, C. Sun, R. J. Matear, A. Schiller, and R. Fiedler
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-17, https://doi.org/10.5194/gmd-2016-17, 2016
Revised manuscript not accepted
Short summary
Short summary
Eddy-resolving global ocean models are highly desired, but expensive to run, and also subject to many problems including drift. Here we modified a near-global eddy-resolving OGCM for climate studies with some novel strategies. We demonstrated that the historical experiment driven by Japanese atmospheric reanalysis product, didn't have significant drifts, and also provided an eddy-resolving simulation of the global ocean over 1979–2014. Our experiences can be helpful to other modelling groups.
C. Rödenbeck, D. C. E. Bakker, N. Gruber, Y. Iida, A. R. Jacobson, S. Jones, P. Landschützer, N. Metzl, S. Nakaoka, A. Olsen, G.-H. Park, P. Peylin, K. B. Rodgers, T. P. Sasse, U. Schuster, J. D. Shutler, V. Valsala, R. Wanninkhof, and J. Zeng
Biogeosciences, 12, 7251–7278, https://doi.org/10.5194/bg-12-7251-2015, https://doi.org/10.5194/bg-12-7251-2015, 2015
Short summary
Short summary
This study investigates variations in the CO2 uptake of the ocean from year to year. These variations have been calculated from measurements of the surface-ocean carbon content by various different interpolation methods. The equatorial Pacific is estimated to be the region with the strongest year-to-year variations, tied to the El Nino phase. The global ocean CO2 uptake gradually increased from about the year 2000. The comparison of the interpolation methods identifies these findings as robust.
C. Le Quéré, R. Moriarty, R. M. Andrew, J. G. Canadell, S. Sitch, J. I. Korsbakken, P. Friedlingstein, G. P. Peters, R. J. Andres, T. A. Boden, R. A. Houghton, J. I. House, R. F. Keeling, P. Tans, A. Arneth, D. C. E. Bakker, L. Barbero, L. Bopp, J. Chang, F. Chevallier, L. P. Chini, P. Ciais, M. Fader, R. A. Feely, T. Gkritzalis, I. Harris, J. Hauck, T. Ilyina, A. K. Jain, E. Kato, V. Kitidis, K. Klein Goldewijk, C. Koven, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, I. D. Lima, N. Metzl, F. Millero, D. R. Munro, A. Murata, J. E. M. S. Nabel, S. Nakaoka, Y. Nojiri, K. O'Brien, A. Olsen, T. Ono, F. F. Pérez, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, C. Rödenbeck, S. Saito, U. Schuster, J. Schwinger, R. Séférian, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, I. T. van der Laan-Luijkx, G. R. van der Werf, S. van Heuven, D. Vandemark, N. Viovy, A. Wiltshire, S. Zaehle, and N. Zeng
Earth Syst. Sci. Data, 7, 349–396, https://doi.org/10.5194/essd-7-349-2015, https://doi.org/10.5194/essd-7-349-2015, 2015
Short summary
Short summary
Accurate assessment of anthropogenic carbon dioxide emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to understand the global carbon cycle, support the development of climate policies, and project future climate change. We describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on a range of data and models and their interpretation by a broad scientific community.
T. P. Sasse, B. I. McNeil, R. J. Matear, and A. Lenton
Biogeosciences, 12, 6017–6031, https://doi.org/10.5194/bg-12-6017-2015, https://doi.org/10.5194/bg-12-6017-2015, 2015
Short summary
Short summary
Our results show that accounting for oceanic CO2 seasonality is crucial to projecting the future onset of critical ocean acidification levels (i.e. aragonite undersaturation). In particular, seasonality will bring forward the initial onset of month-long undersaturation by a global average of 17 years. Importantly, widespread undersaturation is projected to occur once atmospheric CO2 reaches 496ppm in the North Pacific and 511ppm in the Southern Ocean, independent of emissions scenario.
C. Le Quéré, R. Moriarty, R. M. Andrew, G. P. Peters, P. Ciais, P. Friedlingstein, S. D. Jones, S. Sitch, P. Tans, A. Arneth, T. A. Boden, L. Bopp, Y. Bozec, J. G. Canadell, L. P. Chini, F. Chevallier, C. E. Cosca, I. Harris, M. Hoppema, R. A. Houghton, J. I. House, A. K. Jain, T. Johannessen, E. Kato, R. F. Keeling, V. Kitidis, K. Klein Goldewijk, C. Koven, C. S. Landa, P. Landschützer, A. Lenton, I. D. Lima, G. Marland, J. T. Mathis, N. Metzl, Y. Nojiri, A. Olsen, T. Ono, S. Peng, W. Peters, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. E. Salisbury, U. Schuster, J. Schwinger, R. Séférian, J. Segschneider, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, G. R. van der Werf, N. Viovy, Y.-P. Wang, R. Wanninkhof, A. Wiltshire, and N. Zeng
Earth Syst. Sci. Data, 7, 47–85, https://doi.org/10.5194/essd-7-47-2015, https://doi.org/10.5194/essd-7-47-2015, 2015
Short summary
Short summary
Carbon dioxide (CO2) emissions from human activities (burning fossil fuels and cement production, deforestation and other land-use change) are set to rise again in 2014.
This study (updated yearly) makes an accurate assessment of anthropogenic CO2 emissions and their redistribution between the atmosphere, ocean, and terrestrial biosphere in order to better understand the global carbon cycle, support the development of climate policies, and project future climate change.
C. Evenhuis, A. Lenton, N. E. Cantin, and J. M. Lough
Biogeosciences, 12, 2607–2630, https://doi.org/10.5194/bg-12-2607-2015, https://doi.org/10.5194/bg-12-2607-2015, 2015
Short summary
Short summary
Coral reefs are diverse ecosystems threatened by rising CO2 levels through increases in sea surface temperature and ocean acidification. This study presents a new unified model, based on experimental and observational data, that links changes in temperature and carbonate chemistry to coral health. We show that, despite the implicit complexity of the coral reef environment, our simple model can give important insights into how corals respond to changes in temperature and ocean acidification.
P. G. Strutton, V. J. Coles, R. R. Hood, R. J. Matear, M. J. McPhaden, and H. E. Phillips
Biogeosciences, 12, 2367–2382, https://doi.org/10.5194/bg-12-2367-2015, https://doi.org/10.5194/bg-12-2367-2015, 2015
Short summary
Short summary
In 2010, a first-of-its-kind deployment of biological sensors on a mooring in the central Indian Ocean revealed interesting variability in chlorophyll (a proxy for ocean productivity) at timescales of about 2 weeks. Using the mooring data with satellite observations and a biogeochemical model, it was determined that local wind mixing and entrainment, rather than mixed Rossby gravity waves, were likely responsible for much of the observed variability.
R. J. Matear, A. Lenton, D. Etheridge, and S. J. Phipps
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-1093-2015, https://doi.org/10.5194/cpd-11-1093-2015, 2015
Revised manuscript has not been submitted
Short summary
Short summary
Global climate models provide an important tool for simulating the earth's climate. Here we present a simulation of the climate of the Last Glacial Maximum, which was obtained by setting atmospheric greenhouse gas concentrations and the earth's orbital parameters to the 21 000 years before present values. We simulate an ocean behaviour that agrees with paleoclimate reconstructions supporting our ability to model the climate system and use the model to explore the impacts on the carbon cycle.
R. J. Matear and A. Lenton
Biogeosciences, 11, 3965–3983, https://doi.org/10.5194/bg-11-3965-2014, https://doi.org/10.5194/bg-11-3965-2014, 2014
C. Le Quéré, G. P. Peters, R. J. Andres, R. M. Andrew, T. A. Boden, P. Ciais, P. Friedlingstein, R. A. Houghton, G. Marland, R. Moriarty, S. Sitch, P. Tans, A. Arneth, A. Arvanitis, D. C. E. Bakker, L. Bopp, J. G. Canadell, L. P. Chini, S. C. Doney, A. Harper, I. Harris, J. I. House, A. K. Jain, S. D. Jones, E. Kato, R. F. Keeling, K. Klein Goldewijk, A. Körtzinger, C. Koven, N. Lefèvre, F. Maignan, A. Omar, T. Ono, G.-H. Park, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. Schwinger, J. Segschneider, B. D. Stocker, T. Takahashi, B. Tilbrook, S. van Heuven, N. Viovy, R. Wanninkhof, A. Wiltshire, and S. Zaehle
Earth Syst. Sci. Data, 6, 235–263, https://doi.org/10.5194/essd-6-235-2014, https://doi.org/10.5194/essd-6-235-2014, 2014
D. C. E. Bakker, B. Pfeil, K. Smith, S. Hankin, A. Olsen, S. R. Alin, C. Cosca, S. Harasawa, A. Kozyr, Y. Nojiri, K. M. O'Brien, U. Schuster, M. Telszewski, B. Tilbrook, C. Wada, J. Akl, L. Barbero, N. R. Bates, J. Boutin, Y. Bozec, W.-J. Cai, R. D. Castle, F. P. Chavez, L. Chen, M. Chierici, K. Currie, H. J. W. de Baar, W. Evans, R. A. Feely, A. Fransson, Z. Gao, B. Hales, N. J. Hardman-Mountford, M. Hoppema, W.-J. Huang, C. W. Hunt, B. Huss, T. Ichikawa, T. Johannessen, E. M. Jones, S. D. Jones, S. Jutterström, V. Kitidis, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. B. Manke, J. T. Mathis, L. Merlivat, N. Metzl, A. Murata, T. Newberger, A. M. Omar, T. Ono, G.-H. Park, K. Paterson, D. Pierrot, A. F. Ríos, C. L. Sabine, S. Saito, J. Salisbury, V. V. S. S. Sarma, R. Schlitzer, R. Sieger, I. Skjelvan, T. Steinhoff, K. F. Sullivan, H. Sun, A. J. Sutton, T. Suzuki, C. Sweeney, T. Takahashi, J. Tjiputra, N. Tsurushima, S. M. A. C. van Heuven, D. Vandemark, P. Vlahos, D. W. R. Wallace, R. Wanninkhof, and A. J. Watson
Earth Syst. Sci. Data, 6, 69–90, https://doi.org/10.5194/essd-6-69-2014, https://doi.org/10.5194/essd-6-69-2014, 2014
M. Ishii, R. A. Feely, K. B. Rodgers, G.-H. Park, R. Wanninkhof, D. Sasano, H. Sugimoto, C. E. Cosca, S. Nakaoka, M. Telszewski, Y. Nojiri, S. E. Mikaloff Fletcher, Y. Niwa, P. K. Patra, V. Valsala, H. Nakano, I. Lima, S. C. Doney, E. T. Buitenhuis, O. Aumont, J. P. Dunne, A. Lenton, and T. Takahashi
Biogeosciences, 11, 709–734, https://doi.org/10.5194/bg-11-709-2014, https://doi.org/10.5194/bg-11-709-2014, 2014
P. Landschützer, N. Gruber, D. C. E. Bakker, U. Schuster, S. Nakaoka, M. R. Payne, T. P. Sasse, and J. Zeng
Biogeosciences, 10, 7793–7815, https://doi.org/10.5194/bg-10-7793-2013, https://doi.org/10.5194/bg-10-7793-2013, 2013
O. Duteil, W. Koeve, A. Oschlies, D. Bianchi, E. Galbraith, I. Kriest, and R. Matear
Biogeosciences, 10, 7723–7738, https://doi.org/10.5194/bg-10-7723-2013, https://doi.org/10.5194/bg-10-7723-2013, 2013
V. V. S. S. Sarma, A. Lenton, R. M. Law, N. Metzl, P. K. Patra, S. Doney, I. D. Lima, E. Dlugokencky, M. Ramonet, and V. Valsala
Biogeosciences, 10, 7035–7052, https://doi.org/10.5194/bg-10-7035-2013, https://doi.org/10.5194/bg-10-7035-2013, 2013
S. Ohki, T. Irie, M. Inoue, K. Shinmen, H. Kawahata, T. Nakamura, A. Kato, Y. Nojiri, A. Suzuki, K. Sakai, and R. van Woesik
Biogeosciences, 10, 6807–6814, https://doi.org/10.5194/bg-10-6807-2013, https://doi.org/10.5194/bg-10-6807-2013, 2013
S. Nakaoka, M. Telszewski, Y. Nojiri, S. Yasunaka, C. Miyazaki, H. Mukai, and N. Usui
Biogeosciences, 10, 6093–6106, https://doi.org/10.5194/bg-10-6093-2013, https://doi.org/10.5194/bg-10-6093-2013, 2013
A. M. Waite, V. Rossi, M. Roughan, B. Tilbrook, P. A. Thompson, M. Feng, A. S. J. Wyatt, and E. J. Raes
Biogeosciences, 10, 5691–5702, https://doi.org/10.5194/bg-10-5691-2013, https://doi.org/10.5194/bg-10-5691-2013, 2013
K. R. N. Anthony, G. Diaz-Pulido, N. Verlinden, B. Tilbrook, and A. J. Andersson
Biogeosciences, 10, 4897–4909, https://doi.org/10.5194/bg-10-4897-2013, https://doi.org/10.5194/bg-10-4897-2013, 2013
T. P. Sasse, B. I. McNeil, and G. Abramowitz
Biogeosciences, 10, 4319–4340, https://doi.org/10.5194/bg-10-4319-2013, https://doi.org/10.5194/bg-10-4319-2013, 2013
A. Lenton, B. Tilbrook, R. M. Law, D. Bakker, S. C. Doney, N. Gruber, M. Ishii, M. Hoppema, N. S. Lovenduski, R. J. Matear, B. I. McNeil, N. Metzl, S. E. Mikaloff Fletcher, P. M. S. Monteiro, C. Rödenbeck, C. Sweeney, and T. Takahashi
Biogeosciences, 10, 4037–4054, https://doi.org/10.5194/bg-10-4037-2013, https://doi.org/10.5194/bg-10-4037-2013, 2013
P. R. Oke, D. A. Griffin, A. Schiller, R. J. Matear, R. Fiedler, J. Mansbridge, A. Lenton, M. Cahill, M. A. Chamberlain, and K. Ridgway
Geosci. Model Dev., 6, 591–615, https://doi.org/10.5194/gmd-6-591-2013, https://doi.org/10.5194/gmd-6-591-2013, 2013
B. I. McNeil and R. J. Matear
Biogeosciences, 10, 2219–2228, https://doi.org/10.5194/bg-10-2219-2013, https://doi.org/10.5194/bg-10-2219-2013, 2013
R. Wanninkhof, G. -H. Park, T. Takahashi, C. Sweeney, R. Feely, Y. Nojiri, N. Gruber, S. C. Doney, G. A. McKinley, A. Lenton, C. Le Quéré, C. Heinze, J. Schwinger, H. Graven, and S. Khatiwala
Biogeosciences, 10, 1983–2000, https://doi.org/10.5194/bg-10-1983-2013, https://doi.org/10.5194/bg-10-1983-2013, 2013
Related subject area
Biogeochemistry: Coastal Ocean
Temperature-enhanced effects of iron on Southern Ocean phytoplankton
Riverine nutrient impact on global ocean nitrogen cycle feedbacks and marine primary production in an Earth system model
The Northeast Greenland Shelf as a potential late-summer CO2 source to the atmosphere
Technical note: Ocean Alkalinity Enhancement Pelagic Impact Intercomparison Project (OAEPIIP)
Estimates of carbon sequestration potential in an expanding Arctic fjord (Hornsund, Svalbard) affected by dark plumes of glacial meltwater
An assessment of ocean alkalinity enhancement using aqueous hydroxides: kinetics, efficiency, and precipitation thresholds
High metabolic zinc demand within native Amundsen and Ross Sea phytoplankton communities determined by stable isotope uptake rate measurements
Dissolved nitric oxide in the lower Elbe Estuary and the Port of Hamburg area
Variable contribution of wastewater treatment plant effluents to downstream nitrous oxide concentrations and emissions
Responses of microbial metabolic rates to non-equilibrated silicate vs calcium-based ocean alkalinity enhancement
Distribution of nutrients and dissolved organic matter in a eutrophic equatorial estuary: the Johor River and the East Johor Strait
Investigating the effect of silicate- and calcium-based ocean alkalinity enhancement on diatom silicification
Ocean alkalinity enhancement using sodium carbonate salts does not lead to measurable changes in Fe dynamics in a mesocosm experiment
Quantification and mitigation of bottom-trawling impacts on sedimentary organic carbon stocks in the North Sea
Influence of ocean alkalinity enhancement with olivine or steel slag on a coastal plankton community in Tasmania
Multi-model comparison of trends and controls of near-bed oxygen concentration on the northwest European continental shelf under climate change
Picoplanktonic methane production in eutrophic surface waters
Vertical mixing alleviates autumnal oxygen deficiency in the central North Sea
Hypoxia also occurs in small highly turbid estuaries: the example of the Charente (Bay of Biscay)
Assessing the impacts of simulated Ocean Alkalinity Enhancement on viability and growth of near-shore species of phytoplankton
Seasonality and response of ocean acidification and hypoxia to major environmental anomalies in the southern Salish Sea, North America (2014–2018)
The influence of zooplankton and oxygen on the particulate organic carbon flux in the Benguela Upwelling System
Oceanographic processes driving low-oxygen conditions inside Patagonian fjords
Above- and belowground plant mercury dynamics in a salt marsh estuary in Massachusetts, USA
Reviews and syntheses: Biological Indicators of Oxygen Stress in Water Breathing Animals
Variability and drivers of carbonate chemistry at shellfish aquaculture sites in the Salish Sea, British Columbia
Unusual Hemiaulus bloom influences ocean productivity in Northeastern US Shelf waters
Insights into carbonate environmental conditions in the Chukchi Sea
UAV approaches for improved mapping of vegetation cover and estimation of carbon storage of small saltmarshes: examples from Loch Fleet, northeast Scotland
Iron “ore” nothing: benthic iron fluxes from the oxygen-deficient Santa Barbara Basin enhance phytoplankton productivity in surface waters
Marine anoxia initiates giant sulfur-oxidizing bacterial mat proliferation and associated changes in benthic nitrogen, sulfur, and iron cycling in the Santa Barbara Basin, California Borderland
Uncertainty in the evolution of northwestern North Atlantic circulation leads to diverging biogeochemical projections
The additionality problem of ocean alkalinity enhancement
Short-term variation in pH in seawaters around coastal areas of Japan: characteristics and forcings
Revisiting the applicability and constraints of molybdenum- and uranium-based paleo redox proxies: comparing two contrasting sill fjords
Influence of a small submarine canyon on biogenic matter export flux in the lower St. Lawrence Estuary, eastern Canada
Single-celled bioturbators: benthic foraminifera mediate oxygen penetration and prokaryotic diversity in intertidal sediment
Assessing impacts of coastal warming, acidification, and deoxygenation on Pacific oyster (Crassostrea gigas) farming: a case study in the Hinase area, Okayama Prefecture, and Shizugawa Bay, Miyagi Prefecture, Japan
Multiple nitrogen sources for primary production inferred from δ13C and δ15N in the southern Sea of Japan
Influence of manganese cycling on alkalinity in the redox stratified water column of Chesapeake Bay
Estuarine flocculation dynamics of organic carbon and metals from boreal acid sulfate soils
Drivers of particle sinking velocities in the Peruvian upwelling system
Impacts and uncertainties of climate-induced changes in watershed inputs on estuarine hypoxia
Considerations for hypothetical carbon dioxide removal via alkalinity addition in the Amazon River watershed
High metabolism and periodic hypoxia associated with drifting macrophyte detritus in the shallow subtidal Baltic Sea
Production and accumulation of reef framework by calcifying corals and macroalgae on a remote Indian Ocean cay
Zooplankton community succession and trophic links during a mesocosm experiment in the coastal upwelling off Callao Bay (Peru)
Temporal and spatial evolution of bottom-water hypoxia in the St Lawrence estuarine system
Significant nutrient consumption in the dark subsurface layer during a diatom bloom: a case study on Funka Bay, Hokkaido, Japan
Contrasts in dissolved, particulate, and sedimentary organic carbon from the Kolyma River to the East Siberian Shelf
Charlotte Eich, Mathijs van Manen, J. Scott P. McCain, Loay J. Jabre, Willem H. van de Poll, Jinyoung Jung, Sven B. E. H. Pont, Hung-An Tian, Indah Ardiningsih, Gert-Jan Reichart, Erin M. Bertrand, Corina P. D. Brussaard, and Rob Middag
Biogeosciences, 21, 4637–4663, https://doi.org/10.5194/bg-21-4637-2024, https://doi.org/10.5194/bg-21-4637-2024, 2024
Short summary
Short summary
Phytoplankton growth in the Southern Ocean (SO) is often limited by low iron (Fe) concentrations. Sea surface warming impacts Fe availability and can affect phytoplankton growth. We used shipboard Fe clean incubations to test how changes in Fe and temperature affect SO phytoplankton. Their abundances usually increased with Fe addition and temperature increase, with Fe being the major factor. These findings imply potential shifts in ecosystem structure, impacting food webs and elemental cycling.
Miriam Tivig, David P. Keller, and Andreas Oschlies
Biogeosciences, 21, 4469–4493, https://doi.org/10.5194/bg-21-4469-2024, https://doi.org/10.5194/bg-21-4469-2024, 2024
Short summary
Short summary
Marine biological production is highly dependent on the availability of nitrogen and phosphorus. Rivers are the main source of phosphorus to the oceans but poorly represented in global model oceans. We include dissolved nitrogen and phosphorus from river export in a global model ocean and find that the addition of riverine phosphorus affects marine biology on millennial timescales more than riverine nitrogen alone. Globally, riverine phosphorus input increases primary production rates.
Esdoorn Willcox, Marcos Lemes, Thomas Juul-Pedersen, Mikael Kristian Sejr, Johnna Marchiano Holding, and Søren Rysgaard
Biogeosciences, 21, 4037–4050, https://doi.org/10.5194/bg-21-4037-2024, https://doi.org/10.5194/bg-21-4037-2024, 2024
Short summary
Short summary
In this work, we measured the chemistry of seawater from samples obtained from different depths and locations off the east coast of the Northeast Greenland National Park to determine what is influencing concentrations of dissolved CO2. Historically, the region has always been thought to take up CO2 from the atmosphere, but we show that it is possible for the region to become a source in late summer. We discuss the variables that may be related to such changes.
Lennart Thomas Bach, Aaron James Ferderer, Julie LaRoche, and Kai Georg Schulz
Biogeosciences, 21, 3665–3676, https://doi.org/10.5194/bg-21-3665-2024, https://doi.org/10.5194/bg-21-3665-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is an emerging marine CO2 removal method, but its environmental effects are insufficiently understood. The OAE Pelagic Impact Intercomparison Project (OAEPIIP) provides funding for a standardized and globally replicated microcosm experiment to study the effects of OAE on plankton communities. Here, we provide a detailed manual for the OAEPIIP experiment. We expect OAEPIIP to help build scientific consensus on the effects of OAE on plankton.
Marlena Szeligowska, Déborah Benkort, Anna Przyborska, Mateusz Moskalik, Bernabé Moreno, Emilia Trudnowska, and Katarzyna Błachowiak-Samołyk
Biogeosciences, 21, 3617–3639, https://doi.org/10.5194/bg-21-3617-2024, https://doi.org/10.5194/bg-21-3617-2024, 2024
Short summary
Short summary
The European Arctic is experiencing rapid regional warming, causing glaciers that terminate in the sea to retreat onto land. Due to this process, the area of a well-studied fjord, Hornsund, has increased by around 100 km2 (40%) since 1976. Combining satellite and in situ data with a mathematical model, we estimated that, despite some negative consequences of glacial meltwater release, such emerging coastal waters could mitigate climate change by increasing carbon uptake and storage by sediments.
Mallory C. Ringham, Nathan Hirtle, Cody Shaw, Xi Lu, Julian Herndon, Brendan R. Carter, and Matthew D. Eisaman
Biogeosciences, 21, 3551–3570, https://doi.org/10.5194/bg-21-3551-2024, https://doi.org/10.5194/bg-21-3551-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement leverages the large surface area and carbon storage capacity of the oceans to store atmospheric CO2 as dissolved bicarbonate. We monitored CO2 uptake in seawater treated with NaOH to establish operational boundaries for carbon removal experiments. Results show that CO2 equilibration occurred on the order of weeks to months, was consistent with values expected from equilibration calculations, and was limited by mineral precipitation at high pH and CaCO3 saturation.
Riss M. Kell, Rebecca J. Chmiel, Deepa Rao, Dawn M. Moran, Matthew R. McIlvin, Tristan J. Horner, Nicole L. Schanke, Robert B. Dunbar, Giacomo R. DiTullio, and Mak A. Saito
EGUsphere, https://doi.org/10.5194/egusphere-2024-2085, https://doi.org/10.5194/egusphere-2024-2085, 2024
Short summary
Short summary
Southern Ocean phytoplankton play a pivotal role in regulating the uptake and sequestration of carbon dioxide from the atmosphere. This study describes a new stable zinc isotope uptake rate measurement method used to quantify zinc and cadmium uptake rates within native Southern Ocean phytoplankton communities. This data can better inform biogeochemical model predictions of primary production, carbon export, and atmospheric carbon dioxide flux.
Riel Carlo O. Ingeniero, Gesa Schulz, and Hermann W. Bange
Biogeosciences, 21, 3425–3440, https://doi.org/10.5194/bg-21-3425-2024, https://doi.org/10.5194/bg-21-3425-2024, 2024
Short summary
Short summary
Our research is the first to measure dissolved NO concentrations in temperate estuarine waters, providing insights into its distribution under varying conditions and enhancing our understanding of its production processes. Dissolved NO was supersaturated in the Elbe Estuary, indicating that it is a source of atmospheric NO. The observed distribution of dissolved NO most likely resulted from nitrification.
Weiyi Tang, Jeff Talbott, Timothy Jones, and Bess B. Ward
Biogeosciences, 21, 3239–3250, https://doi.org/10.5194/bg-21-3239-2024, https://doi.org/10.5194/bg-21-3239-2024, 2024
Short summary
Short summary
Wastewater treatment plants (WWTPs) are known to be hotspots of greenhouse gas emissions. However, the impact of WWTPs on the emission of the greenhouse gas N2O in downstream aquatic environments is less constrained. We found spatially and temporally variable but overall higher N2O concentrations and fluxes in waters downstream of WWTPs, pointing to the need for efficient N2O removal in addition to the treatment of nitrogen in WWTPs.
Laura Marin-Samper, Javier Arístegui, Nauzet Hernández-Hernández, and Ulf Riebesell
EGUsphere, https://doi.org/10.5194/egusphere-2024-1776, https://doi.org/10.5194/egusphere-2024-1776, 2024
Short summary
Short summary
This study exposed a natural community to two non-CO2 equilibrated ocean alkalinity enhancement (OAE) deployments using different minerals. Adding alkalinity in this manner decreases dissolved CO2, essential for photosynthesis. While photosynthesis was not suppressed, bloom formation was delayed, potentially impacting marine food webs. The study emphasizes the need for further research on OAE without prior equilibration and its ecological implications
Amanda Y. L. Cheong, Kogila Vani Annammala, Ee Ling Yong, Yongli Zhou, Robert S. Nichols, and Patrick Martin
Biogeosciences, 21, 2955–2971, https://doi.org/10.5194/bg-21-2955-2024, https://doi.org/10.5194/bg-21-2955-2024, 2024
Short summary
Short summary
We measured nutrients and dissolved organic matter for 1 year in a eutrophic tropical estuary to understand their sources and cycling. Our data show that the dissolved organic matter originates partly from land and partly from microbial processes in the water. Internal recycling is likely important for maintaining high nutrient concentrations, and we found that there is often excess nitrogen compared to silicon and phosphorus. Our data help to explain how eutrophication persists in this system.
Aaron Ferderer, Kai G. Schulz, Ulf Riebesell, Kirralee G. Baker, Zanna Chase, and Lennart T. Bach
Biogeosciences, 21, 2777–2794, https://doi.org/10.5194/bg-21-2777-2024, https://doi.org/10.5194/bg-21-2777-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a promising method of atmospheric carbon removal; however, its ecological impacts remain largely unknown. We assessed the effects of simulated silicate- and calcium-based mineral OAE on diatom silicification. We found that increased silicate concentrations from silicate-based OAE increased diatom silicification. In contrast, the enhancement of alkalinity had no effect on community silicification and minimal effects on the silicification of different genera.
David González-Santana, María Segovia, Melchor González-Dávila, Librada Ramírez, Aridane G. González, Leonardo J. Pozzo-Pirotta, Veronica Arnone, Victor Vázquez, Ulf Riebesell, and J. Magdalena Santana-Casiano
Biogeosciences, 21, 2705–2715, https://doi.org/10.5194/bg-21-2705-2024, https://doi.org/10.5194/bg-21-2705-2024, 2024
Short summary
Short summary
In a recent experiment off the coast of Gran Canaria (Spain), scientists explored a method called ocean alkalinization enhancement (OAE), where carbonate minerals were added to seawater. This process changed the levels of certain ions in the water, affecting its pH and buffering capacity. The researchers were particularly interested in how this could impact the levels of essential trace metals in the water.
Lucas Porz, Wenyan Zhang, Nils Christiansen, Jan Kossack, Ute Daewel, and Corinna Schrum
Biogeosciences, 21, 2547–2570, https://doi.org/10.5194/bg-21-2547-2024, https://doi.org/10.5194/bg-21-2547-2024, 2024
Short summary
Short summary
Seafloor sediments store a large amount of carbon, helping to naturally regulate Earth's climate. If disturbed, some sediment particles can turn into CO2, but this effect is not well understood. Using computer simulations, we found that bottom-contacting fishing gears release about 1 million tons of CO2 per year in the North Sea, one of the most heavily fished regions globally. We show how protecting certain areas could reduce these emissions while also benefitting seafloor-living animals.
Jiaying A. Guo, Robert F. Strzepek, Kerrie M. Swadling, Ashley T. Townsend, and Lennart T. Bach
Biogeosciences, 21, 2335–2354, https://doi.org/10.5194/bg-21-2335-2024, https://doi.org/10.5194/bg-21-2335-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement aims to increase atmospheric CO2 sequestration by adding alkaline materials to the ocean. We assessed the environmental effects of olivine and steel slag powder on coastal plankton. Overall, slag is more efficient than olivine in releasing total alkalinity and, thus, in its ability to sequester CO2. Slag also had less environmental effect on the enclosed plankton communities when considering its higher CO2 removal potential based on this 3-week experiment.
Giovanni Galli, Sarah Wakelin, James Harle, Jason Holt, and Yuri Artioli
Biogeosciences, 21, 2143–2158, https://doi.org/10.5194/bg-21-2143-2024, https://doi.org/10.5194/bg-21-2143-2024, 2024
Short summary
Short summary
This work shows that, under a high-emission scenario, oxygen concentration in deep water of parts of the North Sea and Celtic Sea can become critically low (hypoxia) towards the end of this century. The extent and frequency of hypoxia depends on the intensity of climate change projected by different climate models. This is the result of a complex combination of factors like warming, increase in stratification, changes in the currents and changes in biological processes.
Sandy E. Tenorio and Laura Farías
Biogeosciences, 21, 2029–2050, https://doi.org/10.5194/bg-21-2029-2024, https://doi.org/10.5194/bg-21-2029-2024, 2024
Short summary
Short summary
Time series studies show that CH4 is highly dynamic on the coastal ocean surface and planktonic communities are linked to CH4 accumulation, as found in coastal upwelling off Chile. We have identified the crucial role of picoplankton (> 3 µm) in CH4 recycling, especially with the addition of methylated substrates (trimethylamine and methylphosphonic acid) during upwelling and non-upwelling periods. These insights improve understanding of surface ocean CH4 recycling, aiding CH4 emission estimates.
Charlotte A. J. Williams, Tom Hull, Jan Kaiser, Claire Mahaffey, Naomi Greenwood, Matthew Toberman, and Matthew R. Palmer
Biogeosciences, 21, 1961–1971, https://doi.org/10.5194/bg-21-1961-2024, https://doi.org/10.5194/bg-21-1961-2024, 2024
Short summary
Short summary
Oxygen (O2) is a key indicator of ocean health. The risk of O2 loss in the productive coastal/continental slope regions is increasing. Autonomous underwater vehicles equipped with O2 optodes provide lots of data but have problems resolving strong vertical O2 changes. Here we show how to overcome this and calculate how much O2 is supplied to the low-O2 bottom waters via mixing. Bursts in mixing supply nearly all of the O2 to bottom waters in autumn, stopping them reaching ecologically low levels.
Sabine Schmidt and Ibrahima Iris Diallo
Biogeosciences, 21, 1785–1800, https://doi.org/10.5194/bg-21-1785-2024, https://doi.org/10.5194/bg-21-1785-2024, 2024
Short summary
Short summary
Along the French coast facing the Bay of Biscay, the large Gironde and Loire estuaries suffer from hypoxia. This prompted a study of the small Charente estuary located between them. This work reveals a minimum oxygen zone in the Charente estuary, which extends for about 25 km. Temperature is the main factor controlling the hypoxia. This calls for the monitoring of small turbid macrotidal estuaries that are vulnerable to hypoxia, a risk expected to increase with global warming.
Jessica L. Oberlander, Mackenzie E. Burke, Cat A. London, and Hugh L. MacIntyre
EGUsphere, https://doi.org/10.5194/egusphere-2024-971, https://doi.org/10.5194/egusphere-2024-971, 2024
Short summary
Short summary
OAE is a promising negative emission technology that could restore the oceanic pH and carbonate system to a pre-industrial state. To our knowledge, this paper is the first to assess the potential impact of OAE on phytoplankton through an analysis of prior studies and the effects of simulated OAE on photosynthetic competence. Our findings suggest that there may be little if any significant impact on most phytoplankton studied to date if OAE is conducted in well-flushed, near-shore environments.
Simone R. Alin, Jan A. Newton, Richard A. Feely, Samantha Siedlecki, and Dana Greeley
Biogeosciences, 21, 1639–1673, https://doi.org/10.5194/bg-21-1639-2024, https://doi.org/10.5194/bg-21-1639-2024, 2024
Short summary
Short summary
We provide a new multi-stressor data product that allows us to characterize the seasonality of temperature, O2, and CO2 in the southern Salish Sea and delivers insights into the impacts of major marine heatwave and precipitation anomalies on regional ocean acidification and hypoxia. We also describe the present-day frequencies of temperature, O2, and ocean acidification conditions that cross thresholds of sensitive regional species that are economically or ecologically important.
Luisa Chiara Meiritz, Tim Rixen, Anja K. van der Plas, Tarron Lamont, and Niko Lahajnar
EGUsphere, https://doi.org/10.5194/egusphere-2024-700, https://doi.org/10.5194/egusphere-2024-700, 2024
Short summary
Short summary
The transport of particles through the water column and their subsequent burial on the seafloor is an important process for carbon storage and the mediation of carbon dioxide in the oceans. Our results from the Benguela Upwelling System distinguish between the northern and southern parts of the study area and between passive (gravitational) and active (zooplankton) transport processes. The decomposition of organic matter is doubtlessly an important factor for the size of oxygen minimum zones.
Pamela Linford, Iván Pérez-Santos, Paulina Montero, Patricio A. Díaz, Claudia Aracena, Elías Pinilla, Facundo Barrera, Manuel Castillo, Aida Alvera-Azcárate, Mónica Alvarado, Gabriel Soto, Cécile Pujol, Camila Schwerter, Sara Arenas-Uribe, Pilar Navarro, Guido Mancilla-Gutiérrez, Robinson Altamirano, Javiera San Martín, and Camila Soto-Riquelme
Biogeosciences, 21, 1433–1459, https://doi.org/10.5194/bg-21-1433-2024, https://doi.org/10.5194/bg-21-1433-2024, 2024
Short summary
Short summary
The Patagonian fjords comprise a world region where low-oxygen water and hypoxia conditions are observed. An in situ dataset was used to quantify the mechanism involved in the presence of these conditions in northern Patagonian fjords. Water mass analysis confirmed the contribution of Equatorial Subsurface Water in the advection of the low-oxygen water, and hypoxic conditions occurred when the community respiration rate exceeded the gross primary production.
Ting Wang, Buyun Du, Inke Forbrich, Jun Zhou, Joshua Polen, Elsie M. Sunderland, Prentiss H. Balcom, Celia Chen, and Daniel Obrist
Biogeosciences, 21, 1461–1476, https://doi.org/10.5194/bg-21-1461-2024, https://doi.org/10.5194/bg-21-1461-2024, 2024
Short summary
Short summary
The strong seasonal increases of Hg in aboveground biomass during the growing season and the lack of changes observed after senescence in this salt marsh ecosystem suggest physiologically controlled Hg uptake pathways. The Hg sources found in marsh aboveground tissues originate from a mix of sources, unlike terrestrial ecosystems, where atmospheric GEM is the main source. Belowground plant tissues mostly take up Hg from soils. Overall, the salt marsh currently serves as a small net Hg sink.
Michael R. Roman, Andrew H. Altieri, Denise Breitburg, Erica Ferrer, Natalya D. Gallo, Shin-ichi Ito, Karin Limburg, Kenneth Rose, Moriaki Yasuhara, and Lisa A. Levin
EGUsphere, https://doi.org/10.5194/egusphere-2024-616, https://doi.org/10.5194/egusphere-2024-616, 2024
Short summary
Short summary
Oxygen-depleted ocean waters have increased worldwide. In order to improve our understanding of the impacts of this oxygen loss on marine life it is essential that we develop reliable indicators that track the negative impacts of low oxygen. We review various indicators of oxygen stress for marine animals including their use, research needs and application to confront the challenges of ocean oxygen loss.
Eleanor Simpson, Debby Ianson, Karen E. Kohfeld, Ana C. Franco, Paul A. Covert, Marty Davelaar, and Yves Perreault
Biogeosciences, 21, 1323–1353, https://doi.org/10.5194/bg-21-1323-2024, https://doi.org/10.5194/bg-21-1323-2024, 2024
Short summary
Short summary
Shellfish aquaculture operates in nearshore areas where data on ocean acidification parameters are limited. We show daily and seasonal variability in pH and saturation states of calcium carbonate at nearshore aquaculture sites in British Columbia, Canada, and determine the contributing drivers of this variability. We find that nearshore locations have greater variability than open waters and that the uptake of carbon by phytoplankton is the major driver of pH and saturation state variability.
S. Alejandra Castillo Cieza, Rachel H. R. Stanley, Pierre Marrec, Diana N. Fontaine, E. Taylor Crockford, Dennis J. McGillicuddy Jr., Arshia Mehta, Susanne Menden-Deuer, Emily E. Peacock, Tatiana A. Rynearson, Zoe O. Sandwith, Weifeng Zhang, and Heidi M. Sosik
Biogeosciences, 21, 1235–1257, https://doi.org/10.5194/bg-21-1235-2024, https://doi.org/10.5194/bg-21-1235-2024, 2024
Short summary
Short summary
The coastal ocean in the northeastern USA provides many services, including fisheries and habitats for threatened species. In summer 2019, a bloom occurred of a large unusual phytoplankton, the diatom Hemiaulus, with nitrogen-fixing symbionts. This led to vast changes in productivity and grazing rates in the ecosystem. This work shows that the emergence of one species can have profound effects on ecosystem function. Such changes may become more prevalent as the ocean warms due to climate change.
Claudine Hauri, Brita Irving, Sam Dupont, Rémi Pagés, Donna D. W. Hauser, and Seth L. Danielson
Biogeosciences, 21, 1135–1159, https://doi.org/10.5194/bg-21-1135-2024, https://doi.org/10.5194/bg-21-1135-2024, 2024
Short summary
Short summary
Arctic marine ecosystems are highly susceptible to impacts of climate change and ocean acidification. We present pH and pCO2 time series (2016–2020) from the Chukchi Ecosystem Observatory and analyze the drivers of the current conditions to get a better understanding of how climate change and ocean acidification could affect the ecological niches of organisms.
William Hiles, Lucy C. Miller, Craig Smeaton, and William E. N. Austin
Biogeosciences, 21, 929–948, https://doi.org/10.5194/bg-21-929-2024, https://doi.org/10.5194/bg-21-929-2024, 2024
Short summary
Short summary
Saltmarsh soils may help to limit the rate of climate change by storing carbon. To understand their impacts, they must be accurately mapped. We use drone data to estimate the size of three saltmarshes in NE Scotland. We find that drone imagery, combined with tidal data, can reliably inform our understanding of saltmarsh size. When compared with previous work using vegetation communities, we find that our most reliable new estimates of stored carbon are 15–20 % smaller than previously estimated.
De'Marcus Robinson, Anh L. D. Pham, David J. Yousavich, Felix Janssen, Frank Wenzhöfer, Eleanor C. Arrington, Kelsey M. Gosselin, Marco Sandoval-Belmar, Matthew Mar, David L. Valentine, Daniele Bianchi, and Tina Treude
Biogeosciences, 21, 773–788, https://doi.org/10.5194/bg-21-773-2024, https://doi.org/10.5194/bg-21-773-2024, 2024
Short summary
Short summary
The present study suggests that high release of ferrous iron from the seafloor of the oxygen-deficient Santa Barabara Basin (California) supports surface primary productivity, creating positive feedback on seafloor iron release by enhancing low-oxygen conditions in the basin.
David J. Yousavich, De'Marcus Robinson, Xuefeng Peng, Sebastian J. E. Krause, Frank Wenzhöfer, Felix Janssen, Na Liu, Jonathan Tarn, Franklin Kinnaman, David L. Valentine, and Tina Treude
Biogeosciences, 21, 789–809, https://doi.org/10.5194/bg-21-789-2024, https://doi.org/10.5194/bg-21-789-2024, 2024
Short summary
Short summary
Declining oxygen (O2) concentrations in coastal oceans can threaten people’s ways of life and food supplies. Here, we investigate how mats of bacteria that proliferate on the seafloor of the Santa Barbara Basin sustain and potentially worsen these O2 depletion events through their unique chemoautotrophic metabolism. Our study shows how changes in seafloor microbiology and geochemistry brought on by declining O2 concentrations can help these mats grow as well as how that growth affects the basin.
Krysten Rutherford, Katja Fennel, Lina Garcia Suarez, and Jasmin G. John
Biogeosciences, 21, 301–314, https://doi.org/10.5194/bg-21-301-2024, https://doi.org/10.5194/bg-21-301-2024, 2024
Short summary
Short summary
We downscaled two mid-century (~2075) ocean model projections to a high-resolution regional ocean model of the northwest North Atlantic (NA) shelf. In one projection, the NA shelf break current practically disappears; in the other it remains almost unchanged. This leads to a wide range of possible future shelf properties. More accurate projections of coastal circulation features would narrow the range of possible outcomes of biogeochemical projections for shelf regions.
Lennart Thomas Bach
Biogeosciences, 21, 261–277, https://doi.org/10.5194/bg-21-261-2024, https://doi.org/10.5194/bg-21-261-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a widely considered marine carbon dioxide removal method. OAE aims to accelerate chemical rock weathering, which is a natural process that slowly sequesters atmospheric carbon dioxide. This study shows that the addition of anthropogenic alkalinity via OAE can reduce the natural release of alkalinity and, therefore, reduce the efficiency of OAE for climate mitigation. However, the additionality problem could be mitigated via a variety of activities.
Tsuneo Ono, Daisuke Muraoka, Masahiro Hayashi, Makiko Yorifuji, Akihiro Dazai, Shigeyuki Omoto, Takehiro Tanaka, Tomohiro Okamura, Goh Onitsuka, Kenji Sudo, Masahiko Fujii, Ryuji Hamanoue, and Masahide Wakita
Biogeosciences, 21, 177–199, https://doi.org/10.5194/bg-21-177-2024, https://doi.org/10.5194/bg-21-177-2024, 2024
Short summary
Short summary
We carried out parallel year-round observations of pH and related parameters in five stations around the Japan coast. It was found that short-term acidified situations with Omega_ar less than 1.5 occurred at four of five stations. Most of such short-term acidified events were related to the short-term low salinity event, and the extent of short-term pH drawdown at high freshwater input was positively correlated with the nutrient concentration of the main rivers that flow into the coastal area.
K. Mareike Paul, Martijn Hermans, Sami A. Jokinen, Inda Brinkmann, Helena L. Filipsson, and Tom Jilbert
Biogeosciences, 20, 5003–5028, https://doi.org/10.5194/bg-20-5003-2023, https://doi.org/10.5194/bg-20-5003-2023, 2023
Short summary
Short summary
Seawater naturally contains trace metals such as Mo and U, which accumulate under low oxygen conditions on the seafloor. Previous studies have used sediment Mo and U contents as an archive of changing oxygen concentrations in coastal waters. Here we show that in fjords the use of Mo and U for this purpose may be impaired by additional processes. Our findings have implications for the reliable use of Mo and U to reconstruct oxygen changes in fjords.
Hannah Sharpe, Michel Gosselin, Catherine Lalande, Alexandre Normandeau, Jean-Carlos Montero-Serrano, Khouloud Baccara, Daniel Bourgault, Owen Sherwood, and Audrey Limoges
Biogeosciences, 20, 4981–5001, https://doi.org/10.5194/bg-20-4981-2023, https://doi.org/10.5194/bg-20-4981-2023, 2023
Short summary
Short summary
We studied the impact of submarine canyon processes within the Pointe-des-Monts system on biogenic matter export and phytoplankton assemblages. Using data from three oceanographic moorings, we show that the canyon experienced two low-amplitude sediment remobilization events in 2020–2021 that led to enhanced particle fluxes in the deep-water column layer > 2.6 km offshore. Sinking phytoplankton fluxes were lower near the canyon compared to background values from the lower St. Lawrence Estuary.
Dewi Langlet, Florian Mermillod-Blondin, Noémie Deldicq, Arthur Bauville, Gwendoline Duong, Lara Konecny, Mylène Hugoni, Lionel Denis, and Vincent M. P. Bouchet
Biogeosciences, 20, 4875–4891, https://doi.org/10.5194/bg-20-4875-2023, https://doi.org/10.5194/bg-20-4875-2023, 2023
Short summary
Short summary
Benthic foraminifera are single-cell marine organisms which can move in the sediment column. They were previously reported to horizontally and vertically transport sediment particles, yet the impact of their motion on the dissolved fluxes remains unknown. Using microprofiling, we show here that foraminiferal burrow formation increases the oxygen penetration depth in the sediment, leading to a change in the structure of the prokaryotic community.
Masahiko Fujii, Ryuji Hamanoue, Lawrence Patrick Cases Bernardo, Tsuneo Ono, Akihiro Dazai, Shigeyuki Oomoto, Masahide Wakita, and Takehiro Tanaka
Biogeosciences, 20, 4527–4549, https://doi.org/10.5194/bg-20-4527-2023, https://doi.org/10.5194/bg-20-4527-2023, 2023
Short summary
Short summary
This is the first study of the current and future impacts of climate change on Pacific oyster farming in Japan. Future coastal warming and acidification may affect oyster larvae as a result of longer exposure to lower-pH waters. A prolonged spawning period may harm oyster processing by shortening the shipping period and reducing oyster quality. To minimize impacts on Pacific oyster farming, in addition to mitigation measures, local adaptation measures may be required.
Taketoshi Kodama, Atsushi Nishimoto, Ken-ichi Nakamura, Misato Nakae, Naoki Iguchi, Yosuke Igeta, and Yoichi Kogure
Biogeosciences, 20, 3667–3682, https://doi.org/10.5194/bg-20-3667-2023, https://doi.org/10.5194/bg-20-3667-2023, 2023
Short summary
Short summary
Carbon and nitrogen are essential elements for organisms; their stable isotope ratios (13C : 12C, 15N : 14N) are useful tools for understanding turnover and movement in the ocean. In the Sea of Japan, the environment is rapidly being altered by human activities. The 13C : 12C of small organic particles is increased by active carbon fixation, and phytoplankton growth increases the values. The 15N : 14N variations suggest that nitrates from many sources contribute to organic production.
Aubin Thibault de Chanvalon, George W. Luther, Emily R. Estes, Jennifer Necker, Bradley M. Tebo, Jianzhong Su, and Wei-Jun Cai
Biogeosciences, 20, 3053–3071, https://doi.org/10.5194/bg-20-3053-2023, https://doi.org/10.5194/bg-20-3053-2023, 2023
Short summary
Short summary
The intensity of the oceanic trap of CO2 released by anthropogenic activities depends on the alkalinity brought by continental weathering. Between ocean and continent, coastal water and estuaries can limit or favour the alkalinity transfer. This study investigate new interactions between dissolved metals and alkalinity in the oxygen-depleted zone of estuaries.
Joonas J. Virtasalo, Peter Österholm, and Eero Asmala
Biogeosciences, 20, 2883–2901, https://doi.org/10.5194/bg-20-2883-2023, https://doi.org/10.5194/bg-20-2883-2023, 2023
Short summary
Short summary
We mixed acidic metal-rich river water from acid sulfate soils and seawater in the laboratory to study the flocculation of dissolved metals and organic matter in estuaries. Al and Fe flocculated already at a salinity of 0–2 to large organic flocs (>80 µm size). Precipitation of Al and Fe hydroxide flocculi (median size 11 µm) began when pH exceeded ca. 5.5. Mn transferred weakly to Mn hydroxides and Co to the flocs. Up to 50 % of Cu was associated with the flocs, irrespective of seawater mixing.
Moritz Baumann, Allanah Joy Paul, Jan Taucher, Lennart Thomas Bach, Silvan Goldenberg, Paul Stange, Fabrizio Minutolo, and Ulf Riebesell
Biogeosciences, 20, 2595–2612, https://doi.org/10.5194/bg-20-2595-2023, https://doi.org/10.5194/bg-20-2595-2023, 2023
Short summary
Short summary
The sinking velocity of marine particles affects how much atmospheric CO2 is stored inside our oceans. We measured particle sinking velocities in the Peruvian upwelling system and assessed their physical and biochemical drivers. We found that sinking velocity was mainly influenced by particle size and porosity, while ballasting minerals played only a minor role. Our findings help us to better understand the particle sinking dynamics in this highly productive marine system.
Kyle E. Hinson, Marjorie A. M. Friedrichs, Raymond G. Najjar, Maria Herrmann, Zihao Bian, Gopal Bhatt, Pierre St-Laurent, Hanqin Tian, and Gary Shenk
Biogeosciences, 20, 1937–1961, https://doi.org/10.5194/bg-20-1937-2023, https://doi.org/10.5194/bg-20-1937-2023, 2023
Short summary
Short summary
Climate impacts are essential for environmental managers to consider when implementing nutrient reduction plans designed to reduce hypoxia. This work highlights relative sources of uncertainty in modeling regional climate impacts on the Chesapeake Bay watershed and consequent declines in bay oxygen levels. The results demonstrate that planned water quality improvement goals are capable of reducing hypoxia levels by half, offsetting climate-driven impacts on terrestrial runoff.
Linquan Mu, Jaime B. Palter, and Hongjie Wang
Biogeosciences, 20, 1963–1977, https://doi.org/10.5194/bg-20-1963-2023, https://doi.org/10.5194/bg-20-1963-2023, 2023
Short summary
Short summary
Enhancing ocean alkalinity accelerates carbon dioxide removal from the atmosphere. We hypothetically added alkalinity to the Amazon River and examined the increment of the carbon uptake by the Amazon plume. We also investigated the minimum alkalinity addition in which this perturbation at the river mouth could be detected above the natural variability.
Karl M. Attard, Anna Lyssenko, and Iván F. Rodil
Biogeosciences, 20, 1713–1724, https://doi.org/10.5194/bg-20-1713-2023, https://doi.org/10.5194/bg-20-1713-2023, 2023
Short summary
Short summary
Aquatic plants produce a large amount of organic matter through photosynthesis that, following erosion, is deposited on the seafloor. In this study, we show that plant detritus can trigger low-oxygen conditions (hypoxia) in shallow coastal waters, making conditions challenging for most marine animals. We propose that the occurrence of hypoxia may be underestimated because measurements typically do not consider the region closest to the seafloor, where detritus accumulates.
M. James McLaughlin, Cindy Bessey, Gary A. Kendrick, John Keesing, and Ylva S. Olsen
Biogeosciences, 20, 1011–1026, https://doi.org/10.5194/bg-20-1011-2023, https://doi.org/10.5194/bg-20-1011-2023, 2023
Short summary
Short summary
Coral reefs face increasing pressures from environmental change at present. The coral reef framework is produced by corals and calcifying algae. The Kimberley region of Western Australia has escaped land-based anthropogenic impacts. Specimens of the dominant coral and algae were collected from Browse Island's reef platform and incubated in mesocosms to measure calcification and production patterns of oxygen. This study provides important data on reef building and climate-driven effects.
Patricia Ayón Dejo, Elda Luz Pinedo Arteaga, Anna Schukat, Jan Taucher, Rainer Kiko, Helena Hauss, Sabrina Dorschner, Wilhelm Hagen, Mariona Segura-Noguera, and Silke Lischka
Biogeosciences, 20, 945–969, https://doi.org/10.5194/bg-20-945-2023, https://doi.org/10.5194/bg-20-945-2023, 2023
Short summary
Short summary
Ocean upwelling regions are highly productive. With ocean warming, severe changes in upwelling frequency and/or intensity and expansion of accompanying oxygen minimum zones are projected. In a field experiment off Peru, we investigated how different upwelling intensities affect the pelagic food web and found failed reproduction of dominant zooplankton. The changes projected could severely impact the reproductive success of zooplankton communities and the pelagic food web in upwelling regions.
Mathilde Jutras, Alfonso Mucci, Gwenaëlle Chaillou, William A. Nesbitt, and Douglas W. R. Wallace
Biogeosciences, 20, 839–849, https://doi.org/10.5194/bg-20-839-2023, https://doi.org/10.5194/bg-20-839-2023, 2023
Short summary
Short summary
The deep waters of the lower St Lawrence Estuary and gulf have, in the last decades, experienced a strong decline in their oxygen concentration. Below 65 µmol L-1, the waters are said to be hypoxic, with dire consequences for marine life. We show that the extent of the hypoxic zone shows a seven-fold increase in the last 20 years, reaching 9400 km2 in 2021. After a stable period at ~ 65 µmol L⁻¹ from 1984 to 2019, the oxygen level also suddenly decreased to ~ 35 µmol L-1 in 2020.
Sachi Umezawa, Manami Tozawa, Yuichi Nosaka, Daiki Nomura, Hiroji Onishi, Hiroto Abe, Tetsuya Takatsu, and Atsushi Ooki
Biogeosciences, 20, 421–438, https://doi.org/10.5194/bg-20-421-2023, https://doi.org/10.5194/bg-20-421-2023, 2023
Short summary
Short summary
We conducted repetitive observations in Funka Bay, Japan, during the spring bloom 2019. We found nutrient concentration decreases in the dark subsurface layer during the bloom. Incubation experiments confirmed that diatoms could consume nutrients at a substantial rate, even in darkness. We concluded that the nutrient reduction was mainly caused by nutrient consumption by diatoms in the dark.
Dirk Jong, Lisa Bröder, Tommaso Tesi, Kirsi H. Keskitalo, Nikita Zimov, Anna Davydova, Philip Pika, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 20, 271–294, https://doi.org/10.5194/bg-20-271-2023, https://doi.org/10.5194/bg-20-271-2023, 2023
Short summary
Short summary
With this study, we want to highlight the importance of studying both land and ocean together, and water and sediment together, as these systems function as a continuum, and determine how organic carbon derived from permafrost is broken down and its effect on global warming. Although on the one hand it appears that organic carbon is removed from sediments along the pathway of transport from river to ocean, it also appears to remain relatively ‘fresh’, despite this removal and its very old age.
Cited articles
Albright, R., Langdon, C., and Anthony, K. R. N.: Dynamics of seawater carbonate chemistry, production,
and calcification of a coral reef flat, central Great Barrier Reef, Biogeosciences, 10, 6747–6758, https://doi.org/10.5194/bg-10-6747-2013, 2013.
Antonov, J. I., Seidov, D., Boyer, T. P., Locarnini, R. A., Mishonov, A. V.,
Garcia, H. E., Baranova, O. K., Zweng, M. M., and Johnson, D. R.: World
Ocean Atlas 2009, Volume 2: Salinity, edited by: Levitus, S., NOAA Atlas
NESDIS 69, US Government Printing Office, Washington, D.C., 184 pp., 2010.
Aumont, O., Le Quéré, C., and Orr, J. C.: NOCES
Project Interannual HOWTO, 2004, available at:
http://ocmip5.ipsl.jussieu.fr/OCMIP/phase2/simulations/ (last access: July 2009), 2004.
Bell, J. D., Johnson, J. E., Ganachaud, A. S., Gehrke, P. C., Hobday, A. J., Hoegh-Guldberg, O., Le
Borgne, R., Lehodey, P., Lough, J. M., Pickering, T., Pratchett, M. S., and Waycott, M.: Vulnerability of Tropical Pacific Fisheries
and Aquaculture to Climate Change, Secretariat of the Pacific Community,
Noumea, New Caledonia, 2011.
Caldeira, K. and Wickett, M. E.: Anthropogenic carbon and ocean pH, Nature,
425, 365–365, https://doi.org/10.1038/425365a, 2003.
Calvo, E., Marshall, J. F., Pelejero, C., McCulloch, M. T., Gagan, M. K.,
and Lough, J. M.: Interdecadal climate variability in the Coral Sea since
1708 AD, Palaeogeogr. Palaeocl., 248, 190–201,
https://doi.org/10.1016/J.Palaeo.2006.12.003, 2007.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J.,
Chhabra, A., Defriers, R., Galloway, J. N., Heinman, M., Jones, C. D., Le
Quéré, C., Myneni, R. B., Piao, S., and Thornton, P.: Carbon and
Other Biogeochemical Cycles, in: Climate Change 2013: The Physical Science
Basis, Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin,
D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, A., A, N., Xia, Y.,
V., B., and Midgley, P. M., Cambridge University Press, Cambridge, United
Kingdom and New York, 2013.
Condie, S. A. and Dunn, J. R.: Seasonal characteristics of the surface
mixed layer in the Australasian region: implications for primary production
regimes and biogeography, Mar. Freshwater Res., 57, 569–590, 2006.
Dickson, A. G. and Millero, F. J. : A comparison of the equilibrium constants
for the dissociation of carbonic acid in seawater media, Deep-Sea Res. Pt. I, 34, 1733–1743, https://doi.org/10.1016/0198-0149(87)90021-5,
1987.
Doney, S. C., Balch, W. M., Fabry, V. J., and Feely, R. A.: Ocean
Acidification: A Critical Emerging Problem for the Ocean Sciences,
Oceanography, 22, 16–25, https://doi.org/10.5670/Oceanog.2009.93, 2009.
Doney, S. C., Ruckelshaus, M., Duffy, J. E., Barry, J. P., Chan, F.,
English, C. A., Galindo, H. M., Grebmeier, J. M., Hollowed, A. B., Knowlton,
N., Polovina, J., Rabalais, N. N., Sydeman, W. J., and Talley, L. D.:
Climate Change Impacts on Marine Ecosystems, Annu. Rev. Mar. Sci., 4, 11–37,
https://doi.org/10.1146/Annurev-Marine-041911-111611, 2012.
Dore, J. E., Lukas, R., Sadler, D. W., Church, M. J., and Karl, D. M.:
Physical and biogeochemical modulation of ocean acidification in the central
North Pacific, P. Natl. Acad. Sci. USA, 106, 12235–12240,
https://doi.org/10.1073/Pnas.0906044106, 2009.
Durack, P. J. and Wijffels, S. E.: Fifty-Year Trends in Global Ocean
Salinities and Their Relationship to Broad-Scale Warming, J. Climate, 23, 4342–4362, https://doi.org/10.1175/2010jcli3377.1, 2010.
Durack, P. J., Wijffels, S. E., and Matear, R. J.: Ocean Salinities Reveal
Strong Global Water Cycle Intensification During 1950 to 2000, Science, 336,
455–458, https://doi.org/10.1126/Science.1212222, 2012.
Fabricius, K. E., Langdon, C., Uthicke, S., Humphrey, C., Noonan, S.,
De'ath, G., Okazaki, R., Muehllehner, N., Glas, M. S., and Lough, J. M.:
Losers and winners in coral reefs acclimatized to elevated carbon dioxide
concentrations, Nature Climate Change, 1, 165–169, https://doi.org/10.1038/Nclimate1122, 2011.
Fabry, V. J., Seibel, B. A., Feely, R. A., and Orr, J. C.: Impacts of ocean
acidification on marine fauna and ecosystem processes, ICES J. Mar. Sci., 65,
414–432, https://doi.org/10.1093/Icesjms/Fsn048, 2008.
Frolicher, T. L. and Joos, F.: Reversible and irreversible impacts of
greenhouse gas emissions in multi-century projections with the NCAR global
coupled carbon cycle-climate model, Clim. Dynam., 35, 1439–1459,
https://doi.org/10.1007/S00382-009-0727-0, 2010.
Gagliano, M., McCormick, M. I., Moore, J. A., and Depczynski, M.: The basics
of acidification: baseline variability of pH on Australian coral reefs,
Mar. Biol., 157, 1849–1856, https://doi.org/10.1007/S00227-010-1456-Y, 2010.
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O.
K., Zweng, M. M., and Johnson, D. R.: World Ocean Atlas 2009, Volume
3: Dissolved Oxygen Apparent Oxygen Utilization, and Oxygen Saturation,
edited by: Levitus, S., NOAA Atlas NESDIS 70, US Government Printing
Office, Washington, D.C., 344 pp., 2010a.
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Zweng, M. M.,
Baranova, O. K., and Johnson, D. R.: World Ocean Atlas 2009, Volume 4:
Nutrients (phosphate, nitrate, silicate), edited by: Levitus, S., NOAA
Atlas NESDIS 71, US Government Printing Office, Washington, D.C., 398 pp.,
2010b.
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O.
K., Zweng, M. M., Reagan, J. R., and Johnson, D. R.: World Ocean Atlas 2013,
Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen
Saturation, edited by: Levitus, S. and Mishonov, A., NOAA Atlas NESDIS
75, 27 pp., 2014a.
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O.
K., Zweng, M. M., Reagan, J. R., and Johnson, D. R.: World Ocean Atlas 2013,
Volume 4: Dissolved Inorganic Nutrients (phosphate, nitrate, silicate),
edited by: Levitus, S. and Mishonov, A., NOAA Atlas NESDIS 76, 25 pp.,
2014b.
Guinotte, J. M., Buddemeier, R. W., and Kleypas, J. A.: Future coral reef
habitat marginality: temporal and spatial effects of climate change in the
Pacific basin, Coral Reefs, 22, 551–558, https://doi.org/10.1007/S00338-003-0331-4,
2003.
Hauck, J. and Völker, C.: Rising atmospheric CO2 leads to large
impact of biology on Southern Ocean CO2 uptake via changes of the Revelle
factor, Geophys. Res. Lett., 42, 1459–1464, https://doi.org/10.1002/2015GL063070, 2015.
Hieronymus, J. and Walin, G.: Unravelling the land source: an investigation
of the processes contributing to the oceanic input of DIC and alkalinity,
Tellus B, 65, 19683, https://doi.org/10.3402/Tellusb.V65i0.19683, 2013.
Hobday, A. J. and Pecl, G. T.: Identification of global marine hotspots:
sentinels for change and vanguards for adaptation action, Rev. Fish. Biol. Fisher., 24, 415–425,
https://doi.org/10.1007/s11160-013-9326-6, 2013.
Iglesias-Rodriguez, M. D., Halloran, P. R., Rickaby, R. E. M., Hall, I. R.,
Colmenero-Hidalgo, E., Gittins, J. R., Green, D. R. H., Tyrrell, T., Gibbs,
S. J., von Dassow, P., Rehm, E., Armbrust, E. V., and Boessenkool, K. P.:
Phytoplankton calcification in a high-CO2 world, Science, 320, 336–340,
https://doi.org/10.1126/Science.1154122, 2008.
Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister, J.
L., Feely, R. A., Millero, F. J., Mordy, C., and Peng, T. H.: A global ocean
carbon climatology: Results from Global Data Analysis Project (GLODAP),
Global Biogeochem. Cy., 18, Gb4031, https://doi.org/10.1029/2004gb002247, 2004.
Kuchinke, M., Tilbrook, B., and Lenton, A.: Seasonal variability of
aragonite saturation state in the Western Pacific, Mar. Chem., 161, 1–13,
https://doi.org/10.1016/J.Marchem.2014.01.001, 2014.
Langdon, C.: Effect of elevated pCO2 on photosynthesis and calcification of
corals and interactions with seasonal change in temperature/irradiance and
nutrient enrichment, J. Geophys. Res., 110, C09S07,
https://doi.org/10.1029/2004jc002576, 2005.
Le Quéré, C., Moriarty, R., Andrew, R. M., Peters, G. P., Ciais, P., Friedlingstein, P.,
Jones, S. D., Sitch, S., Tans, P., Arneth, A., Boden, T. A., Bopp, L., Bozec, Y., Canadell, J. G.,
Chini, L. P., Chevallier, F., Cosca, C. E., Harris, I., Hoppema, M., Houghton, R. A., House, J. I.,
Jain, A. K., Johannessen, T., Kato, E., Keeling, R. F., Kitidis, V., Klein Goldewijk, K., Koven, C.,
Landa, C. S., Landschützer, P., Lenton, A., Lima, I. D., Marland, G., Mathis, J. T., Metzl, N., Nojiri, Y.,
Olsen, A., Ono, T., Peng, S., Peters, W., Pfeil, B., Poulter, B., Raupach, M. R., Regnier, P.,
Rödenbeck, C., Saito, S., Salisbury, J. E., Schuster, U., Schwinger, J., Séférian, R., Segschneider, J.,
Steinhoff, T., Stocker, B. D., Sutton, A. J., Takahashi, T., Tilbrook, B., van der Werf, G. R., Viovy, N.,
Wang, Y.-P., Wanninkhof, R., Wiltshire, A., and Zeng, N.: Global carbon budget 2014, Earth Syst. Sci. Data, 7, 47–85, https://doi.org/10.5194/essd-7-47-2015, 2015.
Lee, K., Tong, L. T., Millero, F. J., Sabine, C. L., Dickson, A. G., Goyet,
C., Park, G. H., Wanninkhof, R., Feely, R. A., and Key, R. M.: Global
relationships of total alkalinity with salinity and temperature in surface
waters of the world's oceans, Geophys. Res. Lett., 33, L19605,
https://doi.org/10.1029/2006gl027207, 2006.
Lenton, A., Metzl, N., Takahashi, T., Kuchinke, M., Matear, R. J., Roy, T.,
Sutherland, S. C., Sweeney, C., and Tilbrook, B.: The observed evolution of
oceanic pCO(2) and its drivers over the last two decades, Global Biogeochem. Cy., 26, Gb2021, https://doi.org/10.1029/2011gb004095, 2012.
Lima, F. P. and Wethey, D. S.: Three decades of high-resolution coastal sea
surface temperatures reveal more than warming, Nat. Commun., 3, 704,
https://doi.org/10.1038/Ncomms1713, 2012.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H.
E., Baranova, O. K., Zweng, M. M., and Johnson, D. R.: World Ocean Atlas
2009, Volume 1: Temperature, edited by: Levitus, S., NOAA Atlas
NESDIS 68, US Government Printing Office, Washington, D.C., 184 pp., 2010.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H.
E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D.
R., Hamilton, M., and Seidov, D.: World Ocean Atlas 2013, Volume 1:
Temperature, edited by: Levitus, S. and Mishonov, A., NOAA
Atlas NESDIS 73, 40 pp., 2013.
Lynch, T. P., Morello, E. B., Evans, K., Richardson, A., Rochester, J. W.
C., Steinberg, C. R., Roughan, M., Thompson, P., Middleton, J. F., Feng, M.,
Sherrington, R., Brando, V., Tilbrook, B., Ridgway, K., Allen, S., Doherty,
P., Hill, K., and Moltmann, T. C.: IMOS National Reference Stations: a
continental wide physical, chemical and biological coastal observing system, PLOS One, 9, e113652, https://doi.org/10.1371/journal.pone.0113652, 2014.
Matear, R. J. and Lenton, A.: Quantifying the impact of ocean acidification on our future
climate, Biogeosciences, 11, 3965–3983, https://doi.org/10.5194/bg-11-3965-2014, 2014.
McNeil, B. I. and Matear, R. J.: Southern Ocean acidification: A tipping point
at 450 ppm atmospheric CO2, P. Natl. Acad. Sci. USA, 105, 18860–18864, https://doi.org/10.1073/pnas.0806318105,
2008.
McKinley, G. A., Fay, A. R., Takahashi, T, and Metzl, N.: Convergence of
atmospheric and North Atlantic carbon dioxide trends on multidecadal
timescales, Nat. Geosci., 4, 606–610, https://doi.org/10.1038/ngeo1193, 2011.
Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicz, R. M.:
Measurement of the apparent dissociation constants of carbonic acid in
seawater at atmospheric pressure, Limnol. Oceanogr., 18,
897–907, https://doi.org/10.4319/lo.1973.18.6.0897, 1973.
Mucci, A.: The Solubility of Calcite and Aragonite in Seawater at Various
Salinities, Temperatures, and One Atmosphere Total Pressure, Am. J. Sci., 283,
780–799, 1983.
Munday, P. L., Donelson, J. M., Dixson, D. L., and Endo, G. G. K.: Effects
of ocean acidification on the early life history of a tropical marine fish,
P. Roy. Soc. B-Biol. Sci., 276, 3275–3283, https://doi.org/10.1098/Rspb.2009.0784, 2009.
Munday, P. L., Dixson, D. L., McCormick, M. I., Meekan, M., Ferrari, M. C.
O., and Chivers, D. P.: Replenishment of fish populations is threatened by
ocean acidification, P. Natl. Acad. Sci. USA, 107, 12930–12934,
https://doi.org/10.1073/Pnas.1004519107, 2010.
Pelejero, C., Calvo, E., McCulloch, M. T., Marshall, J. F., Gagan, M. K.,
Lough, J. M., and Opdyke, B. N.: Preindustrial to modern interdecadal
variability in coral reef pH, Science, 309, 2204–2207,
https://doi.org/10.1126/Science.1113692, 2005.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L.
V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea
surface temperature, sea ice, and night marine air temperature since the
late nineteenth century, J. Geophys. Res.-Atmos., 108,
4407, https://doi.org/10.1029/2002jd002670, 2003.
Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., and
Schlax, M. G.: Daily high-resolution-blended analyses for sea surface
temperature, J. Climate, 20, 5473–5496, https://doi.org/10.1175/2007jcli1824.1,
2007.
Ricke, K. L., Orr, J. C., Schneider, K., and Caldeira, K.: Risks to coral
reefs from ocean carbonate chemistry changes in recent earth system model
projections, Environ. Res. Lett., 8, 034003,
https://doi.org/10.1088/1748-9326/8/3/034003, 2013.
Ridgway, K. R., Dunn, J. R., and Wilkin, J. L.: Ocean interpolation by
four-dimensional weighted least squares – application to the waters around
Australasia, J. Atmos. Ocean. Technol., 19, 1357–1375, 2002.
Riebesell, U., Fabry, V. J., Hansson, L., and Gattuso, J.-P.: Guide to best
practices for ocean acidification research and data reporting, Publications
Office of the European Union, Luxembourg, 260 pp., 2010.
Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J.
L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero,
F. J., Peng, T. H., Kozyr, A., Ono, T., and Rios, A. F.: The oceanic sink
for anthropogenic CO2, Science, 305, 367–371, https://doi.org/10.1126/Science.1097403,
2004.
Sasse, T. P., McNeil, B. I., and Abramowitz, G.: A new constraint on global
air-sea CO2 fluxes using bottle carbon data, Geophys. Res. Lett., 40,
1594–1599, https://doi.org/10.1002/Grl.50342, 2013.
Shaw, E. C., McNeil, B. I., and Tilbrook, B.: Impacts of ocean acidification
in naturally variable coral reef flat ecosystems, J. Geophys. Res.-Oceans, 117,
C03038, https://doi.org/10.1029/2011jc007655, 2012.
Silverman, J., Lazar, B., Cao, L., Caldeira, K., and Erez, J.: Coral reefs
may start dissolving when atmospheric CO2 doubles, Geophys. Res. Lett., 36,
L05606,
https://doi.org/10.1029/2008gl036282, 2009.
Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A.,
Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M.,
Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L., Canadell, J. G.,
Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B.,
Zhu, Z., and Myneni, R.: Recent trends and drivers of regional sources and sinks of carbon dioxide,
Biogeosciences, 12, 653–679, https://doi.org/10.5194/bg-12-653-2015, 2015.
Stanley, S. M. and Hardie, L. A.: Secular oscillations in the carbonate
mineralogy of reef-building and sediment-producing organisms driven by
tectonically forced shifts in seawater chemistry, Palaeogeogr. Palaeocl., 144,
3–19, https://doi.org/10.1016/S0031-0182(98)00109-6, 1998.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A.,
Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson,
A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii,
M., Midorikawa, T., Nojiri, Y., Kortzinger, A., Steinhoff, T., Hoppema, M.,
Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A.,
Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.:
Climatological mean and decadal change in surface ocean pCO(2), and net
sea-air CO2 flux over the global oceans, Deep-Sea Res. Pt. II, 56, 554–577,
https://doi.org/10.1016/J.Dsr2.2008.12.009, 2009.
Takahashi, T., Sutherland, S. C., Chipman, D. W., Goddard, J. G., Ho, C.,
Newberger, T., Sweeney, C., and Munro, D. R.: Climatological distributions
of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in
the global surface ocean, and temporal changes at selected locations, Mar. Chem., 164, 95–125, https://doi.org/10.1016/j.marchem.2014.06.004, 2014.
Zeebe, R. E. and Wolf-Gladrow, D.: CO2 in Seawater: Equilibrium, Kinetics,
Isotopes, Elsevier Oceanography Series, 65, 346 pp., Amsterdam, 2001.
Zweng, M. M., Reagan, J. R., Antonov, J. I., Locarnini, R. A., Mishonov, A.
V., Boyer, T. P., Garcia, H. E., Baranova, O. K., Johnson, D. R., Seidov, D.,
and Biddle, M. M.: World Ocean Atlas 2013, Volume 2: Salinity,
edited by: Levitus, S. and Mishonov, A., NOAA Atlas NESDIS 74, 39 pp., 2013.
Short summary
We reconstruct the observed variability and mean state in pH and aragonite saturation state around Australia at high spatial resolution and reconstruct the changes that have occurred in the Australian region over the last 140 years. We find that large changes in aragonite saturation state and pH have very different spatial patterns, which suggests that the biological responses to ocean acidification are likely to be non-uniform and dependent on the relative sensitivity of organisms to change.
We reconstruct the observed variability and mean state in pH and aragonite saturation state...
Altmetrics
Final-revised paper
Preprint